Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 3.521
Filter
1.
Sci Rep ; 14(1): 17838, 2024 Aug 01.
Article in English | MEDLINE | ID: mdl-39090153

ABSTRACT

There is limited evidence regarding the causal inference of emphysema and functional small airway disease in the subsequent progression of chronic obstructive pulmonary disease (COPD). Patients consisting of two independent cohorts diagnosed with COPD and underwent two serial chest CT scans were included. Total percent emphysema (PRMEmph) and fSAD (PRMfSAD) was quantified via PRM. To investigate the progression of emphysema, we divided COPD patients with PRMEmph < 10% into low and high PRMfSADgroup, matched with similar baseline characteristics, and conducted nonparametric hypothesis tests based on randomization inference using Wilcoxon signed rank test and Huber's M statistics. In patients with baseline PRMEmph < 10%, there were 26 and 16 patients in the low PRMfSA group and 52 and 64 patients in the high PRMfSA in the derivation and validation cohorts, respectively. In the both low and high PRMfSAD groups, there were 0.11 and 1.43 percentage point increases (Huber's M statistic p = 0.016) and 0.58 and 2.09 percentage point increases (p = 0.038) in the proportion of emphysema in the derivation and validation cohorts, respectively. On the contrary, among patients with baseline PRMfSAD < 20%, there was no significant differences in the interval changes of PRMfSAD between the low and high PRMEmph groups in both cohorts. In COPD patients with low emphysema, group with baseline high PRMfSAD showed greater change of PRMEmph than those with low PRMfSAD in both the derivation and validation cohorts. Imaging-based longitudinal quantitative analysis may provide important evidence that small airway disease precedes emphysema in CT-based early COPD patients.


Subject(s)
Disease Progression , Pulmonary Disease, Chronic Obstructive , Pulmonary Emphysema , Tomography, X-Ray Computed , Humans , Pulmonary Disease, Chronic Obstructive/diagnostic imaging , Male , Female , Aged , Tomography, X-Ray Computed/methods , Middle Aged , Pulmonary Emphysema/diagnostic imaging , Lung/diagnostic imaging , Lung/pathology
2.
Microbiol Resour Announc ; : e0045924, 2024 Jul 05.
Article in English | MEDLINE | ID: mdl-38967471

ABSTRACT

Here, we present the draft genome of Bacillus proteolyticus IMGN4, the gram-positive, soil-dwelling bacterium discovered in mountain Maemi, Republic of Korea in May 2019. The assembly resulted in 7 contigs, comprising a total of 6,063,502 base pairs and have 6,115 coding sequences.

3.
Medicine (Baltimore) ; 103(28): e38941, 2024 Jul 12.
Article in English | MEDLINE | ID: mdl-38996151

ABSTRACT

Recently, interest in sarcopenia has been increasing in patients with various neurological diseases. Thus, we investigated the presence of sarcopenia in patients with episodic migraine (EM) based on temporal muscle thickness (TMT). This was a retrospectively observational study following STROBE guidelines. We enrolled patients with EM and healthy controls. Both groups underwent brain magnetic resonance imaging, including three-dimensional T1-weighted imaging. We calculated the TMT using T1-weighted imaging, which is a marker for sarcopenia. We compared TMT between patients with EM and healthy controls, and analyzed it according to presence of migraine aura. We retrospectively enrolled 82 patients with EM and 53 healthy controls. TMT was not different between patients with EM and healthy controls (10.804 ±â€…2.045 mm in patients with EM vs 10.721 ±â€…1.547 mm in healthy controls, P = .801). Furthermore, TMT was not different according to presence of migraine aura in patients with EM (10.994 ±â€…2.016 mm in patients with migraine aura vs 10.716 ±â€…2.071 mm in those without, P = .569). There were no correlations between TMT and clinical characteristics in patients with EM, including age, age of onset, duration of migraine, headache intensity, and headache frequency. This study found no statistical difference in TMT between patients with EM and healthy controls or between patients with EM with and without aura. These findings suggest that there is no evidence of sarcopenia in patients with EM.


