Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 22
Filter
Add more filters










Publication year range
1.
J Biomed Sci ; 31(1): 54, 2024 May 24.
Article in English | MEDLINE | ID: mdl-38790021

ABSTRACT

BACKGROUND: Alcohol-related liver disease (ALD) is a major health concern worldwide, but effective therapeutics for ALD are still lacking. Tumor necrosis factor-inducible gene 6 protein (TSG-6), a cytokine released from mesenchymal stem cells, was shown to reduce liver fibrosis and promote successful liver repair in mice with chronically damaged livers. However, the effect of TSG-6 and the mechanism underlying its activity in ALD remain poorly understood. METHODS: To investigate its function in ALD mice with fibrosis, male mice chronically fed an ethanol (EtOH)-containing diet for 9 weeks were treated with TSG-6 (EtOH + TSG-6) or PBS (EtOH + Veh) for an additional 3 weeks. RESULTS: Severe hepatic injury in EtOH-treated mice was markedly decreased in TSG-6-treated mice fed EtOH. The EtOH + TSG-6 group had less fibrosis than the EtOH + Veh group. Activation of cluster of differentiation 44 (CD44) was reported to promote HSC activation. CD44 and nuclear CD44 intracellular domain (ICD), a CD44 activator which were upregulated in activated HSCs and ALD mice were significantly downregulated in TSG-6-exposed mice fed EtOH. TSG-6 interacted directly with the catalytic site of MMP14, a proteolytic enzyme that cleaves CD44, inhibited CD44 cleavage to CD44ICD, and reduced HSC activation and liver fibrosis in ALD mice. In addition, a novel peptide designed to include a region that binds to the catalytic site of MMP14 suppressed CD44 activation and attenuated alcohol-induced liver injury, including fibrosis, in mice. CONCLUSIONS: These results demonstrate that TSG-6 attenuates alcohol-induced liver damage and fibrosis by blocking CD44 cleavage to CD44ICD and suggest that TSG-6 and TSG-6-mimicking peptide could be used as therapeutics for ALD with fibrosis.


Subject(s)
Cell Adhesion Molecules , Hyaluronan Receptors , Liver Cirrhosis , Liver Diseases, Alcoholic , Animals , Male , Mice , Cell Adhesion Molecules/administration & dosage , Ethanol , Hyaluronan Receptors/metabolism , Hyaluronan Receptors/genetics , Liver Cirrhosis/metabolism , Liver Cirrhosis/drug therapy , Liver Cirrhosis/chemically induced , Liver Diseases, Alcoholic/metabolism , Liver Diseases, Alcoholic/drug therapy , Mice, Inbred C57BL , Peptides/pharmacology , Peptides/metabolism
2.
Int J Mol Sci ; 25(9)2024 Apr 26.
Article in English | MEDLINE | ID: mdl-38731968

ABSTRACT

Cluster of differentiation 44 (CD44), a multi-functional cell surface receptor, has several variants and is ubiquitously expressed in various cells and tissues. CD44 is well known for its function in cell adhesion and is also involved in diverse cellular responses, such as proliferation, migration, differentiation, and activation. To date, CD44 has been extensively studied in the field of cancer biology and has been proposed as a marker for cancer stem cells. Recently, growing evidence suggests that CD44 is also relevant in non-cancer diseases. In liver disease, it has been shown that CD44 expression is significantly elevated and associated with pathogenesis by impacting cellular responses, such as metabolism, proliferation, differentiation, and activation, in different cells. However, the mechanisms underlying CD44's function in liver diseases other than liver cancer are still poorly understood. Hence, to help to expand our knowledge of the role of CD44 in liver disease and highlight the need for further research, this review provides evidence of CD44's effects on liver physiology and its involvement in the pathogenesis of liver disease, excluding cancer. In addition, we discuss the potential role of CD44 as a key regulator of cell physiology.


Subject(s)
Hyaluronan Receptors , Liver Diseases , Liver , Humans , Hyaluronan Receptors/metabolism , Liver/metabolism , Liver/pathology , Liver Diseases/metabolism , Liver Diseases/pathology , Animals , Cell Differentiation
3.
J Surg Case Rep ; 2024(3): rjae123, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38463740

ABSTRACT

Diabetic cheiroarthropathy (DCA) is a relatively uncommon and underdiagnosed complication of poorly controlled diabetes. It is caused by non-enzymatic glycation of collagen that ultimately leads to microvascular damage and polyarticular stiffness. If diagnosed early, optimal management of serum glucose levels may lessen joint stiffness and prevent microvascular and macrovascular complications associated with diabetes mellitus. We review the case of a 55-year-old male with type 2 diabetes mellitus who was diagnosed with DCA after complaints of chronic joint stiffness and immobility.

