Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 309
Filter
1.
Biomol Ther (Seoul) ; 2024 Aug 02.
Article in English | MEDLINE | ID: mdl-39092515

ABSTRACT

Parkinson's disease (PD) is a neurodegenerative disease caused by the death of dopaminergic neurons in the nigrostriatal pathway, leading to motor and non-motor dysfunctions, such as depression, olfactory dysfunction, and memory impairment. Although levodopa (L-dopa) has been the gold standard PD treatment for decades, it only relieves motor symptoms and has no effect on non-motor symptoms or disease progression. Prior studies have reported that 6-shogaol, the active ingredient in ginger, exerts a protective effect on dopaminergic neurons by suppressing neuroinflammation in PD mice. This study investigated whether cotreatment with 6-shogaol and L-dopa could attenuate both motor and non-motor symptoms and dopaminergic neuronal damage. Both 6-shogaol (20 mg/kg) and L-dopa (80 mg/kg) were orally administered to 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine/probenecid- induced PD model mice for 26 days. The experimental results showed that L-dopa alleviated motor symptoms, but had no significant effect on non-motor symptoms, loss of dopaminergic neuron, or neuroinflammation. However, when mice were treated with 6-shogaol alone or in combination L-dopa, an amelioration in both motor and non-motor symptoms such as depression-like behavior, olfactory dysfunction and memory impairment was observed. Moreover, 6-shogaol-only or co-treatment with 6-shogaol and L-dopa protected dopaminergic neurons in the striatum and reduced neuroinflammation in the striatum and substantia nigra. Overall, these results suggest that 6-shogaol can effectively complement L-dopa by improving non-motor dysfunction and restoring dopaminergic neurons via suppressing neuroinflammation.

2.
Ecotoxicol Environ Saf ; 281: 116665, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38964062

ABSTRACT

Polycyclic aromatic hydrocarbons (PAHs), notably benzo[a]pyrene (BaP), are environmental contaminants with multiple adverse ecological implications. Numerous studies have suggested the use of BaP biodegradation using various bacterial strains to remove BaP from the environment. This study investigates the BaP biodegradation capability of Pigmentiphaga kullae strain KIT-003, isolated from the Nak-dong River (South Korea) under specific environmental conditions. The optimum conditions of biodegradation were found to be pH 7.0, 35°C, and a salinity of 0 %. GC-MS analysis suggested alternative pathways by which KIT-003 produced catechol from BaP through several intermediate metabolites, including 4-formylchrysene-5-carboxylic acid, 5,6-dihydro-5,6-dihydroxychrysene-5-carboxylic acid (isomer: 3,4-dihydro-3,4-dihydroxychrysene-4-carboxylic acid), naphthalene-1,2-dicarboxylic acid, and 2-hydroxy-1-naphthoic acid. Proteomic profiles indicated upregulation of enzymes associated with aromatic compound degradation, such as nahAc and nahB, and of those integral to the tricarboxylic acid cycle, reflecting the strain's adaptability to and degradation of BaP. Lipidomic analysis of KIT-003 demonstrated that BaP exposure induced an accumulation of glycerolipids such as diacylglycerol and triacylglycerol, indicating their crucial role in bacterial adaptation mechanisms under BaP stress. This study provides significant scientific knowledge regarding the intricate mechanisms involved in BaP degradation by microorganisms.


Subject(s)
Benzo(a)pyrene , Biodegradation, Environmental , Benzo(a)pyrene/metabolism , Benzo(a)pyrene/toxicity , Republic of Korea , Proteomics , Water Pollutants, Chemical/metabolism , Water Pollutants, Chemical/toxicity , Gas Chromatography-Mass Spectrometry , Catechols/metabolism , Rivers/chemistry , Rivers/microbiology , Multiomics
3.
Chin Med ; 19(1): 95, 2024 Jul 04.
Article in English | MEDLINE | ID: mdl-38965625