Subject(s)
Magnetic Resonance Imaging , Migraine Disorders , Sarcopenia , Humans , Retrospective Studies , Sarcopenia/epidemiology , Sarcopenia/diagnostic imaging , Sarcopenia/etiology , Male , Female , Adult , Migraine Disorders/diagnostic imaging , Middle Aged , Temporal Muscle/diagnostic imaging , Case-Control Studies , Migraine with Aura
4.
Integr Med Res ; 13(2): 101041, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38948488

ABSTRACT

Background: Investigating the effects of electroacupuncture (EA) treatment on cardiovascular function and aortic lipid profiles in spontaneously hypertensive rats (SHR) constitutes the foundational focus of this study. The overarching goal is to comprehensively elucidate the alterations brought about by EA treatment and to assess its potential as an alternative therapy for hypertension. Methods: Consecutive EA treatments were administered to SHR, and the effects on systolic blood pressure, cardiac function, and hypertension-related neuronal signals were assessed. Aortic lipid profiles in vehicle-treated SHR and EA-treated SHR groups were analyzed using mass spectrometry-based lipid profiling. Additionally, the expression of Cers2 and GNPAT, enzymes involved in the synthesis of specific aortic lipids, was examined. Results: The study demonstrated that consecutive EA treatments restored systolic blood pressure, improved cardiovascular function, and normalized hypertension-related neuronal signals in SHR. Analysis of the aortic lipid profiles revealed distinct differences between the vehicle-treated SHR group and the EA-treated SHR group. Specifically, EA treatment significantly altered the levels of aortic sphingomyelin and phospholipids, including very long-chain fatty acyl-ceramides and ether phosphatidylcholines. These changes in aortic lipid profiles correlated significantly with systolic blood pressure and cardiac function indicators. Furthermore, EA treatment significantly altered the expression of Cers2 and GNPAT. Conclusions: The findings suggest that EA may influence cardiovascular functions and aortic lipid profiles in SHR.

5.
Gastric Cancer ; 2024 Jul 06.
Article in English | MEDLINE | ID: mdl-38970748

ABSTRACT

BACKGROUND: Changes in gastric microbiome are associated with gastric carcinogenesis. Studies on the association between gastric mucosa-associated gastric microbiome (MAM) and metachronous gastric cancer are limited. This study aimed to identify gastric MAM as a predictive factor for metachronous recurrence following endoscopic resection of gastric neoplasms. METHOD: Microbiome analyses were conducted for 81 patients in a prospective cohort to investigate surrogate markers to predict metachronous recurrence. Gastric MAM in non-cancerous corporal biopsy specimens was evaluated using Illumina MiSeq platform targeting 16S ribosomal DNA. RESULTS: Over a median follow-up duration of 53.8 months, 16 metachronous gastric neoplasms developed. Baseline gastric MAM varied with Helicobacter pylori infection status, but was unaffected by initial pathologic diagnosis, presence of atrophic gastritis, intestinal metaplasia, or synchronous lesions. The group with metachronous recurrence did not exhibit distinct phylogenetic diversity compared with the group devoid of recurrence but showed significant difference in ß-diversity. The study population could be classified into two distinct gastrotypes based on baseline gastric MAM: gastrotype 1, Helicobacter-abundant; gastrotype 2: Akkermansia-abundant. Patients in gastrotype 2 showed higher risk of metachronous recurrence than gastrotype (Cox proportional hazard analysis, adjusted hazard ratio [95% confidence interval]: 5.10 [1.09-23.79]). CONCLUSIONS: Gastric cancer patients can be classified into two distinct gastrotype groups by their MAM profiles, which were associated with different risk of metachronous recurrence.