4.
Exp Biol Med (Maywood) ; 248(15): 1313-1318, 2023 08.
Article in English | MEDLINE | ID: mdl-37786387

ABSTRACT

Chronic liver disease is one of the most common diseases worldwide, and its prevalence is particularly high among adults aged 40-60 years; it takes a toll on productivity and causes significant economic burden. However, there are still no effective treatments that can fundamentally treat chronic liver disease. Although liver transplantation is considered the only effective treatment for chronic liver disease, it has limitations in that the pool of available donors is vastly insufficient for the number of potential recipients. Even if a patient undergoes liver transplantation, side effects such as immune rejection or bile duct complications could occur. In addition, impaired liver regeneration due to various causes, such as aging and metabolic disorders, may cause liver failure after liver resection, even leading to death. Therefore, further research on the liver regeneration process and therapeutic strategies to improve liver regeneration are needed. In this review, we describe the process of liver regeneration after hepatectomy, focusing on various cytokines and signaling pathways. In addition, we review treatment strategies that have been studied to date to improve liver regeneration, such as promotion of hepatocyte proliferation and metabolism and transplantation of mesenchymal stem cells. This review helps to understand the physiological processes involved in liver regeneration and provides basic knowledge for developing treatments for successful liver regeneration.


Subject(s)
Liver Diseases , Liver Transplantation , Adult , Humans , Hepatectomy , Liver Regeneration/physiology , Liver/surgery , Liver/metabolism , Cell Proliferation
5.
Cells ; 12(12)2023 06 18.
Article in English | MEDLINE | ID: mdl-37371128

ABSTRACT

Liver fibrosis is the most common feature of liver disease, and activated hepatic stellate cells (HSCs) are the main contributors to liver fibrosis. Thus, finding key targets that modulate HSC activation is important to prevent liver fibrosis. Previously, we showed that thymosin ß4 (Tß4) influenced HSC activation by interacting with the Hedgehog pathway in vitro. Herein, we generated Tß4 conditional knockout (Tß4-flox) mice to investigate in vivo functions of Tß4 in liver fibrosis. To selectively delete Tß4 in activated HSCs, double-transgenic (DTG) mice were generated by mating Tß4-flox mice with α-smooth muscle actin (α-Sma)-Cre-ERT2 mice, and these mice were administered carbon tetrachloride (CCl4) or underwent bile duct ligation to induce liver fibrosis. Tß4 was selectively suppressed in the activated HSCs of DTG mouse liver, and this reduction attenuated liver injury, including fibrosis, in both fibrotic models by repressing Hedgehog (Hh) signaling. In addition, the re-expression of Tß4 by an adeno-associated virus reversed the effect of HSC-specific Tß4 deletion and led to liver fibrosis with Hh activation in CCl4-exposed mice treated with tamoxifen. In conclusion, our results demonstrate that Tß4 is a crucial regulator of HSC activation, suggesting it as a novel therapeutic target for curing liver fibrosis.


Subject(s)
Hepatic Stellate Cells , Liver Cirrhosis , Thymosin , Animals , Mice , Disease Models, Animal , Hedgehog Proteins/metabolism , Hepatic Stellate Cells/metabolism , Liver Cirrhosis/metabolism , Mice, Transgenic , Thymosin/pharmacology , Thymosin/metabolism
6.
Exp Mol Med ; 55(2): 325-332, 2023 02.
Article in English | MEDLINE | ID: mdl-36750693

ABSTRACT

Formyl peptide receptors (FPRs), which are seven-membrane G-protein coupled receptors, recognize chemotactic signals to protect hosts from pathogenic infections and mediate inflammatory responses in the body. There are three isoforms of FPRs in humans-FPR1, FPR2, and FPR3-and they bind to N-formyl peptides, except FPR3, and to various endogenous agonists. Among FPR family members, FPR2 has a lower affinity for N-formyl peptides than FPR1 and binds with a wide range of endogenous or exogenous agonists. Thus, FPR2 is considered the most ambiguous member. Accumulating evidence has shown that FPR2 is involved in the host's defense against bacterial infection and inflammation in liver diseases, such as nonalcoholic fatty liver disease, liver fibrosis, and liver cancer, suggesting the pathophysiological relevance of FPR2 to the liver. However, FPR2 has been shown to promote or suppress inflammation, depending on the type of FPR2-expressing cell and FPR2-bound ligands in the liver. Therefore, it is important to understand FPR2's function per se and to elucidate the mechanism underlying immunomodulation initiated by ligand-activated FPR2 before suggesting FPR2 as a novel therapeutic agent for liver diseases. In this review, up-to-date knowledge of FPR2, with general information on the FPR family, is provided. We shed light on the dual action of FPR2 in the liver and discuss the hepatoprotective roles of FPR2 itself and FPR2 agonists in mediating anti-inflammatory responses.