ABSTRACT

BACKGROUND: Alzheimer's disease (AD) is a common type of dementia characterized by amyloid-ß (Aß) accumulation, lysosomal dysfunction, and tau hyperphosphorylation, leading to neurite dystrophy and memory loss. This study aimed to investigate whether Rhei Undulati Rhizoma (RUR), which has been reported to have anti-neuroinflammatory effect, attenuates Aß-induced memory impairment, neuritic dystrophy, and tau hyperphosphorylation, and to reveal its mode of action. METHODS: Five-month-old 5xFAD mice received RUR (50 mg/kg) orally for 2 months. The Y-maze test was used to assess working memory. After behavioral testing, brain tissue was analyzed using thioflavin S staining, western blotting, and immunofluorescence staining to investigate the mode of action of RUR. To confirm whether RUR directly reduces Aß aggregation, a thioflavin T assay and dot blot were performed after incubating Aß with RUR. RESULTS: RUR administration attenuated the Aß-induced memory impairment in 5xFAD mice. Furthermore, decreased accumulation of Aß was observed in the hippocampus of the RUR-treated 5xFAD group compare to the vehicle-treated 5xFAD group. Moreover, RUR reduced the dystrophic neurites (DNs) that accumulate impaired endolysosomal organelles around Aß. In particular, RUR treatment downregulated the expression of ß-site amyloid precursor protein cleaving enzyme 1 and the hyperphosphorylation of tau within DNs. Additionally, RUR directly suppressed the aggregation of Aß, and eliminated Aß oligomers in vitro. CONCLUSIONS: This study showed that RUR could attenuate Aß-induced pathology and directly regulate the aggregation of Aß. These results suggest that RUR could be an efficient material for AD treatment through Aß regulation.

4.
Front Sports Act Living ; 6: 1401206, 2024.
Article in English | MEDLINE | ID: mdl-39022641

ABSTRACT

Background: The purported benefits of online physical activity interventions, in terms of reduced costs, high reach, and easy access, may not be fully realized if participants do not engage with the programs. However, there is a lack of research on modifiable predictors (e.g., beliefs) of engagement with online physical activity interventions. The objective of this brief report was to investigate if self-efficacy to engage at baseline predicted subsequent engagement behavior in an online physical activity intervention at post-baseline. Methods: Data (N = 331) from the 2018 Fun For Wellness effectiveness trial (ClinicalTrials.gov, identifier: NCT03194854) were analyzed in this brief report. Multiple logistic regression was fit in Mplus 8 using maximum-likelihood estimation. Results: There was evidence that self-efficacy to engage beliefs at baseline positively predicted subsequent engagement behavior in the Fun For Wellness intervention at 30 days post-baseline. Conclusions: Some recommendations to increase self-efficacy to engage in future online physical activity intervention studies were provided consistent with self-efficacy theory.

6.
Article in English | MEDLINE | ID: mdl-38850303

ABSTRACT

Due to the inevitable differences in physiological and/or genetic factors between genders, the possibility that differences in pharmacokinetics between genders may occur when exposed to the same dose of the same drug is subject to reasonable inference and suspicion. Nevertheless, a significant number of medicines still rely on empirical usage and uniform clinical application without consideration of inter-individual diversity factors. In particular, in the pharmacokinetic diversity of medicines related to central nervous system (CNS) activity, consideration of gender factors and access to comparative analysis are very limited. The purpose of this study was to conduct an integrated analysis and review of differences in pharmacokinetics between genders that have not been specifically reported to date for medicines related to CNS effects, which are a group of drugs with relatively significant concerns about systemic side effects. This study was accessible through extensive data collection and analyzes using a web-based scientific literature search engine of pharmacokinetic results of CNS-related drugs performed on humans, taking gender into account. As a result, significant differences in pharmacokinetics between genders were identified for many drugs related to CNS. And most of the pharmacokinetic differences between genders suggested a higher in vivo exposure in females. This study suggests that consideration of gender factors cannot be ignored and will be an important point of interest in the precision medicine application of CNS-related medicines.

