Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 104
1.
ACS Nano ; 18(20): 13214-13225, 2024 May 21.
Article En | MEDLINE | ID: mdl-38717114

Facing the escalating threat of viruses worldwide, the development of efficient sensor elements for rapid virus detection has never been more critical. Traditional point-of-care (POC) sensors struggle due to their reliance on fragile biological receptors and limited adaptability to viral strains. In this study, we introduce a nanosensor design for receptor-free virus recognitions using near-infrared (NIR) fluorescent single-walled carbon nanotubes (SWCNTs) functionalized with a poly(ethylene glycol) (PEG)-phospholipid (PEG-lipid) array. Three-dimensional (3D) corona interfaces of the nanosensor array enable selective and sensitive detection of diverse viruses, including Ebola, Lassa, H3N2, H1N1, Middle East respiratory syndrome (MERS), severe acute respiratory syndrome coronavirus 1 (SARS-CoV-1), and SARS-CoV-2, even without any biological receptors. The PEG-lipid components, designed considering chain length, fatty acid saturation, molecular weight, and end-group moieties, allow for precise quantification of viral recognition abilities. High-throughput automated screening of the array demonstrates how the physicochemical properties of the PEG-lipid/SWCNT 3D corona interfaces correlate with viral detection efficiency. Utilizing molecular dynamics and AutoDock simulations, we investigated the impact of PEG-lipid components on 3D corona interface formation, such as surface coverage and hydrodynamic radius and specific molecular interactions based on chemical potentials. Our findings not only enhance detection specificity across various antigens but also accelerate the development of sensor materials for promptly identifying and responding to emerging antigen threats.


Nanotubes, Carbon , Polyethylene Glycols , SARS-CoV-2 , Nanotubes, Carbon/chemistry , Polyethylene Glycols/chemistry , SARS-CoV-2/isolation & purification , Humans , COVID-19/virology , Phospholipids/chemistry , Biosensing Techniques/methods , Viruses/chemistry , Polymers/chemistry
2.
bioRxiv ; 2024 May 17.
Article En | MEDLINE | ID: mdl-38798615

Poly-ADP-ribose polymerases 1 and 2 (PARP1 and PARP2) are crucial sensors of DNA-strand breaks and emerging cancer therapy targets. Once activated by DNA breaks, PARP1 and PARP2 generate poly-ADP-ribose (PAR) chains on themselves and other substrates to promote DNA single-strand break repair (SSBR). PARP1 can be activated by diverse DNA lesions, whereas PARP2 specifically recognizes 5' phosphorylated nicks. They can be activated independently and provide mutual backup in the absence of the other. However, whether PARP1 and PARP2 have synergistic functions in DNA damage response remains elusive. Here, we show that PARP1 and the PAR chains generated by PARP1 recruit PARP2 to the vicinity of DNA damage sites through the scaffold protein XRCC1. Using quantitative live-cell imaging, we found that loss of XRCC1 markedly reduces irradiation-induced PARP2 foci in PARP1-proficient cells. The central BRCT domain (BRCT1) of XRCC1 binds to the PAR chain, while the C-terminal BRCT domain (BRCT2) of XRCC1 interacts with the catalytic domain of PARP2, facilitating its localization near the breaks. Together, these findings unveil a new function of XRCC1 in augmenting PARP2 recruitment in response to PARP1 activation and explain why PARP1, but not PARP2, is aggregated and hyperactivated in XRCC1-deficient cells.

3.
bioRxiv ; 2024 Mar 14.
Article En | MEDLINE | ID: mdl-38559022

PARP1&2 enzymatic inhibitors (PARPi) are promising cancer treatments. But recently, their use has been hindered by unexplained severe anemia and treatment-related leukemia. In addition to enzymatic inhibition, PARPi also trap PARP1&2 at DNA lesions. Here, we report that unlike Parp2 -/- mice, which develop normally, mice expressing catalytically-inactive Parp2 (E534A, Parp2 EA/EA ) succumb to Tp53- and Chk2 -dependent erythropoietic failure in utero , mirroring Lig1 -/- mice. While DNA damage mainly activates PARP1, we demonstrate that DNA replication activates PARP2 robustly. PARP2 is selectively recruited and activated by 5'-phosphorylated nicks (5'p-nicks) between Okazaki fragments, typically resolved by Lig1. Inactive PARP2, but not its active form or absence, impedes Lig1- and Lig3-mediated ligation, causing dose-dependent replication fork collapse, particularly harmful to erythroblasts with ultra-fast forks. This PARylation-dependent structural function of PARP2 at 5'p-nicks explains the detrimental effects of PARP2 inhibition on erythropoiesis, revealing the mechanism behind the PARPi-induced anemia and leukemia, especially those with TP53/CHK2 loss. Significance: This work shows that the hematological toxicities associated with PARP inhibitors stem not from impaired PARP1 or PARP2 enzymatic activity but rather from the presence of inactive PARP2 protein. Mechanistically, these toxicities reflect a unique role of PARP2 at 5'-phosphorylated DNA nicks during DNA replication in erythroblasts.