Subject(s)
Inflammation , Receptors, Formyl Peptide , Humans , Receptors, Formyl Peptide/metabolism , Protein Isoforms , Ligands , Liver/metabolism
7.
Biology (Basel) ; 11(5)2022 Apr 21.
Article in English | MEDLINE | ID: mdl-35625364

ABSTRACT

Extracellular vesicles (EVs) are membrane-bound endogenous nanoparticles released by the majority of cells into the extracellular space. Because EVs carry various cargo (protein, lipid, and nucleic acids), they transfer bioinformation that reflects the state of donor cells to recipient cells both in healthy and pathologic conditions, such as liver disease. Chronic liver disease (CLD) affects numerous people worldwide and has a high mortality rate. EVs released from damaged hepatic cells are involved in CLD progression by impacting intercellular communication between EV-producing and EV-receiving cells, thereby inducing a disease-favorable microenvironment. In patients with CLD, as well as in the animal models of CLD, the levels of released EVs are elevated. Furthermore, these EVs contain high levels of factors that accelerate disease progression. Therefore, it is important to understand the diverse roles of EVs and their cargoes to treat CLD. Herein, we briefly explain the biogenesis and types of EVs and summarize current findings presenting the role of EVs in the pathogenesis of CLD. As the role of microRNAs (miRNAs) within EVs in liver disease is well documented, the effects of miRNAs detected in EVs on CLD are reviewed. In addition, we discuss the therapeutic potential of EVs to treat CLD.

8.
Nat Commun ; 13(1): 578, 2022 01 31.
Article in English | MEDLINE | ID: mdl-35102146

ABSTRACT

Nonalcoholic fatty liver disease (NAFLD) is an important health concern worldwide and progresses into nonalcoholic steatohepatitis (NASH). Although prevalence and severity of NAFLD/NASH are higher in men than premenopausal women, it remains unclear how sex affects NAFLD/NASH pathophysiology. Formyl peptide receptor 2 (FPR2) modulates inflammatory responses in several organs; however, its role in the liver is unknown. Here we show that FPR2 mediates sex-specific responses to diet-induced NAFLD/NASH. NASH-like liver injury was induced in both sexes during choline-deficient, L-amino acid-defined, high-fat diet (CDAHFD) feeding, but compared with females, male mice had more severe hepatic damage. Fpr2 was more highly expressed in hepatocytes and healthy livers from females than males, and FPR2 deletion exacerbated liver damage in CDAHFD-fed female mice. Estradiol induced Fpr2 expression, which protected hepatocytes and the liver from damage. In conclusion, our results demonstrate that FPR2 mediates sex-specific responses to diet-induced NAFLD/NASH, suggesting a novel therapeutic target for NAFLD/NASH.


Subject(s)
Disease Progression , Liver Cirrhosis/metabolism , Liver Cirrhosis/pathology , Non-alcoholic Fatty Liver Disease/metabolism , Non-alcoholic Fatty Liver Disease/pathology , Receptors, Formyl Peptide/metabolism , Sex Characteristics , Animals , Biomarkers/metabolism , Cells, Cultured , Choline Deficiency/complications , Cytoprotection/drug effects , Diet, High-Fat , Estradiol/blood , Estradiol/pharmacology , Feeding Behavior/drug effects , Female , Gene Deletion , Hepatocytes/drug effects , Hepatocytes/metabolism , Hepatocytes/pathology , Humans , Inflammation/pathology , Lipids/toxicity , Lipoproteins, VLDL/metabolism , Liver/drug effects , Liver/pathology , Male , Mice, Inbred C57BL , Mice, Knockout , Receptors, Formyl Peptide/deficiency , Up-Regulation/drug effects
9.
Cells ; 12(1)2022 12 21.
Article in English | MEDLINE | ID: mdl-36611816

ABSTRACT

Alcoholic liver disease (ALD) is a globally prevalent chronic liver disease caused by chronic or binge consumption of alcohol. The therapeutic efficiency of current therapies for ALD is limited, and there is no FDA-approved therapy for ALD at present. Various strategies targeting pathogenic events in the progression of ALD are being investigated in preclinical and clinical trials. Recently, mesenchymal stem cells (MSCs) have emerged as a promising candidate for ALD treatment and have been tested in several clinical trials. MSC-released factors have captured attention, as they have the same therapeutic function as MSCs. Herein, we focus on current therapeutic options, recently proposed strategies, and their limitations in ALD treatment. Also, we review the therapeutic effects of MSCs and those of MSC-related secretory factors on ALD. Although accumulating evidence suggests the therapeutic potential of MSCs and related factors in ALD, the mechanisms underlying their actions in ALD have not been well studied. Further investigations of the detailed mechanisms underlying the therapeutic role of MSCs in ALD are required to expand MSC therapies to clinical applications. This review provides information on current or possible treatments for ALD and contributes to our understanding of the development of effective and safe treatments for ALD.