7.
Article in English | MEDLINE | ID: mdl-38800890

ABSTRACT

Natural killer (NK) cells are one of the key members of innate immunity that predominantly reside in the liver, potentiating immune responses against viral infections or malignant tumors. It has been reported that changes in cell numbers and function of NK cells are associated with the development and progression of chronic liver diseases (CLDs) including non-alcoholic fatty liver disease, alcoholic liver disease, and chronic viral hepatitis. Also, it is known that the crosstalk between NK cells and hepatic stellate cells plays an important role in liver fibrosis and cirrhosis. In particular, the impaired functions of NK cells observed in CLDs consequently contribute to occurrence and progression of hepatocellular carcinoma (HCC). Chronic infections by hepatitis B or C viruses counteract the anti-tumor immunity of the host by producing the sheddases. Soluble major histocompatibility complex class I polypeptide-related sequence A (sMICA), released from the cell surfaces by sheddases, disrupts the interaction and affects the function of NK cells. Recently, the MICA/B-NK stimulatory receptor NK group 2 member D (NKG2D) axis has been extensively studied in HCC. HCC patients with low membrane-bound MICA or high sMICA concentration have been associated with poor prognosis. Therefore, reversing the sMICA-mediated downregulation of NKG2D has been proposed as an attractive strategy to enhance both innate and adaptive immune responses against HCC. This review aims to summarize recent studies on NK cell immune signatures and its roles in CLD and hepatocellular carcinogenesis and discusses the therapeutic approaches of MICA/B-NKG2D-based or NK cell-based immunotherapy for HCC.

9.
ACS Nano ; 18(20): 13277-13285, 2024 May 21.
Article in English | MEDLINE | ID: mdl-38728175

ABSTRACT

Synapses in the brain utilize two distinct communication mechanisms: chemical and electrical. For a comprehensive investigation of neural circuitry, neural interfaces should be capable of both monitoring and stimulating these types of physiological interactions. However, previously developed interfaces for neurotransmitter monitoring have been limited in interaction modality due to constraints in device size, fabrication techniques, and the usage of flexible materials. To address this obstacle, we propose a multifunctional and flexible fiber probe fabricated through the microwire codrawing thermal drawing process, which enables the high-density integration of functional components with various materials such as polymers, metals, and carbon fibers. The fiber enables real-time monitoring of transient dopamine release in vivo, real-time stimulation of cell-specific neuronal populations via optogenetic stimulation, single-unit electrophysiology of individual neurons localized to the tip of the neural probe, and chemical stimulation via drug delivery. This fiber will improve the accessibility and functionality of bidirectional interrogation of neurochemical mechanisms in implantable neural probes.


Subject(s)
Brain , Neurons , Synapses , Animals , Brain/metabolism , Synapses/metabolism , Synapses/chemistry , Neurons/metabolism , Optogenetics , Dopamine/metabolism , Mice , Temperature
11.
Interdiscip Sci ; 2024 Apr 03.
Article in English | MEDLINE | ID: mdl-38568406

ABSTRACT

With the rapid development of NGS technology, the number of protein sequences has increased exponentially. Computational methods have been introduced in protein functional studies because the analysis of large numbers of proteins through biological experiments is costly and time-consuming. In recent years, new approaches based on deep learning have been proposed to overcome the limitations of conventional methods. Although deep learning-based methods effectively utilize features of protein function, they are limited to sequences of fixed-length and consider information from adjacent amino acids. Therefore, new protein analysis tools that extract functional features from proteins of flexible length and train models are required. We introduce DeepPI, a deep learning-based tool for analyzing proteins in large-scale database. The proposed model that utilizes Global Average Pooling is applied to proteins of flexible length and leads to reduced information loss compared to existing algorithms that use fixed sizes. The image generator converts a one-dimensional sequence into a distinct two-dimensional structure, which can extract common parts of various shapes. Finally, filtering techniques automatically detect representative data from the entire database and ensure coverage of large protein databases. We demonstrate that DeepPI has been successfully applied to large databases such as the Pfam-A database. Comparative experiments on four types of image generators illustrated the impact of structure on feature extraction. The filtering performance was verified by varying the parameter values and proved to be applicable to large databases. Compared to existing methods, DeepPI outperforms in family classification accuracy for protein function inference.