5.
Sci Signal ; 16(816): eadh3449, 2023 12 19.
Article En | MEDLINE | ID: mdl-38113335

Interleukin-1 receptor (IL-1R)-associated kinases (IRAKs) are core effectors of Toll-like receptors (TLRs) and IL-1R in innate immunity. Here, we found that IRAK4 and IRAK1 together inhibited DNA damage-induced cell death independently of TLR or IL-1R signaling. In human cancer cells, IRAK4 was activated downstream of ATR kinase in response to double-strand breaks (DSBs) induced by ionizing radiation (IR). Activated IRAK4 then formed a complex with and activated IRAK1. The formation of this complex required the E3 ubiquitin ligase Pellino1, acting structurally but not catalytically, and the activation of IRAK1 occurred independently of extracellular signaling, intracellular TLRs, and the TLR/IL-1R signaling adaptor MyD88. Activated IRAK1 translocated to the nucleus in a Pellino2-dependent manner. In the nucleus, IRAK1 bound to the PIDD1 subunit of the proapoptotic PIDDosome and interfered with platform assembly, thus supporting cell survival. This noncanonical IRAK signaling pathway was also activated in response to other DSB-inducing agents. The loss of IRAK4, of IRAK4 kinase activity, of either Pellino protein, or of the nuclear localization sequence in IRAK1 sensitized p53-mutant zebrafish to radiation. Thus, the findings may lead to strategies for overcoming tumor resistance to conventional cancer treatments.


Interleukin-1 Receptor-Associated Kinases , Receptors, Interleukin-1 , Animals , Humans , Interleukin-1 Receptor-Associated Kinases/genetics , Interleukin-1 Receptor-Associated Kinases/metabolism , Receptors, Interleukin-1/genetics , Receptors, Interleukin-1/metabolism , Zebrafish/metabolism , Signal Transduction , Toll-Like Receptors/metabolism , DNA Damage , Apoptosis
6.
JAMA ; 330(13): 1266-1277, 2023 10 03.
Article En | MEDLINE | ID: mdl-37787795

Importance: Chronic kidney disease (low estimated glomerular filtration rate [eGFR] or albuminuria) affects approximately 14% of adults in the US. Objective: To evaluate associations of lower eGFR based on creatinine alone, lower eGFR based on creatinine combined with cystatin C, and more severe albuminuria with adverse kidney outcomes, cardiovascular outcomes, and other health outcomes. Design, Setting, and Participants: Individual-participant data meta-analysis of 27 503 140 individuals from 114 global cohorts (eGFR based on creatinine alone) and 720 736 individuals from 20 cohorts (eGFR based on creatinine and cystatin C) and 9 067 753 individuals from 114 cohorts (albuminuria) from 1980 to 2021. Exposures: The Chronic Kidney Disease Epidemiology Collaboration 2021 equations for eGFR based on creatinine alone and eGFR based on creatinine and cystatin C; and albuminuria estimated as urine albumin to creatinine ratio (UACR). Main Outcomes and Measures: The risk of kidney failure requiring replacement therapy, all-cause mortality, cardiovascular mortality, acute kidney injury, any hospitalization, coronary heart disease, stroke, heart failure, atrial fibrillation, and peripheral artery disease. The analyses were performed within each cohort and summarized with random-effects meta-analyses. Results: Within the population using eGFR based on creatinine alone (mean age, 54 years [SD, 17 years]; 51% were women; mean follow-up time, 4.8 years [SD, 3.3 years]), the mean eGFR was 90 mL/min/1.73 m2 (SD, 22 mL/min/1.73 m2) and the median UACR was 11 mg/g (IQR, 8-16 mg/g). Within the population using eGFR based on creatinine and cystatin C (mean age, 59 years [SD, 12 years]; 53% were women; mean follow-up time, 10.8 years [SD, 4.1 years]), the mean eGFR was 88 mL/min/1.73 m2 (SD, 22 mL/min/1.73 m2) and the median UACR was 9 mg/g (IQR, 6-18 mg/g). Lower eGFR (whether based on creatinine alone or based on creatinine and cystatin C) and higher UACR were each significantly associated with higher risk for each of the 10 adverse outcomes, including those in the mildest categories of chronic kidney disease. For example, among people with a UACR less than 10 mg/g, an eGFR of 45 to 59 mL/min/1.73 m2 based on creatinine alone was associated with significantly higher hospitalization rates compared with an eGFR of 90 to 104 mL/min/1.73 m2 (adjusted hazard ratio, 1.3 [95% CI, 1.2-1.3]; 161 vs 79 events per 1000 person-years; excess absolute risk, 22 events per 1000 person-years [95% CI, 19-25 events per 1000 person-years]). Conclusions and Relevance: In this retrospective analysis of 114 cohorts, lower eGFR based on creatinine alone, lower eGFR based on creatinine and cystatin C, and more severe UACR were each associated with increased rates of 10 adverse outcomes, including adverse kidney outcomes, cardiovascular diseases, and hospitalizations.