6.
Neurospine ; 21(2): 565-574, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38955529

ABSTRACT

OBJECTIVE: To evaluate C2 muscle preservation effect and the radiological and clinical outcomes after C2 recapping laminoplasty. METHODS: Fourteen consecutive patients who underwent C2 recapping laminoplasty around C1-2 level were enrolled. To evaluate muscle preservation effect, the authors conducted a morphological measurement of extensor muscles between the operated and nonoperated side. Two surgeons measured the cross-sectional area (CSA) of obliquus capitis inferior (OCI) and semispinalis cervicis (SSC) muscle before and after surgery to determine atrophy rates (ARs). Additionally, we examined range of motion (ROM), sagittal vertical axis (SVA), neck visual analogue scale (VAS), Neck Disability Index (NDI), and Japanese Orthopaedic Association (JOA) score to assess potential changes in alignment and consequent clinical outcomes following posterior cervical surgery. RESULTS: We measured the CSA of OCI and SSC before surgery, and at 6 and 12 months postoperatively. Based on these measurements, the AR of the nonoperated SSC was 0.1% ± 8.5%, the AR of the operated OCI was 2.0% ± 7.2%, and the AR of the nonoperated OCI was -0.7% ± 5.1% at the 12 months after surgery. However, the AR of the operated side's SSC was 11.2% ± 12.5%, which is a relatively higher value than other measurements. Despite the atrophic change of SSC on the operated side, there were no prominent changes observed in SVA, C0-2 ROM, and C2-7 ROM between preoperative and 12 months postoperative measurements, which were 11.8 ± 10.9 mm, 16.3° ± 5.9°, and 48.7° ± 7.7° preoperatively, and 14.1 ± 11.6 mm, 16.1° ± 7.2°, and 44.0° ± 10.3° at 12 months postoperative, respectively. Improvement was also noted in VAS, NDI, and JOA scores after surgery with JOA recovery rate of 77.3% ± 29.6%. CONCLUSION: C2 recapping laminoplasty could be a useful tool for addressing pathologies around the upper cervical spine, potentially mitigating muscle atrophy and reducing postoperative neck pain, while maintaining sagittal alignment and ROM.

7.
J Matern Fetal Neonatal Med ; 37(1): 2380726, 2024 Dec.
Article in English | MEDLINE | ID: mdl-39054063

ABSTRACT

OBJECTIVE: To construct fetal limb bone nomograms in the Chinese ethnic population. METHODS: This was a prospective cross-sectional study on singleton pregnancies between 12 and 37 weeks of gestation. Femur, tibia, fibula, humerus, ulna, radius, and foot length were measured in a standardized manner by one of the three sonographers. Each fetus's measurements were only included once and those who developed maternal or fetal complications were excluded. Fractional polynomial regression model was used to obtain the 3rd, 10th, 50th, 90th, and 97th centiles for each of the limb measurement. Z-score for the 50th centile of each fetal limb measurement was then compared with published nomograms derived from other populations. RESULTS: Of the 843 scans performed, 775 were included in analysis after excluding conditions such as pre-eclampsia, chromosomal abnormalities, single umbilical artery and skeletal dysplasia. Comparison with other populations showed that Chinese had shorter fetal limb bone lengths than the Caucasian and Afro-Caribbean populations. CONCLUSION: This study established nomograms for all the fetal limb bones in the Chinese ethnic population, which showed lengths comparatively shorter than Caucasian and Afro-Caribbean nomograms. This would reduce the false alarm of short fetal limb bone lengths and its consequent anxiety and intervention.


Subject(s)
Asian People , Nomograms , Ultrasonography, Prenatal , Humans , Female , Pregnancy , Cross-Sectional Studies , Prospective Studies , China/ethnology , Adult , East Asian People
8.
JMIR Med Inform ; 12: e59187, 2024 Jul 12.
Article in English | MEDLINE | ID: mdl-38996330

ABSTRACT

BACKGROUND: Digital transformation, particularly the integration of medical imaging with clinical data, is vital in personalized medicine. The Observational Medical Outcomes Partnership (OMOP) Common Data Model (CDM) standardizes health data. However, integrating medical imaging remains a challenge. OBJECTIVE: This study proposes a method for combining medical imaging data with the OMOP CDM to improve multimodal research. METHODS: Our approach included the analysis and selection of digital imaging and communications in medicine header tags, validation of data formats, and alignment according to the OMOP CDM framework. The Fast Healthcare Interoperability Resources ImagingStudy profile guided our consistency in column naming and definitions. Imaging Common Data Model (I-CDM), constructed using the entity-attribute-value model, facilitates scalable and efficient medical imaging data management. For patients with lung cancer diagnosed between 2010 and 2017, we introduced 4 new tables-IMAGING_STUDY, IMAGING_SERIES, IMAGING_ANNOTATION, and FILEPATH-to standardize various imaging-related data and link to clinical data. RESULTS: This framework underscores the effectiveness of I-CDM in enhancing our understanding of lung cancer diagnostics and treatment strategies. The implementation of the I-CDM tables enabled the structured organization of a comprehensive data set, including 282,098 IMAGING_STUDY, 5,674,425 IMAGING_SERIES, and 48,536 IMAGING_ANNOTATION records, illustrating the extensive scope and depth of the approach. A scenario-based analysis using actual data from patients with lung cancer underscored the feasibility of our approach. A data quality check applying 44 specific rules confirmed the high integrity of the constructed data set, with all checks successfully passed, underscoring the reliability of our findings. CONCLUSIONS: These findings indicate that I-CDM can improve the integration and analysis of medical imaging and clinical data. By addressing the challenges in data standardization and management, our approach contributes toward enhancing diagnostics and treatment strategies. Future research should expand the application of I-CDM to diverse disease populations and explore its wide-ranging utility for medical conditions.