12.
Nutr Res Pract ; 18(2): 257-268, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38584810

ABSTRACT

BACKGROUND/OBJECTIVES: This study investigated the relationship between adherence to the Mediterranean diet among Korean baby boomers and their levels of psychosocial stress. SUBJECTS/METHODS: The study included 1,656 adults (889 men and 797 women) born between 1955 and 1963 who participated in the 2005-2006 survey of the community-based Korean Genome and Epidemiology Study (KoGES). The Mediterranean-type diet score (MTDS) was calculated from the semi-quantitative food frequency questionnaire (SQFFQ) data. The psychosocial stress levels were calculated using the psychosocial well-being index-short form (PWI-SF). Logistic regression analyses were performed to analyze the association between the MTDS (tertiles) and the prevalence of high psychosocial stress by gender. RESULTS: The ranges of the MTDS tertile groups were T1 (20-33 points), T2 (34-37 points), and T3 (38-39 points) for men, T1 (20-33 points), T2 (34-37 points), and T3 (38-48 points) for women. In both men and women, the consumption of whole grains, potatoes, fruits, vegetables, legumes, and fish increased with higher MTDS, while the consumption of red meat and dairy products decreased (P for trend < 0.05). As MTDS score increased the intake of energy, fiber, vitamins, and minerals (P for trend < 0.05). Men in the highest MTDS tertile had a 41% lower odds ratio (OR) of high psychosocial stress compared with those in the lowest tertile (OR, 0.59; 95% confidence interval [CI], 0.38-0.91). Similarly, women in the highest tertile of the MTDS had a 39% lower OR of high psychosocial stress compared with those in the lowest tertile (OR, 0.61; 95% CI, 0.40-0.95). CONCLUSION: Promoting adherence to the Mediterranean diet among baby boomers may have a positive impact on reducing their levels of psychosocial stress.

14.
NPJ Parkinsons Dis ; 10(1): 93, 2024 Apr 29.
Article in English | MEDLINE | ID: mdl-38684669

ABSTRACT

Loss-of-function variants in the PRKN gene encoding the ubiquitin E3 ligase PARKIN cause autosomal recessive early-onset Parkinson's disease (PD). Extensive in vitro and in vivo studies have reported that PARKIN is involved in multiple pathways of mitochondrial quality control, including mitochondrial degradation and biogenesis. However, these findings are surrounded by substantial controversy due to conflicting experimental data. In addition, the existing PARKIN-deficient mouse models have failed to faithfully recapitulate PD phenotypes. Therefore, we have investigated the mitochondrial role of PARKIN during ageing and in response to stress by employing a series of conditional Parkin knockout mice. We report that PARKIN loss does not affect oxidative phosphorylation (OXPHOS) capacity and mitochondrial DNA (mtDNA) levels in the brain, heart, and skeletal muscle of aged mice. We also demonstrate that PARKIN deficiency does not exacerbate the brain defects and the pro-inflammatory phenotype observed in mice carrying high levels of mtDNA mutations. To rule out compensatory mechanisms activated during embryonic development of Parkin-deficient mice, we generated a mouse model where loss of PARKIN was induced in adult dopaminergic (DA) neurons. Surprisingly, also these mice did not show motor impairment or neurodegeneration, and no major transcriptional changes were found in isolated midbrain DA neurons. Finally, we report a patient with compound heterozygous PRKN pathogenic variants that lacks PARKIN and has developed PD. The PARKIN deficiency did not impair OXPHOS activities or induce mitochondrial pathology in skeletal muscle from the patient. Altogether, our results argue that PARKIN is dispensable for OXPHOS function in adult mammalian tissues.