Subject(s)
Liver Diseases, Alcoholic , Mesenchymal Stem Cell Transplantation , Mesenchymal Stem Cells , Humans , Mesenchymal Stem Cell Transplantation/adverse effects , Liver Diseases, Alcoholic/therapy , Liver Diseases, Alcoholic/pathology , Ethanol , Mesenchymal Stem Cells/pathology
10.
Biomedicines ; 9(11)2021 Nov 02.
Article in English | MEDLINE | ID: mdl-34829827

ABSTRACT

Liver fibrosis is a common feature of chronic liver disease. Activated hepatic stellate cells (HSCs) are the main drivers of extracellular matrix accumulation in liver fibrosis. Hence, a strategy for regulating HSC activation is crucial in treating liver fibrosis. Mesenchymal stem cells (MSCs) are multipotent stem cells derived from various post-natal organs. Therapeutic approaches involving MSCs have been studied extensively in various diseases, including liver disease. MSCs modulate hepatic inflammation and fibrosis and/or differentiate into hepatocytes by interacting directly with immune cells, HSCs, and hepatocytes and secreting modulators, thereby contributing to reduced liver fibrosis. Cell-free therapy including MSC-released secretomes and extracellular vesicles has elicited extensive attention because they could overcome MSC transplantation limitations. Herein, we provide basic information on hepatic fibrogenesis and the therapeutic potential of MSCs. We also review findings presenting the effects of MSC itself and MSC-based cell-free treatments in liver fibrosis, focusing on HSC activation. Growing evidence supports the anti-fibrotic function of either MSC itself or MSC modulators, although the mechanism underpinning their effects on liver fibrosis has not been established. Further studies are required to investigate the detailed mechanism explaining their functions to expand MSC therapies using the cell itself and cell-free treatments for liver fibrosis.

11.
Int J Mol Sci ; 22(11)2021 May 27.
Article in English | MEDLINE | ID: mdl-34071962

ABSTRACT

Alcoholic liver disease (ALD) is a globally prevalent chronic liver disease caused by chronic or binge consumption of alcohol. The liver is the major organ that metabolizes alcohol; therefore, it is particularly sensitive to alcohol intake. Metabolites and byproducts generated during alcohol metabolism cause liver damage, leading to ALD via several mechanisms, such as impairing lipid metabolism, intensifying inflammatory reactions, and inducing fibrosis. Despite the severity of ALD, the development of novel treatments has been hampered by the lack of animal models that fully mimic human ALD. To overcome the current limitations of ALD studies and therapy development, it is necessary to understand the molecular mechanisms underlying alcohol-induced liver injury. Hence, to provide insights into the progression of ALD, this review examines previous studies conducted on alcohol metabolism in the liver. There is a particular focus on the occurrence of ALD caused by hepatotoxicity originating from alcohol metabolism.


Subject(s)
Ethanol/metabolism , Inactivation, Metabolic , Liver/metabolism , Animals , Disease Susceptibility , Hepatocytes/metabolism , Humans , Immune System/immunology , Immune System/metabolism , Immunomodulation , Lipid Metabolism , Liver/immunology , Liver Cirrhosis/etiology , Liver Cirrhosis/metabolism , Liver Cirrhosis/pathology , Liver Diseases, Alcoholic/etiology , Liver Diseases, Alcoholic/metabolism , Liver Diseases, Alcoholic/pathology , Liver Neoplasms/etiology , Liver Neoplasms/metabolism , Liver Neoplasms/pathology , Metabolic Networks and Pathways , Oxidation-Reduction , Reactive Oxygen Species , Sensitivity and Specificity
13.
Mol Ther ; 29(4): 1471-1486, 2021 04 07.
Article in English | MEDLINE | ID: mdl-33348053