Albumins , Albuminuria , Creatinine , Cystatin C , Glomerular Filtration Rate , Renal Insufficiency, Chronic , Adult , Female , Humans , Male , Middle Aged , Albuminuria/diagnosis , Albuminuria/epidemiology , Atrial Fibrillation , Creatinine/analysis , Cystatin C/analysis , Retrospective Studies , Renal Insufficiency, Chronic/diagnosis , Renal Insufficiency, Chronic/epidemiology , Aged , Albumins/analysis , Disease Progression , Internationality , Comorbidity
7.
J Refract Surg ; 39(9): 639-646, 2023 Sep.
Article En | MEDLINE | ID: mdl-37675910

PURPOSE: To describe an approach using sequential excimer laser ablation of the stromal surface of the corneal flap with or without subsequent excimer ablation to the stromal bed to reduce presbyopic inlay-associated corneal haze. METHODS: Twelve patients who underwent KAMRA inlay (Acufocus) explantation due to corneal haze were included. The mean interval between explantation and the primary surgery (phototherapeutic keratotomy [PTK] to corneal flap) was 16.2 ± 29.7 months (range = 1 to 83 months). The corneal flap was lifted and laid on an evisceration spoon and an excimer laser was used to ablate the flap stroma by 30 to 40 µm depth. Subsequently, an excimer laser was used to ablate and treat the stromal bed following a second flap lift according to the manifest refraction, leaving a minimal residual stromal bed thickness of greater than 300 µm. For both procedures, mitomycin C 0.02% was applied to the stromal bed before the flap was replaced and a bandage contact lens applied. RESULTS: Reductions in corneal haze were observed, following PTK to the corneal flap with or without photorefractive keratectomy (PRK) to the stromal bed, both clinically and on imaging. No significant changes in uncorrected distance visual acuity (P = .442) and corrected distance visual acuity (P = .565) were observed. Improvements were observed for both spherical equivalent refractive errors (P = .036) and corneal light backscatter (P = .019). There were significant improvements in spherical aberrations (P = .014) but no changes in total lower and higher order aberrations. CONCLUSIONS: PTK to the corneal flap with or without subsequent stromal bed PRK is an effective technique in treating corneal haze following presbyopic inlay explantation. [J Refract Surg. 2023;39(9):639-646.].


Corneal Opacity , Laser Therapy , Photorefractive Keratectomy , Humans , Corneal Opacity/etiology , Corneal Opacity/surgery , Cornea , Surgical Flaps
8.
J Investig Med High Impact Case Rep ; 11: 23247096231201214, 2023.
Article En | MEDLINE | ID: mdl-37731269

Nausea and vomiting are cardinal symptoms affecting many patients with delayed or normal gastric emptying. The current therapies are very limited and less than optimal. Therefore, gastrointestinal symptoms persist despite using all the standard approaches for gastroparesis, functional dyspepsia, or unexplained nausea and vomiting. It is well established that gastric electrical stimulation (GES) is effective in reducing nausea and vomiting in gastroparesis, but there are essentially no data available that detail the efficacy of GES in symptomatic patients without gastroparesis. We present a unique case of a female patient diagnosed with functional dyspepsia, whose nausea and vomiting which were refractory to all standard therapies were successfully addressed with the implantation of a GES system.