15.
Exp Mol Med ; 56(4): 922-934, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38556544

ABSTRACT

Skeletal muscle aging results in the gradual suppression of myogenesis, leading to muscle mass loss. However, the specific role of cardiolipin in myogenesis has not been determined. This study investigated the crucial role of mitochondrial cardiolipin and cardiolipin synthase 1 (Crls1) in age-related muscle deterioration and myogenesis. Our findings demonstrated that cardiolipin and Crls1 are downregulated in aged skeletal muscle. Moreover, the knockdown of Crls1 in myoblasts reduced mitochondrial mass, activity, and OXPHOS complex IV expression and disrupted the structure of the mitochondrial cristae. AAV9-shCrls1-mediated downregulation of Crls1 impaired muscle regeneration in a mouse model of cardiotoxin (CTX)-induced muscle damage, whereas AAV9-mCrls1-mediated Crls1 overexpression improved regeneration. Overall, our results highlight that the age-dependent decrease in CRLS1 expression contributes to muscle loss by diminishing mitochondrial quality in skeletal muscle myoblasts. Hence, modulating CRLS1 expression is a promising therapeutic strategy for mitigating muscle deterioration associated with aging, suggesting potential avenues for developing interventions to improve overall muscle health and quality of life in elderly individuals.


Subject(s)
Muscle, Skeletal , Muscular Diseases , Regeneration , Animals , Muscle, Skeletal/metabolism , Muscle, Skeletal/pathology , Mice , Muscular Diseases/metabolism , Muscular Diseases/etiology , Muscular Diseases/pathology , Muscular Diseases/genetics , Aging/metabolism , Muscle Development , Mitochondria/metabolism , Disease Models, Animal , Humans , Cardiolipins/metabolism , Mitochondrial Proteins/metabolism , Mitochondrial Proteins/genetics , Male , Myoblasts/metabolism
17.
Nat Commun ; 15(1): 2108, 2024 Mar 07.
Article in English | MEDLINE | ID: mdl-38453923

ABSTRACT

The coronavirus disease 2019 (COVID-19) caused by severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) has evoked a worldwide pandemic. As the emergence of variants has hampered the neutralization capacity of currently available vaccines, developing effective antiviral therapeutics against SARS-CoV-2 and its variants becomes a significant challenge. The main protease (Mpro) of SARS-CoV-2 has received increased attention as an attractive pharmaceutical target because of its pivotal role in viral replication and proliferation. Here, we generated a de novo Mpro-inhibitor screening platform to evaluate the efficacies of Mpro inhibitors based on Mpro cleavage site-embedded amyloid peptide (MCAP)-coated gold nanoparticles (MCAP-AuNPs). We fabricated MCAPs comprising an amyloid-forming sequence and Mpro-cleavage sequence, mimicking in vivo viral replication process mediated by Mpro. By measuring the proteolytic activity of Mpro and the inhibitory efficacies of various drugs, we confirmed that the MCAP-AuNP-based platform was suitable for rapid screening potential of Mpro inhibitors. These results demonstrated that our MCAP-AuNP-based platform has great potential for discovering Mpro inhibitors and may accelerate the development of therapeutics against COVID-19.


Subject(s)
COVID-19 , Metal Nanoparticles , Humans , SARS-CoV-2 , Gold/pharmacology , Protease Inhibitors/pharmacology , Viral Nonstructural Proteins , Peptides , Peptide Hydrolases , Antiviral Agents/pharmacology , Molecular Docking Simulation
18.
J Microbiol Biotechnol ; 34(4): 891-901, 2024 Apr 28.
Article in English | MEDLINE | ID: mdl-38379303

ABSTRACT

This study focuses on improving the 3D printability of pea protein with the help of food inks designed for jet-type 3D printers. Initially, the food ink base was formulated using nanocellulose-alginate with a gradient of native potato starch and its 3D printability was evaluated. The 3D-printed structures using only candidates for the food ink base formulated with or without potato starch exhibited dimensional accuracy exceeding 95% on both the X and Y axes. However, the accuracy of stacking on the Z-axis was significantly affected by the ink composition. Food ink with 1% potato starch closely matched the CAD design, with an accuracy of approximately 99% on the Z-axis. Potato starch enhanced the stacking of 3D-printed structures by improving the electrostatic repulsion, viscoelasticity, and thixotropic behavior of the food ink base. The 3D printability of pea protein was evaluated using the selected food ink base, showing a 46% improvement in dimensional accuracy on the Z-axis compared to the control group printed with a food ink base lacking potato starch. These findings suggest that starch can serve as an additive support for high-resolution 3D jet-type printing of food ink material.


