Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters











Database
Language
Publication year range
1.
Domest Anim Endocrinol ; 44(2): 81-97, 2013 Feb.
Article in English | MEDLINE | ID: mdl-23063408

ABSTRACT

The hypothalamic-pituitary-adrenal (HPA) axis exerts a large range of effects on metabolism, the immune system, inflammatory processes, and brain functions. Together with the sympathetic nervous system, it is also the most important stress-responsive neuroendocrine system. Both systems influence production traits, carcass composition, and meat quality. The HPA axis may be a critical target for genetic selection of more robust animals. Indeed, numerous studies in various species have demonstrated the importance of genetic factors in shaping the individual HPA axis phenotype, and genetic polymorphism can be found at each level of the axis, including hormone production by the adrenal cortices under stimulation by adrenocorticotropic hormone (ACTH), hormone bioavailability, or receptor and postreceptor mechanisms. The aim of the present experiment was to extend these findings to the brain neurochemical systems involved in stress responses. To this end, a number of candidate genes were sequenced for molecular polymorphisms and their association was studied with stress neuroendocrine and production traits in a genetically diverse population consisting of 100 female pigs from an advanced intercross (F10-F12) between 2 highly divergent breeds, Large White (LW) and Meishan (MS). The LW breed has a high production potential for lean meat and a low HPA axis activity, and the MS breed has low growth rate, fat carcasses-but large litters of highly viable piglets-and a high HPA axis activity. Candidate genes were chosen in the catecholaminergic and serotonergic pathways, in the pituitary control of cortisol production, among genes previously demonstrated to be differentially expressed in ACTH-stimulated adrenal glands from LW and MS pigs, and in cortisol receptors. Sixty new polymorphisms were found. The association study with carcass and meat quality traits and with endocrine traits showed a number of significant results, such as monoamine oxidase (MAOA) polymorphisms with growth rate (P = 0.01); lean content and intramuscular fat (P < 0.01), which are the most important traits for carcass value; dopamine receptor D3 (DRD3) with carcass composition (P < 0.05); and vasopressin receptor 1B (AVPR1B) with meat quality traits (P ≤ 0.05). The effect of these polymorphisms on neuroendocrine parameters (eg DRD3 and HPA axis or AVPR1B and catecholamines) indicates information regarding their biological mechanism of action.


Subject(s)
Gene Expression Regulation/physiology , Meat/standards , Polymorphism, Genetic , Stress, Physiological/genetics , Animals , Female , Genotype , Swine/genetics
2.
Anim Genet ; 40(2): 157-64, 2009 Apr.
Article in English | MEDLINE | ID: mdl-19243366

ABSTRACT

Quantitative trait loci (QTL) influencing the weight of abdominal fat (AF) and of breast muscle (BM) were detected on chicken chromosome 5 (GGA5) using two successive F(2) crosses between two divergently selected 'Fat' and 'Lean' INRA broiler lines. Based on these results, the aim of the present study was to identify the number, location and effects of these putative QTL by performing multitrait and multi-QTL analyses of the whole available data set. Data concerned 1186 F(2) offspring produced by 10 F(1) sires and 85 F(1) dams. AF and BM traits were measured on F(2) animals at slaughter, at 8 (first cross) or 9 (second cross) weeks of age. The F(0), F(1) and F(2) birds were genotyped for 11 microsatellite markers evenly spaced along GGA5. Before QTL detection, phenotypes were adjusted for the fixed effects of sex, F(2) design, hatching group within the design, and for body weight as a covariable. Univariate analyses confirmed the QTL segregation for AF and BM on GGA5 in male offspring, but not in female offspring. Analyses of male offspring data using multitrait and linked-QTL models led us to conclude the presence of two QTL on the distal part of GGA5, each controlling one trait. Linked QTL models were applied after correction of phenotypic values for the effects of these distal QTL. Several QTL for AF and BM were then discovered in the central region of GGA5, splitting one large QTL region for AF into several distinct QTL. Neither the 'Fat' nor the 'Lean' line appeared to be fixed for any QTL genotype. These results have important implications for prospective fine mapping studies and for the identification of underlying genes and causal mutations.


Subject(s)
Abdominal Fat/anatomy & histology , Chickens/anatomy & histology , Chickens/genetics , Muscle, Skeletal/anatomy & histology , Animals , Chickens/growth & development , Chromosome Mapping , Female , Genotype , Hybridization, Genetic , Male , Microsatellite Repeats , Multivariate Analysis , Phenotype , Quantitative Trait Loci
SELECTION OF CITATIONS
SEARCH DETAIL