Dyspepsia , Electric Stimulation Therapy , Gastroparesis , Humans , Female , Gastric Emptying/physiology , Gastroparesis/therapy , Dyspepsia/therapy , Vomiting/etiology , Vomiting/therapy , Vomiting/diagnosis , Nausea/etiology , Nausea/therapy , Electric Stimulation
9.
Proc Natl Acad Sci U S A ; 120(31): e2301972120, 2023 08.
Article En | MEDLINE | ID: mdl-37487079

PARP1 (poly-ADP ribose polymerase 1) is recruited and activated by DNA strand breaks, catalyzing the generation of poly-ADP-ribose (PAR) chains from NAD+. PAR relaxes chromatin and recruits other DNA repair factors, including XRCC1 and DNA Ligase 3, to maintain genomic stability. Here we show that, in contrast to the normal development of Parp1-null mice, heterozygous expression of catalytically inactive Parp1 (E988A, Parp1+/A) acts in a dominant-negative manner to disrupt murine embryogenesis. As such, all the surviving F1 Parp1+/A mice are chimeras with mixed Parp1+/AN (neoR retention) cells that act similarly to Parp1+/-. Pure F2 Parp1+/A embryos were found at Mendelian ratios at the E3.5 blastocyst stage but died before E9.5. Compared to Parp1-/- cells, genotype and expression-validated pure Parp1+/A cells retain significant ADP-ribosylation and PARylation activities but accumulate markedly higher levels of sister chromatid exchange and mitotic bridges. Despite proficiency for homologous recombination and nonhomologous end-joining measured by reporter assays and supported by normal lymphocyte and germ cell development, Parp1+/A cells are hypersensitive to base damages, radiation, and Topoisomerase I and II inhibition. The sensitivity of Parp1+/A cells to base damages and Topo inhibitors exceed Parp1-/- controls. The findings show that the enzymatically inactive PARP1 dominant negatively blocks DNA repair in selective pathways beyond wild-type PARP1 and establishes a crucial physiological difference between PARP1 inactivation vs. deletion. As a result, the expression of enzymatically inactive PARP1 from one allele is sufficient to abrogate murine embryonic development, providing a mechanism for the on-target side effect of PARP inhibitors used for cancer therapy.


ADP-Ribosylation , Genomic Instability , Female , Pregnancy , Animals , Mice , Causality , Alleles , Genotype
10.
Retina ; 43(10): 1788-1796, 2023 10 01.
Article En | MEDLINE | ID: mdl-37418643

PURPOSE: The study aimed to describe the phenotypic features of retinitis pigmentosa (RP) associated with the previously described EYS C2139Y variant in Singaporeans and establish the importance of this variant as a prevalent cause of RP among East Asians. METHODS: A clinical phenotyping and exome-sequencing study was conducted on consecutive patients with nonsyndromic RP. Epidemiological analysis was performed using Singaporean and global population-based genetic data. RESULTS: A study of 150 consecutive unrelated individuals with nonsyndromic RP found that 87 (58%) of cases had plausible genotypes. A previously described missense variant in the EYS gene, 6416G>A (C2139Y), occurred heterozygously or homozygously in 17 of 150 families (11.3%), all with autosomal recessive RP. Symptom onset in EYS C2139Y-related RP ranged from 6 to 45 years, with visual acuity ranging from 20/20 at 21 years to no light perception by 48 years. C2139Y-related RP had typical findings, including sectoral RP in cases with EYS E2703X in trans . The median age at presentation was 45 years and visual fields declined to less than 20° (Goldmann V4e isopter) by age 65 years. Intereye correlation for visual acuity, fields, and ellipsoid band width was high (r 2 = 0.77-0.95). Carrier prevalence was 0.66% (allele frequency of 0.33%) in Singaporean Chinese and 0.34% in East Asians, suggesting a global disease burden exceeding 10,000 individuals. CONCLUSION: The EYS C2139Y variant is common in Singaporean RP patients and other ethnic Chinese populations. Targeted molecular therapy for this single variant could potentially treat a significant proportion of RP cases worldwide.