9.
Clin Epigenetics ; 16(1): 92, 2024 Jul 16.
Article in English | MEDLINE | ID: mdl-39014432

ABSTRACT

BACKGROUND: Healthy sleep is vital for maintaining optimal mental and physical health. Accumulating evidence suggests that sleep loss and disturbances play a significant role in the biological aging process, early onset of disease, and reduced lifespan. While numerous studies have explored the association between biological aging and its drivers, only a few studies have examined its relationship with sleep quality. In this study, we investigated the associations between sleep quality and epigenetic age acceleration using whole blood samples from a cohort of 692 Korean adults. Sleep quality of each participant was assessed using the validated Pittsburgh Sleep Quality Index (PSQI), which encompassed seven domains: subjective sleep quality, sleep latency, sleep duration, habitual sleep efficiency, sleep disturbance, use of sleep medication, and daytime dysfunction. Four epigenetic age accelerations (HorvathAgeAccel, HannumAgeAccel, PhenoAgeAccel, and GrimAgeAccel) and the pace of aging, DunedinPACE, were investigated for epigenetic aging estimates. RESULTS: Among the 692 participants (good sleepers [n = 441, 63.7%]; poor sleepers [n = 251, 36.3%]), DunedinPACE was positively correlated with PSQI scores in poor sleepers ( γ =0.18, p < 0.01). GrimAgeAccel ( ß =0.18, p = 0.02) and DunedinPACE ( ß =0.01, p < 0.01) showed a statistically significant association with PSQI scores only in poor sleepers by multiple linear regression. In addition, every one-point increase in PSQI was associated with a 15% increase in the risk of metabolic syndrome (MetS) among poor sleepers (OR = 1.15, 95% CI = 1.03-1.29, p = 0.011). In MetS components, a positive correlation was observed between PSQI score and fasting glucose ( γ = 0.19, p < 0.01). CONCLUSIONS: This study suggests that worsening sleep quality, especially in poor sleepers, is associated with accelerated epigenetic aging for GrimAgeAccel and DundinePACE with risk of metabolic syndrome. This finding could potentially serve as a promising strategy for preventing age-related diseases in the future.


Subject(s)
Aging , Epigenesis, Genetic , Metabolic Syndrome , Sleep Quality , Humans , Metabolic Syndrome/genetics , Metabolic Syndrome/epidemiology , Male , Female , Republic of Korea/epidemiology , Middle Aged , Adult , Aging/genetics , Aged
10.
Heliyon ; 10(12): e33159, 2024 Jun 30.
Article in English | MEDLINE | ID: mdl-39021983