ABSTRACT

Mesenchymal stromal cells (MSCs) are considered as a promising therapeutic tool for liver fibrosis, a main feature of chronic liver disease. Because small extracellular vesicles (sEVs) harboring a variety of proteins and RNAs are known to have similar functions with their derived cells, MSC-derived sEVs carry out the regenerative capacities of MSCs. Human tonsil-derived MSCs (T-MSCs) are reported as a novel source of MSCs, but their effects on liver fibrosis remain unclear. In the present study, we investigated the effects of T-MSC-derived sEVs on liver fibrosis. The expression of profibrotic genes decreased in human primary hepatic stellate cells (pHSCs) co-cultured with T-MSCs. Treatment of T-MSC-sEVs inactivated human and mouse pHSCs. Administration of T-MSC-sEVs ameliorated hepatic injuries and fibrosis in chronically damaged liver induced by carbon tetrachloride (CCl4). miR-486-5p highly enriched in T-MSC-sEVs targeting the hedgehog receptor, smoothened (Smo), was upregulated, whereas Smo and Gli2, the hedgehog target gene, were downregulated in pHSCs and liver tissues treated with T-MSC-sEVs or miR-486-5p mimic, indicating that sEV-miR-486 inactivates HSCs by suppressing hedgehog signaling. Our results showed that T-MSCs attenuate HSC activation and liver fibrosis by delivering sEVs, and miR-486 in the sEVs inactivates hedgehog signaling, suggesting that T-MSCs and their sEVs are novel anti-fibrotic therapeutics for treating chronic liver disease.


Subject(s)
Liver Cirrhosis/therapy , MicroRNAs/genetics , Nuclear Proteins/genetics , Smoothened Receptor/genetics , Zinc Finger Protein Gli2/genetics , Animals , Carbon Tetrachloride/toxicity , Coculture Techniques , Extracellular Vesicles/genetics , Extracellular Vesicles/transplantation , Gene Expression Regulation, Developmental/genetics , Hedgehog Proteins/genetics , Hepatic Stellate Cells/drug effects , Hepatic Stellate Cells/metabolism , Humans , Liver Cirrhosis/chemically induced , Liver Cirrhosis/genetics , Liver Cirrhosis/pathology , Mesenchymal Stem Cells/cytology , Mesenchymal Stem Cells/metabolism , Mice , Palatine Tonsil/cytology , Palatine Tonsil/metabolism , Signal Transduction
14.
Dev Reprod ; 25(4): 279-291, 2021 Dec.
Article in English | MEDLINE | ID: mdl-35141453

ABSTRACT

Hair loss is one of the most common chronic diseases, with a detrimental effect on a patient's psychosocial life. Hair loss results from damage to the hair follicle (HF) and/or hair regeneration cycle. Various damaging factors, such as hereditary, inflammation, and aging, impair hair regeneration by inhibiting the activation of hair follicle stem cells (HFSCs) and dermal papilla cells (DPCs). Formyl peptide receptor 2 (FPR2) regulates the inflammatory response and the activity of various types of stem cells, and has recently been reported to have a protective effect on hair loss. Given that stem cell activity is the driving force for hair regeneration, we hypothesized that FPR2 influences hair regeneration by mediating HFSC activity. To prove this hypothesis, we investigated the role of FPR2 in hair regeneration using Fpr2 knockout (KO) mice. Fpr2 KO mice were found to have excessive hair loss and abnormal HF structures and skin layer construction compared to wild-type (WT) mice. The levels of Sonic hedgehog (Shh) and ß-catenin, which promote HF regeneration, were significantly decreased, and the expression of bone morphogenetic protein (Bmp)2/4, an inhibitor of the anagen phase, was significantly increased in Fpr2 KO mice compared to WT mice. The proliferation of HFSCs and DPCs was significantly lower in Fpr2 KO mice than in WT mice. These findings demonstrate that FPR2 impacts signaling molecules that regulate HF regeneration, and is involved in the proliferation of HFSCs and DPCs, exerting a protective effect on hair loss.