Blindness , East Asian People , Eye Proteins , Retinitis Pigmentosa , Aged , Humans , Blindness/diagnosis , Blindness/epidemiology , Blindness/ethnology , Blindness/genetics , DNA Mutational Analysis , East Asian People/genetics , Eye Proteins/genetics , Mutation , Pedigree , Retinitis Pigmentosa/diagnosis , Retinitis Pigmentosa/epidemiology , Retinitis Pigmentosa/ethnology , Retinitis Pigmentosa/genetics
11.
Proc Natl Acad Sci U S A ; 120(25): e2221894120, 2023 06 20.
Article En | MEDLINE | ID: mdl-37307443

The nonhomologous end-joining (NHEJ) pathway is a major DNA double-strand break repair pathway in mammals and is essential for lymphocyte development. Ku70 and Ku80 heterodimer (KU) initiates NHEJ, thereby recruiting and activating the catalytic subunit of DNA-dependent protein kinase (DNA-PKcs). While DNA-PKcs deletion only moderately impairs end-ligation, the expression of kinase-dead DNA-PKcs completely abrogates NHEJ. Active DNA-PK phosphorylates DNA-PKcs at two clusters-PQR around S2056 (S2053 in mouse) and ABCDE around T2609. Alanine substitution at the S2056 cluster moderately compromises end-ligation on plasmid-based assays. But, mice carrying alanine substitution at all five serine residues within the S2056 cluster (DNA-PKcsPQR/PQR) display no defect in lymphocyte development, leaving the physiological significance of S2056 cluster phosphorylation elusive. Xlf is a nonessential NHEJ factor. Xlf -/- mice have substantial peripheral lymphocytes that are completely abolished by the loss of DNA-PKcs, the related ATM kinases, other chromatin-associated DNA damage response factors (e.g., 53BP1, MDC1, H2AX, and MRI), or RAG2-C-terminal regions, suggesting functional redundancy. While ATM inhibition does not further compromise end-ligation, here we show that in XLF-deficient background, DNA-PKcs S2056 cluster phosphorylation is critical for normal lymphocyte development. Chromosomal V(D)J recombination from DNA-PKcsPQR/PQRXlf -/- B cells is efficient but often has large deletions that jeopardize lymphocyte development. Class-switch recombination junctions from DNA-PKcsPQR/PQRXlf -/- mice are less efficient and the residual junctions display decreased fidelity and increased deletion. These findings establish a role for DNA-PKcs S2056 cluster phosphorylation in physiological chromosomal NHEJ, implying that S2056 cluster phosphorylation contributes to the synergy between XLF and DNA-PKcs in end-ligation.


Protein Kinases , Protein Processing, Post-Translational , Animals , Mice , Phosphorylation , Alanine , B-Lymphocytes , DNA-Activated Protein Kinase , Mammals , DNA-Binding Proteins
12.
Nat Commun ; 14(1): 3618, 2023 06 19.
Article En | MEDLINE | ID: mdl-37336885

The ATR kinase, which coordinates cellular responses to DNA replication stress, is also essential for the proliferation of normal unstressed cells. Although its role in the replication stress response is well defined, the mechanisms by which ATR supports normal cell proliferation remain elusive. Here, we show that ATR is dispensable for the viability of G0-arrested naïve B cells. However, upon cytokine-induced proliferation, Atr-deficient B cells initiate DNA replication efficiently, but by mid-S phase they display dNTP depletion, fork stalling, and replication failure. Nonetheless, productive DNA replication and dNTP levels can be restored in Atr-deficient cells by suppressing origin firing, such as partial inhibition of CDC7 and CDK1 kinase activities. Together, these findings indicate that ATR supports the proliferation of normal unstressed cells by tempering the pace of origin firing during the early S phase to avoid exhaustion of dNTPs and importantly also other replication factors.


DNA Replication , Protein Serine-Threonine Kinases , S Phase , Protein Serine-Threonine Kinases/genetics , Protein Serine-Threonine Kinases/metabolism , Cell Cycle Proteins/genetics , Cell Cycle Proteins/metabolism , Ataxia Telangiectasia Mutated Proteins/genetics , Ataxia Telangiectasia Mutated Proteins/metabolism , Cell Proliferation , DNA Damage
13.
Eye (Lond) ; 37(18): 3827-3833, 2023 12.
Article En | MEDLINE | ID: mdl-37301937

OBJECTIVE: To assess the economic impact of inherited retinal disease (IRD) among Singaporeans. METHODS: IRD prevalence was calculated using population-based data. Focused surveys were conducted for sequentially enrolled IRD patients from a tertiary hospital. The IRD cohort was compared to the age- and gender-matched general population. Economic costs were expanded to the national IRD population to estimate productivity and healthcare costs. RESULTS: National IRD caseload was 5202 cases (95% CI, 1734-11273). IRD patients (n = 95) had similar employment rates to the general population (67.4% vs. 70.7%; p = 0.479). Annual income was lower among IRD patients than the general population (SGD 19,500 vs. 27,161; p < 0.0001). Employed IRD patients had lower median income than the general population (SGD 39,000 vs. 52,650; p < 0.0001). Per capita cost of IRD was SGD 9382, with a national burden of SGD 48.8 million per year. Male gender (beta of SGD 6543, p = 0.003) and earlier onset (beta of SGD 150/year, p = 0.009) predicted productivity loss. Treatment of the most economically impacted 10% of IRD patients with an effective IRD therapy required initial treatment cost of less than SGD 250,000 (USD 188,000) for cost savings to be achieved within 20 years. CONCLUSIONS: Employment rates among Singaporean IRD patients were the same as the general population, but patient income was significantly lower. Economic losses were driven in part by male patients with early age of onset. Direct healthcare costs contributed relatively little to the financial burden.