ABSTRACT

The conformational properties of Alanine (Ala) residue have been investigated to understand protein folding and develop force fields. In this work, we examined the neighbor effect on the conformational spaces of Ala residue using model azapeptides, Ac-Ala-azaGly-NHMe (3, AaG), and Ac-azaGly-Ala-NHMe (4, aGA1). Ramachandran energy maps were generated by scanning (φ, ψ) dihedral angles of the Ala residues in models with the fixed dihedral angles (φ = ±90°, ψ = ±0° or ±180°) of azaGly residue using LCgau-BOP and LCgau-BOP + LRD functionals in the gas and water phases. The integral-equation-formalism polarizable continuum model (IEF-PCM) and a solvation model density (SMD) were employed to mimic the solvation effect. The most favorable conformation of Ala residue in azapeptide models is found as the polyproline II (ßP), inverse γ-turn (γ'), ß-sheet (ßS), right-handed helix (αR), or left-handed helix (αL) depending on the conformation of neighbor azaGly residue in isolated form. Solvation methods exhibit that the Ala residue favors the ßP, δR, and αR conformations regardless of its position in azapeptides 3 and 4 in water. Azapeptide 5, Ac-azaGly-Ala-NH2 (aGA2), was synthesized to evaluate the theoretical results. The X-ray structure showed that azaGly residue adopts the polyproline II (ßP) and Ala residue adopts the right-handed helical (αR) structure in aGA2. The conformational preferences of aGA2 and the dimer structure of aGA2 based on the X-ray structure were examined to assess the performance of DFT functionals. In addition, the local minima of azapeptide 6, Ac-Phe-azaGly-NH2 (FaG), were compared with the previous experimental results. SMD/LCgau-BOP + LRD methods agreed well with the reported experimental results. The results suggest the importance of weak dispersion interactions, neighbor effect, and solvent influence in the conformational preferences of Ala residue in model azapeptides.

11.
Front Neurol ; 15: 1427142, 2024.
Article in English | MEDLINE | ID: mdl-39022726

ABSTRACT

Background: Repetitive transcranial magnetic stimulation (rTMS) is widely used therapy to enhance motor deficit in stroke patients. To date, rTMS protocols used in stroke patients are relatively unified. However, as the pathophysiology of stroke is diverse and individual functional deficits are distinctive, more precise application of rTMS is warranted. Therefore, the objective of this study was to determine the effects of personalized protocols of rTMS therapy based on the functional reserve of each stroke patient in subacute phase. Methods: This study will recruit 120 patients with stroke in subacute phase suffering from the upper extremity motor impairment, from five different hospitals in Korea. The participants will be allocated into three different study conditions based on the functional reserve of each participant, measured by the results of TMS-induced motor evoked potentials (MEPs), and brain MRI with diffusion tensor imaging (DTI) evaluations. The participants of the intervention-group in the three study conditions will receive different protocols of rTMS intervention, a total of 10 sessions for 2 weeks: high-frequency rTMS on ipsilesional primary motor cortex (M1), high-frequency rTMS on ipsilesional ventral premotor cortex, and high-frequency rTMS on contralesional M1. The participants of the control-group in all three study conditions will receive the same rTMS protocol: low-frequency rTMS on contralesional M1. For outcome measures, the following assessments will be performed at baseline (T0), during-intervention (T1), post-intervention (T2), and follow-up (T3) periods: Fugl-Meyer Assessment (FMA), Box-and-block test, Action Research Arm Test, Jebsen-Taylor hand function test, hand grip strength, Functional Ambulatory Category, fractional anisotropy measured by the DTI, and brain network connectivity obtained from MRI. The primary outcome will be the difference of upper limb function, as measured by FMA from T0 to T2. The secondary outcomes will be the differences of other assessments. Discussion: This study will determine the effects of applying different protocols of rTMS therapy based on the functional reserve of each patient. In addition, this methodology may prove to be more efficient than conventional rTMS protocols. Therefore, effective personalized application of rTMS to stroke patients can be achieved based on their severity, predicted mechanism of motor recovery, or functional reserves. Clinical trial registration: https://clinicaltrials.gov/, identifier NCT06270238.

12.
Proc Mach Learn Res ; 227: 1406-1422, 2024.
Article in English | MEDLINE | ID: mdl-38993526

ABSTRACT

Multiplex immunofluorescence (MxIF) is an advanced molecular imaging technique that can simultaneously provide biologists with multiple (i.e., more than 20) molecular markers on a single histological tissue section. Unfortunately, due to imaging restrictions, the more routinely used hematoxylin and eosin (H&E) stain is typically unavailable with MxIF on the same tissue section. As biological H&E staining is not feasible, previous efforts have been made to obtain H&E whole slide image (WSI) from MxIF via deep learning empowered virtual staining. However, the tiling effect is a long-lasting problem in high-resolution WSI-wise synthesis. The MxIF to H&E synthesis is no exception. Limited by computational resources, the cross-stain image synthesis is typically performed at the patch-level. Thus, discontinuous intensities might be visually identified along with the patch boundaries assembling all individual patches back to a WSI. In this work, we propose a deep learning based unpaired high-resolution image synthesis method to obtain virtual H&E WSIs from MxIF WSIs (each with 27 markers/stains) with reduced tiling effects. Briefly, we first extend the CycleGAN framework by adding simultaneous nuclei and mucin segmentation supervision as spatial constraints. Then, we introduce a random walk sliding window shifting strategy during the optimized inference stage, to alleviate the tiling effects. The validation results show that our spatially constrained synthesis method achieves a 56% performance gain for the downstream cell segmentation task. The proposed inference method reduces the tiling effects by using 50% fewer computation resources without compromising performance. The proposed random sliding window inference method is a plug-and-play module, which can be generalized for other high-resolution WSI image synthesis applications. The source code with our proposed model are available at https://github.com/MASILab/RandomWalkSlidingWindow.git.