Subject(s)
Ink , Printing, Three-Dimensional , Solanum tuberosum , Starch , Solanum tuberosum/chemistry , Starch/chemistry , Pea Proteins/chemistry , Alginates/chemistry , Cellulose/chemistry , Viscosity
19.
Nat Commun ; 15(1): 1695, 2024 Feb 24.
Article in English | MEDLINE | ID: mdl-38402240

ABSTRACT

Prominent techniques such as real-time polymerase chain reaction (RT-PCR), enzyme-linked immunosorbent assay (ELISA), and rapid kits are currently being explored to both enhance sensitivity and reduce assay time for diagnostic tests. Existing commercial molecular methods typically take several hours, while immunoassays can range from several hours to tens of minutes. Rapid diagnostics are crucial in Point-of-Care Testing (POCT). We propose an approach that integrates a time-series deep learning architecture and AI-based verification, for the enhanced result analysis of lateral flow assays. This approach is applicable to both infectious diseases and non-infectious biomarkers. In blind tests using clinical samples, our method achieved diagnostic times as short as 2 minutes, exceeding the accuracy of human analysis at 15 minutes. Furthermore, our technique significantly reduces assay time to just 1-2 minutes in the POCT setting. This advancement has the potential to greatly enhance POCT diagnostics, enabling both healthcare professionals and non-experts to make rapid, accurate decisions.


Subject(s)
Communicable Diseases , Deep Learning , Humans , Rapid Diagnostic Tests , Point-of-Care Testing , Enzyme-Linked Immunosorbent Assay , Sensitivity and Specificity , Point-of-Care Systems
20.
J Alzheimers Dis ; 98(1): 119-131, 2024.
Article in English | MEDLINE | ID: mdl-38363611

ABSTRACT

Background: Alzheimer's disease (AD), the most common form of dementia, is characterized by memory loss and the abnormal accumulation of senile plaques composed of amyloid-ß (Aß) protein. Trichosanthis Semen (TS) is a traditional herbal medicine used to treat phlegm-related conditions. While TS is recognized for various bioactivities, including anti-neuroinflammatory effects, its ability to attenuate AD remains unknown. Objective: To evaluate the effects of TS extract (TSE) on neuronal damage, Aß accumulation, and neuroinflammation in AD models. Methods: Thioflavin T and western blot assays were used to assess effects on Aß aggregation in vitro. TS was treated to PC12 cells with Aß to assess the neuroprotective effects. Memory functions and histological brain features were investigated in TSE-treated 5×FAD transgenic mice and mice with intracerebroventricularly injected Aß. Results: TSE disrupted Aß aggregation and increased the viability of cells and phosphorylation of both protein kinase B (Akt) and extracellular signal-regulated kinase (ERK) in vitro. TSE treatment also suppressed the accumulation of Aß plaques in the brain of 5×FAD mice, protected neuronal cells in both the subiculum and medial septum, and upregulated Akt/ERK phosphorylation in the hippocampus. Moreover, TSE ameliorated the memory decline and glial overactivation observed in 5×FAD mice. As assessing whether TS affect Aß-induced neurotoxicity in the Aß-injected mice, the effects of TS on memory improvement and neuroinflammatory inhibition were confirmed. Conclusions: TSE disrupted Aß aggregation, protected neurons against Aß-induced toxicity, and suppressed neuroinflammation, suggesting that it can suppress the development of AD.


Subject(s)
Alzheimer Disease , Neuroprotective Agents , Rats , Mice , Animals , Alzheimer Disease/pathology , Neuroprotective Agents/pharmacology , Neuroprotective Agents/therapeutic use , Proto-Oncogene Proteins c-akt/metabolism , Extracellular Signal-Regulated MAP Kinases/metabolism , Semen/metabolism , Neuroinflammatory Diseases , Amyloid beta-Peptides/metabolism , Mice, Transgenic , Signal Transduction , Disease Models, Animal
SELECTION OF CITATIONS
SEARCH DETAIL