15.
BMB Rep ; 53(8): 425-430, 2020 Aug.
Article in English | MEDLINE | ID: mdl-32317078

ABSTRACT

Tumor necrosis factor-inducible gene 6 protein (TSG-6) is a cytokine secreted by mesenchymal stem cells (MSCs) and regulates MSC stemness. We previously reported that TSG-6 changes primary human hepatic stellate cells (pHSCs) into stem-like cells by activating yes-associated protein-1 (YAP-1). However, the molecular mechanism behind the reprogramming action of TSG-6 in pHSCs remains unknown. Cluster of differentiation 44 (CD44) is a transmembrane protein that has multiple functions depending on the ligand it is binding, and it is involved in various signaling pathways, including the Wnt/ß-catenin pathway. Given that ß-catenin influences stemness and acts downstream of CD44, we hypothesized that TSG-6 interacts with the CD44 receptor and stimulates ß-catenin to activate YAP-1 during TSG-6-mediated transdifferentiation of HSCs. Immunoprecipitation assays showed the interaction of TSG-6 with CD44, and immunofluorescence staining analyses revealed the colocalization of TSG-6 and CD44 at the plasma membrane of TSG-6-treated pHSCs. In addition, TSG-6 treatment upregulated the inactive form of phosphorylated glycogen synthase kinase (GSK)-3ß, which is a negative regulator of ß-catenin, and promoted nuclear accumulation of active/nonphosphorylated ß-catenin, eventually leading to the activation of YAP-1. However, CD44 suppression in pHSCs following CD44 siRNA treatment blocked the activation of ß-catenin and YAP-1, which inhibited the transition of TSG-6-treated HSCs into stem-like cells. Therefore, these findings demonstrate that TSG-6 interacts with CD44 and activates ß-catenin and YAP-1 during the conversion of TSG-6-treated pHSCs into stem-like cells, suggesting that this novel pathway is an effective therapeutic target for controlling liver disease. [BMB Reports 2020; 53(8): 425-430].


Subject(s)
Cell Adhesion Molecules/metabolism , Hepatic Stellate Cells/metabolism , Hyaluronan Receptors/metabolism , Adaptor Proteins, Signal Transducing/metabolism , Cell Adhesion Molecules/genetics , Cell Differentiation , Cell Line, Tumor , Cell Proliferation , Glycogen Synthase Kinase 3 beta/genetics , Glycogen Synthase Kinase 3 beta/metabolism , Hepatic Stellate Cells/physiology , Humans , Mesenchymal Stem Cells/cytology , Phosphoproteins/metabolism , Stem Cells/cytology , Transcription Factors/metabolism , Tumor Necrosis Factors/genetics , Tumor Necrosis Factors/metabolism , Wnt Signaling Pathway/physiology , YAP-Signaling Proteins , beta Catenin/metabolism
16.
Cells ; 8(10)2019 10 15.
Article in English | MEDLINE | ID: mdl-31619023

ABSTRACT

Nonalcoholic fatty liver disease (NAFLD) caused by fat accumulation in the liver is globally the most common cause of chronic liver disease. Simple steatosis can progress to nonalcoholic steatohepatitis (NASH), a more severe form of NAFLD. The most potent driver for NASH is hepatocyte death induced by lipotoxicity, which triggers inflammation and fibrosis, leading to cirrhosis and/or liver cancer. Despite the significant burden of NAFLD, there is no therapy for NAFLD/NASH. Accumulating evidence indicates gender-related NAFLD progression. A higher incidence of NAFLD is found in men and postmenopausal women than premenopausal women, and the experimental results, showing protective actions of estradiol in liver diseases, suggest that estrogen, as the main female hormone, is associated with the progression of NAFLD/NASH. However, the mechanism explaining the functions of estrogen in NAFLD remains unclear because of the lack of reliable animal models for NASH, the imbalance between the sexes in animal experiments, and subsequent insufficient results. Herein, we reviewed the pathogenesis of NAFLD/NASH focused on gender and proposed a feasible association of estradiol with NAFLD/NASH based on the findings reported thus far. This review would help to expand our knowledge of the gender differences in NAFLD and for developing gender-based treatment strategies for NAFLD/NASH.


Subject(s)
Estrogens/pharmacology , Liver Cirrhosis/pathology , Non-alcoholic Fatty Liver Disease/drug therapy , Animals , Disease Progression , Estrogens/metabolism , Female , Hepatocytes , Humans , Inflammation/pathology , Liver/pathology , Liver Neoplasms/pathology , Male , Non-alcoholic Fatty Liver Disease/metabolism , Sex Factors
17.
Biomaterials ; 219: 119375, 2019 10.
Article in English | MEDLINE | ID: mdl-31374480

ABSTRACT

Liver fibrosis is a major characteristic of liver disease. When the liver is damaged, quiescent hepatic stellate cells (HSCs) transdifferentiate into proliferative myofibroblastic/activated HSCs, which are the main contributors to liver fibrosis. Hence, a strategy for regulating HSC activation is important in the treatment of liver disease. Tumor necrosis factor-inducible gene 6 protein (TSG-6), a cytokine released from mesenchymal stem cells (MSCs), influences MSC stemness. Therefore, we investigated the biological effect of TSG-6 on HSCs. Human primary HSCs treated with TSG-6 showed significant downregulation of HSC activation markers and upregulation of senescence markers. TSG-6 promoted these cells to express stem cell markers and form spherical organoids, which exhibited elevated expression of stemness-related genes. These organoids differentiated into functional hepatocytic cells under specific culture conditions. Organoids derived from TSG-6-treated HSCs improved livers in organoid transplant mice subjected to CCl4 treatment (which induces liver fibrosis). Furthermore, HSC transdifferentiation by TSG-6 was mediated by Yes-associated protein 1. These findings demonstrate that TSG-6 induces the conversion of HSCs into stem cell-like cells in vitro and that organoids derived from TSG-6-treated HSCs can restore fibrotic liver, suggesting that direct reprogramming of HSCs by TSG-6 can be a useful strategy to control liver disease.