13.
J Hazard Mater ; 476: 135193, 2024 Jul 14.
Article in English | MEDLINE | ID: mdl-39029192

ABSTRACT

While the hazardous effects of microplastics (MPs) are increasingly reported, it remains uncertain if MPs induce inner ear dysfunction. Nonetheless, prevalence of inner ear dysfunction was observed across all age groups. In this study, we investigated whether MP polyethylene affect inner ear function in a murine model. To detect hearing loss and balance defect after polyethylene (PE) exposure, we evaluated hearing threshold levels, assessed cerebral glucose metabolism, conducted transcriptome analysis, and performed behavioral studies. C57BL/6 J mice (5-week-old) were grouped into control (n = 10) and PE-fed groups (n = 10). Mice were orally administered 100 ppm/100 µL (equivalent to 10 µg) of PE every day for 4 months. We identified the accumulation of PE in the cochlea and vestibular region. The fragmented PE in inner ear was 3.00 ± 0.38 µm in size; the administered PE concentration was 1.14 ± 1.06 mg/g. Fourier transform infrared spectrometry confirmed that the properties of the MP were identical with those of PE fed to the mice. Transcriptomic analysis showed up-regulation of PER1, NR4A3 and CEBPB at the PE exposed inner ear tissue and it was confirmed using qRT-PCR, western blotting, and immunofluorescence staining. We observed abnormalities in balance related behavior assessment in the PE group. Exposure to PE increased the hearing thresholds and decreased glucose metabolism in the bilateral lateral entorhinal cortex, right primary auditory cortex, and right secondary auditory cortex. We can conclude that PE exposure induced inner ear dysfunction such as hearing loss and balance disorder.

14.
Biochim Biophys Acta Mol Basis Dis ; 1870(7): 167347, 2024 Jul 15.
Article in English | MEDLINE | ID: mdl-39019092

ABSTRACT

Intranasal infection is commonly used to establish a SARS-CoV-2 mouse model due to its non-invasive procedures and a minimal effect from the operation itself. However, mice intranasally infected with SARS-CoV-2 have a high mortality rate, which limits the utility of this model for exploring therapeutic strategies and the sequelae of non-fatal COVID-19 cases. To resolve these limitations, an aerosolised viral administration method has been suggested. However, an in-depth pathological analysis comparing the two models is lacking. Here, we show that inhalation and intranasal SARS-CoV-2 (106 PFU) infection models established in K18-hACE2 mice develop unique pathological features in both the respiratory and central nervous systems, which could be directly attributed to the infection method. While the inhalation-infection model exhibited relatively milder pathological parameters, it closely mimicked the prevalent chest CT pattern observed in COVID-19 patients with focal, peripheral lesions and fibrotic scarring in the recuperating lung. We also found the evidence of direct neuron-invasion from the olfactory receptor neurons to the olfactory bulb in the intranasal model and showed the trigeminal nerve as an alternative route of transmission to the brain in inhalation infected mice. Even after viral clearance confirmed at 14 days post-infection, mild lesions were still found in the brain of inhalation-infected mice. These findings suggest that the inhalation-infection model has advantages over the intranasal-infection model in closely mimicking the pathological features of non-fatal symptoms of COVID-19, demonstrating its potential to study the sequelae and possible interventions for long COVID.

