Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Nanomaterials (Basel) ; 14(13)2024 Jul 04.
Article in English | MEDLINE | ID: mdl-38998756

ABSTRACT

Copper selenide nanoparticles (Cu2-x Se NPs) have received a lot of attention in recent decades due to their interesting properties and potential applications in various areas such as electronics, health, solar cells, etc. In this study, details of the synthesis and characterization of copper selenide nanoparticles modified with gum arabic (GA) are reported. Also, through transmission electronic microscopy (TEM) analysis, the transformation of the morphology and particle size of copper selenide nanoparticles in aqueous solution was studied. In addition, we present an antimicrobial study with different microorganisms such as Staphylococcus aureus (S. aureus), Escherichia coli (E. coli) and Candida albiacans (C. albicans). Copper selenide nanoparticles were characterized by X-ray diffraction (XRD), Fourier-transform infrared spectroscopy (FTIR), thermogravimetric analysis (TGA), differential scanning calorimetry analysis (DSC) and TEM. XRD confirmed the crystal-line structure of the nanoparticles such as cubic berzelanite with a particle size of 6 nm ± 0.5. FTIR and TGA corroborated the surface modification of copper selenide nanoparticles with gum arabic, and DSC suggested a change in the structural phase from cubic to hexagonal. TEM analysis demonstrated that the surface modification of the Cu2-x Se NPs stabilized the nanostructure of the particles, preventing changes in the morphology and particle size. The antimicrobial susceptibility analysis of copper selenide nanoparticles indicated that they have the ability to inhibit the microbial growth of Staphylococcus aureus, Escherichia coli and Candida albicans.

2.
Polymers (Basel) ; 16(4)2024 Feb 09.
Article in English | MEDLINE | ID: mdl-38399867

ABSTRACT

The accumulation of microorganisms, plants, algae, or small animals on wet surfaces that have a mechanical function causes biofouling, which can result in structural or other functional deficiencies. The maritime shipping industry must constantly manage biofouling to optimize operational performance, which is a common and long-lasting problem. It can occur on any metal structure in contact with or submerged in ocean water, which represents additional costs in terms of repairs and maintenance. This study is focused on the production of antifouling coatings, made with nanoparticles of copper selenide (CuSe NPs) modified with gum arabic, within a water-base acrylic polymeric matrix. During the curing of the acrylic resin, the CuSe NPs remain embedded in the resin, but this does not prevent the release of ions. The coatings released copper and selenium ions for up to 80 days, and selenium was the element that was released the most. The adhesion of film coatings to metallic substrates showed good adhesion, scale 5B (ASTM D3359 standard). Antimicrobial activity tests show that the coatings have an inhibitory effect on Escherichia coli and Candida albicans. The effect is more noticeable when the coating is detached from the substrate and placed on a growing medium, compared to the coating on a substrate. Scanning electron microscopy (SEM) observations show that nanostructured CuSe coatings are made up of rod-shaped and spherical particles with an average particle size of 101.6 nm and 50 nm, respectively. The energy dispersive X-ray spectroscopy (EDS) studies showed that the ratio of selenium nanoparticles is greater than that of copper and that their distribution is homogeneous.

SELECTION OF CITATIONS
SEARCH DETAIL