Financial Stress , Retinal Diseases , Humans , Male , Singapore/epidemiology , Prevalence , Health Care Costs , Cost of Illness
14.
Mol Cell ; 83(13): 2347-2356.e8, 2023 Jul 06.
Article En | MEDLINE | ID: mdl-37311462

Oncogenic mutations in isocitrate dehydrogenases 1 and 2 (IDH1/2) produce 2-hydroxyglutarate (2HG), which inhibits dioxygenases that modulate chromatin dynamics. The effects of 2HG have been reported to sensitize IDH tumors to poly-(ADP-ribose) polymerase (PARP) inhibitors. However, unlike PARP-inhibitor-sensitive BRCA1/2 tumors, which exhibit impaired homologous recombination, IDH-mutant tumors have a silent mutational profile and lack signatures associated with impaired homologous recombination. Instead, 2HG-producing IDH mutations lead to a heterochromatin-dependent slowing of DNA replication accompanied by increased replication stress and DNA double-strand breaks. This replicative stress manifests as replication fork slowing, but the breaks are repaired without a significant increase in mutation burden. Faithful resolution of replicative stress in IDH-mutant cells is dependent on poly-(ADP-ribosylation). Treatment with PARP inhibitors increases DNA replication but results in incomplete DNA repair. These findings demonstrate a role for PARP in the replication of heterochromatin and further validate PARP as a therapeutic target in IDH-mutant tumors.


BRCA1 Protein , Neoplasms , Humans , BRCA1 Protein/genetics , Heterochromatin/genetics , Poly(ADP-ribose) Polymerase Inhibitors/pharmacology , BRCA2 Protein/genetics , Homologous Recombination/genetics , Neoplasms/drug therapy , Neoplasms/genetics , Mutation , Isocitrate Dehydrogenase/genetics
15.
Phys Med Biol ; 68(13)2023 Jun 30.
Article En | MEDLINE | ID: mdl-37321248

Objective. This study aims to evaluate radiofrequency (RF) shielding effectiveness (SE), gradient-induced eddy current, magnetic resonance (MR) susceptibility, and positron emission tomography (PET) photon attenuation of six shielding materials: copper plate, copper tape, carbon fiber fabric, stainless steel mesh, phosphor bronze mesh, and a spray-on conductive coating.Approach. We evaluated the six shielding materials by implementing them on identical clear plastic enclosures. We measured the RF SE and eddy current in benchtop experiments (outside of the MR environment) and in a 3T MR scanner. The magnetic susceptibility performance was evaluated in the same MR scanner. Additionally, we measured their effects on PET detectors, including global coincidence time resolution, global energy resolution, and coincidence count rate.Main results. The RF SEs for copper plate, copper tape, carbon fiber fabric, stainless steel mesh, phosphor bronze mesh, and conductive coating enclosures were 56.8 ± 5.8, 63.9 ± 4.3, 33.1 ± 11.7, 43.6 ± 4.5, 52.7 ± 4.6, and 47.8 ±7.1 dB, respectively, in the benchtop experiment. Copper plate and copper tape experienced the most eddy current at 10 kHz in the benchtop experiment and also generated the largest ghosting artifacts in the MR scanner. Stainless steel mesh had the highest mean absolute difference (7.6 ±0.2 Hz) compared to the reference in the MR susceptibility evaluation. The carbon fiber fabric and phosphor bronze mesh enclosures caused the largest photon attenuation, reducing the coincidence count rate by 3.3%, while the rest caused less than 2.6%.Significance. The conductive coating proposed in this study is shown to be a high-performance Faraday cage material for PET/MRI applications based on its overall performance in all the experiments conducted in this study, as well as its ease and flexibility of manufacturing. As a result, it will be selected as the Faraday cage material for our second-generation MR-compatible PET insert.