Subject(s)
Cell Adhesion Molecules/pharmacology , Cellular Reprogramming , Hepatic Stellate Cells/metabolism , Liver/metabolism , Liver/pathology , Stem Cells/metabolism , Animals , Apoptosis/drug effects , Biomarkers/metabolism , Cell Line , Cells, Cultured , Cellular Reprogramming/drug effects , Cellular Senescence/drug effects , Hepatic Stellate Cells/drug effects , Humans , Liver/physiopathology , Liver Cirrhosis/pathology , Male , Mice, Inbred C57BL , Organoids/drug effects , Organoids/metabolism , Stem Cells/drug effects
18.
Int J Mol Sci ; 20(9)2019 May 13.
Article in English | MEDLINE | ID: mdl-31086120

ABSTRACT

Kombucha tea (KT) has emerged as a substance that protects the liver from damage; however, its mechanisms of action on the fatty liver remain unclear. Therefore, we investigated the potential role of KT and its underlying mechanisms on nonalcoholic fatty liver disease (NAFLD). db/db mice that were fed methionine/choline-deficient (MCD) diets for seven weeks were treated for vehicle (M + V) or KT (M + K) and fed with MCD for four additional weeks. Histomorphological injury and increased levels of liver enzymes and lipids were evident in the M + V group, whereas these symptoms were ameliorated in the M + K group. The M + K group had more proliferating and less apoptotic hepatocytic cells than the M + V group. Lipid uptake and lipogenesis significantly decreased, and free fatty acid (FFA) oxidation increased in the M + K, when compared with the M + V group. With the reduction of hedgehog signaling, inflammation and fibrosis also declined in the M + K group. Palmitate (PA) treatment increased the accumulation of lipid droplets and decreased the viability of primary hepatocytes, whereas KT suppressed PA-induced damage in these cells by enhancing intracellular lipid disposal. These results suggest that KT protects hepatocytes from lipid toxicity by influencing the lipid metabolism, and it attenuates inflammation and fibrosis, which contributes to liver restoration in mice with NAFLD.


Subject(s)
Kombucha Tea , Non-alcoholic Fatty Liver Disease/drug therapy , Non-alcoholic Fatty Liver Disease/metabolism , Palmitates/pharmacology , Animals , Cell Line , Cell Proliferation/drug effects , Cells, Cultured , Disease Models, Animal , Hedgehog Proteins , Hepatocytes/drug effects , Hepatocytes/metabolism , Immunohistochemistry , Lipid Metabolism/drug effects , Male , Mice , Mice, Inbred C57BL
19.
Cell Physiol Biochem ; 50(4): 1414-1428, 2018.
Article in English | MEDLINE | ID: mdl-30355912

ABSTRACT

BACKGROUND/AIMS: Malaria is the most deadly parasitic infection in the world, resulting in damage to various organs, including the liver, of the infected organism; however, the mechanism causing this damage in the liver remains unclear. Liver fibrosis, a major characteristic of liver diseases, occurs in response to liver injury and is regulated by a complex network of signaling pathways. Hedgehog (Hh) signaling orchestrates a number of hepatic responses including hepatic fibrogenesis. Therefore, we investigated whether Hh signaling influenced the liver's response to malarial infection. METHODS: Eight-week-old male C57BL/6 mice inoculated with blood containing Plasmodium berghei ANKA (PbA)-infected erythrocytes were sacrificed when the level of parasitemia in the blood reached 10% or 30%, and the livers were collected for biochemical analysis. Liver responses to PbA infection were examined by hematoxylin and eosin staining, real-time polymerase chain reaction, immunohistochemistry and western blot. RESULTS: Severe hepatic injury, such as ballooned hepatocytes, sinusoidal dilatation, and infiltrated leukocytes, was evident in the livers of the malaria-infected mice. Hypoxia was also induced in 30% parasitemia group. With the accumulation of Kupffer cells, inflammation markers, TNF-α, interleukin-1ß, and chemokine (C-X-C motif) ligand 1, were significantly upregulated in the infected group compared with the control group. Expression of fibrotic markers, including transforming growth factor-ß, α-smooth muscle actin (α-SMA), collagen 1a1, thymosin ß4, and vimentin, were significantly higher in the infected groups than in the control group. With increased collagen deposition, hepatic stellate cells expressing α-SMA accumulated in the liver of the PbA-infected mice, whereas those cells were rarely detected in the livers of the control mice. The levels of Hh signaling and Yes-associated protein (YAP), two key regulators for hepatic fibrogenesis, were significantly elevated in the infected groups compared with the control group. Treatment of mice with Hh inhibitor, GDC-0449, reduced hepatic inflammation and fibrogenesis with Hh suppression in PbA-infected mice. CONCLUSION: Our results demonstrate that HSCs are activated in and Hh and YAP signaling are associated with this process, contributing to increased hepatic fibrosis in malaria-infected livers.