15.
Cell Mol Life Sci ; 81(1): 314, 2024 Jul 27.
Article in English | MEDLINE | ID: mdl-39066814

ABSTRACT

This study examines the interplay between ambient temperature, brown adipose tissue (BAT) function, and bone metabolism, emphasizing the effects of cold exposure and BAT mitochondrial activity on bone health. Utilizing ovariectomized (OVX) mice to model primary osteoporosis and BAT-specific mitochondrial dysfunction (BKO) mice, we evaluated the impact of housing temperature on bone density, immune modulation in bone marrow, and the protective role of BAT against bone loss. Cold exposure was found to universally reduce bone mass, enhance osteoclastogenesis, and alter bone marrow T-cell populations, implicating the immune system in bone remodeling under cold stress. The thermogenic function of BAT, driven by mitochondrial oxidative phosphorylation, was crucial in protecting against bone loss. Impaired BAT function, through surgical removal or mitochondrial dysfunction, exacerbated bone loss in cold environments, highlighting BAT's metabolic role in maintaining bone health. Furthermore, cold-induced changes in BAT function led to systemic metabolic shifts, including elevated long-chain fatty acids, which influenced osteoclast differentiation and activity. These findings suggest a systemic mechanism connecting environmental temperature and BAT metabolism with bone physiology, providing new insights into the metabolic and environmental determinants of bone health. Future research could lead to novel bone disease therapies targeting these pathways.


Subject(s)
Adipose Tissue, Brown , Cold Temperature , Mitochondria , Osteoporosis , Animals , Adipose Tissue, Brown/metabolism , Female , Mice , Mitochondria/metabolism , Osteoporosis/metabolism , Osteoporosis/pathology , Osteoclasts/metabolism , Mice, Inbred C57BL , Bone Density , Thermogenesis , Ovariectomy/adverse effects , Bone and Bones/metabolism , Bone and Bones/pathology , Osteogenesis
16.
Medicina (Kaunas) ; 60(7)2024 Jul 06.
Article in English | MEDLINE | ID: mdl-39064533

ABSTRACT

Background and Objectives: The aim of the report is to report the outcomes of the medial rectus (MR) disinsertion procedure for the management of large-angle esotropia (ET) patients. Materials and Methods: This is a retrospective case series of patients with large-angle ET who underwent an MR disinsertion procedure between March 2012 to April 2022. The procedure happened accidentally during muscle surgery. The demographic and clinical data, including sex, age, visual acuity, pre- and postoperative angle of strabismus, duction limitations, results of intraoperative forced duction tests, and follow-up duration were collected from medical records. Results: Five patients were enrolled in this study. The mean age was 62.2 ± 9.8 years, and the mean follow-up was 24.8 ± 8.7 months. The ET at the primary position of gaze was 92.0 ± 17.9 prism diopters (PD) before MR disinsertion and 38.0 ± 29.5 PD after MR disinsertion only. Abduction deficiency was -4 before after MR disinsertion, which improved to -1 at the last follow-up. Conclusions: The results of MR disinsertion were not as frustrating as anticipated. MR disinsertion may be considered in patients with large-angle sensory ET who refuse surgery on the opposite eye.


Subject(s)
Esotropia , Oculomotor Muscles , Humans , Esotropia/surgery , Esotropia/physiopathology , Male , Female , Retrospective Studies , Middle Aged , Oculomotor Muscles/surgery , Oculomotor Muscles/physiopathology , Aged , Ophthalmologic Surgical Procedures/methods , Treatment Outcome , Visual Acuity
17.
Plants (Basel) ; 13(14)2024 Jul 10.
Article in English | MEDLINE | ID: mdl-39065431

ABSTRACT

Extensive research has been conducted on the in vitro mass propagation of pear (Pyrus spp.) trees through vegetative propagation, demonstrating high efficiency in shoot multiplication across various pear species. However, the low in vitro rooting rates remain a significant barrier to the practical application and commercialization of mass propagation. This study aims to determine the favorable conditions for inducing root formation in the in vitro microshoots of Pyrus genotypes. The base of the microshoots was exposed to a high concentration (2 mg L-1) of auxins (a combination of IBA and NAA) for initial root induction at the moment when callus formation begins. The microshoots were then transferred to an R1 medium (1/2 MS with 30 g L-1 sucrose without PGRs) to promote root development. This method successfully induced rooting in three European pear varieties, one Asian pear variety, and a European-Asian hybrid, resulting in rooting rates of 66.7%, 87.2%, and 100% for the European pear (P. communis), 60% for the Asian pear (P. pyrifolia), and 83.3% for the hybrid pear (P. pyrifolia × P. communis) with an average of 25 days. In contrast, the control group (MS medium) exhibited rooting rates of 0-13.3% after 60 days of culture. These findings will enhance in vitro root induction for various pear varieties and support the mass propagation and acclimatization of pear. The in vitro root induction method developed in this study has the potential for global commercial application in pear cultivation.