Copper , Stainless Steel , Carbon Fiber , Phantoms, Imaging , Positron-Emission Tomography/methods , Magnetic Resonance Imaging/methods
16.
bioRxiv ; 2023 May 27.
Article En | MEDLINE | ID: mdl-37292881

The ATR kinase, which coordinates cellular responses to DNA replication stress, is also essential for the proliferation of normal unstressed cells. Although its role in the replication stress response is well defined, the mechanisms by which ATR supports normal cell proliferation remain elusive. Here, we show that ATR is dispensable for the viability of G0-arrested naïve B cells. However, upon cytokine-induced proliferation, Atr-deficient B cells initiate DNA replication efficiently in early S phase, but by mid-S phase they display dNTP depletion, fork stalling, and replication failure. Nonetheless, productive DNA replication can be restored in Atr-deficient cells by pathways that suppress origin firing, such as downregulation of CDC7 and CDK1 kinase activities. Together, these findings indicate that ATR supports the proliferation of normal unstressed cells by tempering the pace of origin firing during the early S phase to avoid exhaustion of dNTPs and other replication factors.

17.
J Am Soc Nephrol ; 34(3): 482-494, 2023 03 01.
Article En | MEDLINE | ID: mdl-36857500

SIGNIFICANCE STATEMENT: The kidney failure risk equation (KFRE) uses age, sex, GFR, and urine albumin-to-creatinine ratio (ACR) to predict 2- and 5-year risk of kidney failure in populations with eGFR <60 ml/min per 1.73 m 2 . However, the CKD-EPI 2021 creatinine equation for eGFR is now recommended for use but has not been fully tested in the context of KFRE. In 59 cohorts comprising 312,424 patients with CKD, the authors assessed the predictive performance and calibration associated with the use of the CKD-EPI 2021 equation and whether additional variables and accounting for the competing risk of death improves the KFRE's performance. The KFRE generally performed well using the CKD-EPI 2021 eGFR in populations with eGFR <45 ml/min per 1.73 m 2 and was not improved by adding the 2-year prior eGFR slope and cardiovascular comorbidities. BACKGROUND: The kidney failure risk equation (KFRE) uses age, sex, GFR, and urine albumin-to-creatinine ratio (ACR) to predict kidney failure risk in people with GFR <60 ml/min per 1.73 m 2 . METHODS: Using 59 cohorts with 312,424 patients with CKD, we tested several modifications to the KFRE for their potential to improve the KFRE: using the CKD-EPI 2021 creatinine equation for eGFR, substituting 1-year average ACR for single-measure ACR and 1-year average eGFR in participants with high eGFR variability, and adding 2-year prior eGFR slope and cardiovascular comorbidities. We also assessed calibration of the KFRE in subgroups of eGFR and age before and after accounting for the competing risk of death. RESULTS: The KFRE remained accurate and well calibrated overall using the CKD-EPI 2021 eGFR equation. The other modifications did not improve KFRE performance. In subgroups of eGFR 45-59 ml/min per 1.73 m 2 and in older adults using the 5-year time horizon, the KFRE demonstrated systematic underprediction and overprediction, respectively. We developed and tested a new model with a spline term in eGFR and incorporating the competing risk of mortality, resulting in more accurate calibration in those specific subgroups but not overall. CONCLUSIONS: The original KFRE is generally accurate for eGFR <45 ml/min per 1.73 m 2 when using the CKD-EPI 2021 equation. Incorporating competing risk methodology and splines for eGFR may improve calibration in low-risk settings with longer time horizons. Including historical averages, eGFR slopes, or a competing risk design did not meaningfully alter KFRE performance in most circumstances.


Renal Insufficiency, Chronic , Renal Insufficiency , Humans , Aged , Creatinine , Transcription Factors , Albumins
18.
Med Phys ; 50(6): 3389-3400, 2023 Jun.
Article En | MEDLINE | ID: mdl-36912373