Subject(s)
Hedgehog Proteins/metabolism , Liver/metabolism , Plasmodium berghei/pathogenicity , Signal Transduction/physiology , Actins/metabolism , Adaptor Proteins, Signal Transducing/metabolism , Anilides/therapeutic use , Animals , Cell Cycle Proteins , Chemokines, C/metabolism , Collagen Type I/metabolism , Collagen Type I, alpha 1 Chain , Hedgehog Proteins/antagonists & inhibitors , Hepatic Stellate Cells/cytology , Hepatic Stellate Cells/metabolism , Liver/parasitology , Liver Cirrhosis/drug therapy , Liver Cirrhosis/metabolism , Liver Cirrhosis/pathology , Malaria/parasitology , Malaria/pathology , Malaria/veterinary , Male , Mice , Mice, Inbred C57BL , Phosphoproteins/metabolism , Plasmodium berghei/growth & development , Pyridines/therapeutic use , Thymosin/metabolism , Transforming Growth Factor beta/metabolism , Up-Regulation , Vimentin/metabolism , YAP-Signaling Proteins
20.
Cell Death Dis ; 9(7): 721, 2018 06 18.
Article in English | MEDLINE | ID: mdl-29915286

ABSTRACT

Healthy livers have a remarkable regenerative capacity for reconstructing functional hepatic parenchyma after 70% partial hepatectomy (PH). Hepatocytes, usually quiescent in normal healthy livers, proliferate to compensate for hepatic loss after PH. However, the mechanism of hepatocyte involvement in liver regeneration remains unclear. Hedgehog (Hh) pathway plays an important role in tissue reconstitution by regulating epithelial-to-mesenchymal transition (EMT) in liver disease. MicroRNA (miRNA) is involved in cell proliferation and differentiation during embryonic development and carcinogenesis. It was recently reported that miR-378 inhibits transdifferentiation of hepatic stellate cells into myofibroblasts by suppressing Gli-Krüppel family member 3 (Gli3), the Hh-target gene. We hypothesized that miR-378 influences EMT in hepatocytes by interfering with Hh signaling during liver regeneration. As hepatocytes were highly proliferative after PH in mice, miR-378 and epithelial marker, Ppar-g or E-cadherin were downregulated, whereas both Hh activators, Smoothened (Smo) and Gli3, and the EMT-inducing genes, Tgfb, Snail and Vimentin, were upregulated in the regenerating livers and in hepatocytes isolated from them. Compared to cells with or without scramble miRNA, primary hepatocytes transfected with miR-378 inhibitor contained higher levels of Gli3 with increased expression of the EMT-promoting genes, Tgfb, Snail, Col1a1, and Vimentin, suggesting that miR-378 influenced EMT in hepatocytes. Smo-depleted hepatocytes isolated from PH livers of Smo-flox mice showed downregulation of EMT-promoting genes and Gli3, with upregulation of miR-378 and E-cadherin compared to Smo-expressing hepatocytes from PH liver. In addition, delivery hepatocyte-specific AAV8 viral vector bearing Cre recombinase into Smo-flox mice impeded EMT in Smo-suppressed hepatocytes of PH liver, indicating that Smo is critical for regulating hepatocyte EMT. Furthermore, the application of miR-378 mimic into mice with PH delayed liver regeneration by interrupting hepatocyte EMT. In conclusion, our results demonstrate that miR-378 is involved in hepatocyte EMT by regulating Hh signaling during liver regeneration.


Subject(s)
Epithelial-Mesenchymal Transition/genetics , Hepatocytes/metabolism , Liver Regeneration/genetics , MicroRNAs/physiology , Smoothened Receptor/genetics , Animals , Cell Proliferation/genetics , Hedgehog Proteins/genetics , Liver/metabolism , Liver/physiology , Male , Mice , Mice, Inbred C57BL , Mice, Transgenic , Signal Transduction/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...