18.
Ecotoxicol Environ Saf ; 283: 116776, 2024 Jul 24.
Article in English | MEDLINE | ID: mdl-39059344

ABSTRACT

Exposure to environmental heavy metals such as lead (Pb) and cadmium (Cd) is a global concern due to their widespread presence. However, the specific pulmonary effects of inhaled exposure, especially related to long-term effects, remain poorly understood. In this study, we developed a novel mouse model of Pb and Cd inhalation to mimic real-world conditions and investigate pulmonary effects. Mice were exposed to Pb and Cd inhalation for 6 months using a whole-body exposure system, resulting in decreased lung compliance and progression from emphysematous changes to fibrosis. In addition, the blood Pb/Cd levels of mice exposed to Pb/Cd for 6 months are like those of humans occupationally exposed to heavy metals. Histology revealed inflammation and collagen deposition. Transcriptomic analysis highlighted immune responses and macrophage activity in developing fibrosis. These results confirm an association between Pb/Cd exposure and emphysema and fibrosis, reflecting clinical findings. The study highlights the importance of long-term exposure assessment and time-course analysis for understanding Pb/Cd-induced lung disease. The relevance of the mouse model in replicating human exposure scenarios underscores its value in studying fibrosis and emphysema simultaneously. These findings provide a basis for targeted therapeutic interventions against heavy metal-induced lung injury.

19.
Sleep Med ; 121: 179-183, 2024 Jul 10.
Article in English | MEDLINE | ID: mdl-38996618

ABSTRACT

OBJECTIVES: The function of choroid plexus is to produce cerebrospinal fluid, which is critical for the glymphatic system function. In this study, we aimed to analyze the differences in choroid plexus volume between patients with obstructive sleep apnea (OSA) and healthy controls, with the goal of discovering the glymphatic system dysfunction in patients with OSA. METHODS: We prospectively enrolled 40 patients with OSA confirmed by polysomnography and 38 age- and sex-matched healthy controls. All participants underwent three-dimensional T1-weighted brain imaging, which was suitable for volumetric analysis. We compared choroid plexus volumes between patients with OSA and healthy controls, and analyzed the association between choroid plexus volume and polysomnographic findings in patients with OSA. RESULTS: Choroid plexus volumes were significantly larger in patients with OSA than in healthy controls (2.311 % vs. 2.096 %, p = 0.005). However, no significant association was detected between choroid plexus volume and polysomnographic findings. CONCLUSION: This study demonstrated enlargement of the choroid plexus in patients with OSA compared with healthy controls. This finding could be related with glymphatic system dysfunction in patients with OSA.

20.
Cell Genom ; : 100625, 2024 Jul 24.
Article in English | MEDLINE | ID: mdl-39084228

ABSTRACT

Several X-linked genes escape from X chromosome inactivation (XCI), while differences in escape across cell types and tissues are still poorly characterized. Here, we developed scLinaX for directly quantifying relative gene expression from the inactivated X chromosome with droplet-based single-cell RNA sequencing (scRNA-seq) data. The scLinaX and differentially expressed gene analyses with large-scale blood scRNA-seq datasets consistently identified the stronger escape in lymphocytes than in myeloid cells. An extension of scLinaX to a 10x multiome dataset (scLinaX-multi) suggested a stronger escape in lymphocytes than in myeloid cells at the chromatin-accessibility level. The scLinaX analysis of human multiple-organ scRNA-seq datasets also identified the relatively strong degree of escape from XCI in lymphoid tissues and lymphocytes. Finally, effect size comparisons of genome-wide association studies between sexes suggested the underlying impact of escape on the genotype-phenotype association. Overall, scLinaX and the quantified escape catalog identified the heterogeneity of escape across cell types and tissues.

SELECTION OF CITATIONS
SEARCH DETAIL