BACKGROUND: Simultaneous positron emission tomography/magnetic resonance imaging (PET/MRI) has shown promise in acquiring complementary multiparametric information of disease. However, designing these hybrid imaging systems is challenging due to the propensity for mutual interference between the PET and MRI subsystems. Currently, there are integrated PET/MRI systems for clinical applications. For neurologic imaging, a brain-dedicated PET insert provides superior spatial resolution and sensitivity compared to body PET scanners. PURPOSE: Our first-generation prototype brain PET insert ("PETcoil") demonstrated RF-penetrability and MR-compatibility. In the second-generation PETcoil system, all analog silicon photomultiplier (SiPM) signal digitization is moved inside the detectors, which results in substantially better PET detector performance, but presents a greater technical challenge for achieving MR-compatibility. In this paper, we report results from MR-compatibility studies of two fully assembled second-generation PET insert detector modules. METHODS: We studied the effect of the presence of the two second-generation TOF-PET insert detectors on parameters that affect MR image quality and evaluated TOF-PET detector performance under different MRI pulse sequence conditions. RESULTS: With the presence of operating PET detectors, no RF noise peaks were induced in the MR images, but the relative average noise level was increased by 15%, which led to a 3.1 to 4.2-dB degradation in MR image signal-to-noise ratio (SNR). The relative homogeneity of MR images degraded by less than 1.5% with the two operating TOF-PET detectors present. The reported results also indicated that ghosting artifacts (percent signal ghosting (PSG) ⩽ 1%) and MR susceptibility artifacts (0.044 ppm) were insignificant. The PET detector data showed a relative change of less than 5% in detector module performance between running outside and within the MR bore under different MRI pulse sequences except for energy resolution in EPI sequence (13% relative difference). CONCLUSIONS: The PET detector operation did not cause any significant artifacts in MR images and the performance and time-of-flight (TOF) capability of the former were preserved under different tested MR conditions.


Magnetic Resonance Imaging , Multimodal Imaging , Magnetic Resonance Imaging/methods , Multimodal Imaging/methods , Positron-Emission Tomography/methods , Brain/diagnostic imaging , Signal-To-Noise Ratio , Phantoms, Imaging
19.
Phys Med Biol ; 68(8)2023 04 05.
Article En | MEDLINE | ID: mdl-36913739

Objective. We are developing a portable, 'RF-penetrable', brain-dedicated time of flight (TOF)-PET insert (PETcoil) for simultaneous PET/MRI.Approach. In this paper, we evaluate the PET performance of two fully assembled detector modules for this insert design outside the MR room.Main results. The global coincidence time resolution, global 511 keV energy resolution, coincidence count rate, and detector temperature achieved over 2 h data collection were 242.2 ± 0.4 ps full width at half maximum (FWHM), 11.19% ± 0.02% FWHM, 22.0 ± 0.1 kcps, and 23.5 °C ± 0.3 °C, respectively. The intrinsic spatial resolutions in the axial and transaxial directions were 2.74 ± 0.01 mm FWHM and 2.88 ± 0.03 mm FWHM, respectively.Significance. These results demonstrate excellent TOF capability and the performance and stability necessary for scaling up to a full ring comprising 16 detector modules.


Brain , Magnetic Resonance Imaging , Magnetic Resonance Imaging/methods , Brain/diagnostic imaging , Positron-Emission Tomography/methods , Phantoms, Imaging , Temperature
20.
J Clin Psychiatry ; 84(3)2023 03 15.
Article En | MEDLINE | ID: mdl-36920279

Objective: Clozapine is the most efficacious antipsychotic medication, but it is underutilized and its mechanism of action is still poorly understood. One aspect of its unique efficacy that requires further study is its effect on suicidality. A randomized controlled trial, the InterSePT study, yielded evidence that clozapine reduces suicidality more than olanzapine, after which it became the only medication indicated for recurrent suicidal behavior in schizophrenia and schizoaffective disorder. We present here the first study of population mortality data to investigate the effect of clozapine on suicide.Methods: We reviewed statewide autopsy records of Maryland's Office of the Chief Medical Examiner, which performs uniquely comprehensive death investigations that include full toxicologic panels with postmortem blood levels of antipsychotics. Our study compared clozapine- and olanzapine-positive decedents across demographic, clinical, and manner-of-death outcomes using contingency table analysis and logistic regression.Results: Of 53,144 decedents from 2003 to 2021, 621 had clozapine or olanzapine detected on autopsy, with the two groups showing no demographic differences. Decedents with clozapine were significantly less likely to have died by suicide than by accident compared to those with olanzapine (odds ratio = 0.47; 95% CI, 0.26-0.84; P = .011).Conclusions: Our study thus adds more naturalistic evidence to the growing literature on the beneficial effect of clozapine on suicidality. Our findings also highlight the utility of statewide autopsy records, an untapped resource for investigating the potential protective effect of psychiatric medications on suicide at a population level.


Antipsychotic Agents , Clozapine , Suicide , Humans , Clozapine/therapeutic use , Olanzapine , Maryland/epidemiology , Autopsy , Benzodiazepines/adverse effects , Antipsychotic Agents/adverse effects , Suicide/psychology , Randomized Controlled Trials as Topic
...