Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters











Database
Language
Publication year range
1.
Sci Total Environ ; 813: 152281, 2022 Mar 20.
Article in English | MEDLINE | ID: mdl-34942249

ABSTRACT

This is the first Europe-wide comprehensive assessment of the climatological and physiological information recorded by hydrogen isotope ratios in tree-ring cellulose (δ2Hc) based on a unique collection of annually resolved 100-year tree-ring records of two genera (Pinus and Quercus) from 17 sites (36°N to 68°N). We observed that the high-frequency climate signals in the δ2Hc chronologies were weaker than those recorded in carbon (δ13Cc) and oxygen isotope signals (δ18Oc) but similar to the tree-ring width ones (TRW). The δ2Hc climate signal strength varied across the continent and was stronger and more consistent for Pinus than for Quercus. For both genera, years with extremely dry summer conditions caused a significant 2H-enrichment in tree-ring cellulose. The δ2Hc inter-annual variability was strongly site-specific, as a result of the imprinting of climate and hydrology, but also physiological mechanisms and tree growth. To differentiate between environmental and physiological signals in δ2Hc, we investigated its relationships with δ18Oc and TRW. We found significant negative relationships between δ2Hc and TRW (7 sites), and positive ones between δ2Hc and δ18Oc (10 sites). The strength of these relationships was nonlinearly related to temperature and precipitation. Mechanistic δ2Hc models performed well for both genera at continental scale simulating average values, but they failed on capturing year-to-year δ2Hc variations. Our results suggest that the information recorded by δ2Hc is significantly different from that of δ18Oc, and has a stronger physiological component independent from climate, possibly related to the use of carbohydrate reserves for growth. Advancements in the understanding of 2H-fractionations and their relationships with climate, physiology, and species-specific traits are needed to improve the modelling and interpretation accuracy of δ2Hc. Such advancements could lead to new insights into trees' carbon allocation mechanisms, and responses to abiotic and biotic stress conditions.


Subject(s)
Cellulose , Trees , Carbon Isotopes/analysis , Forests , Hydrogen , Oxygen Isotopes/analysis
2.
Plant Biol (Stuttg) ; 18(5): 776-84, 2016 Sep.
Article in English | MEDLINE | ID: mdl-27086877

ABSTRACT

Leaf respiration in the dark and its C isotopic composition (δ(13) CR ) contain information about internal metabolic processes and respiratory substrates. δ(13) CR is known to be less negative compared to potential respiratory substrates, in particular shortly after darkening during light enhanced dark respiration (LEDR). This phenomenon might be driven by respiration of accumulated (13) C-enriched organic acids, however, studies simultaneously measuring δ(13) CR during LEDR and potential respiratory substrates are rare. We determined δ(13) CR and respiration rates (R) during LEDR, as well as δ(13) C and concentrations of potential respiratory substrates using compound-specific isotope analyses. The measurements were conducted throughout the diel cycle in several plant species under different environmental conditions. δ(13) CR and R patterns during LEDR were strongly species-specific and showed an initial peak, which was followed by a progressive decrease in both values. The species-specific differences in δ(13) CR and R during LEDR may be partially explained by the isotopic composition of organic acids (e.g., oxalate, isocitrate, quinate, shikimate, malate), which were (13) C-enriched compared to other respiratory substrates (e.g., sugars and amino acids). However, the diel variations in both δ(13) C and concentrations of the organic acids were generally low. Thus, additional factors such as the heterogeneous isotope distribution in organic acids and the relative contribution of the organic acids to respiration are required to explain the strong (13) C enrichment in leaf dark-respired CO2 .


Subject(s)
Carboxylic Acids/metabolism , Circadian Rhythm , Cistaceae/physiology , Ericaceae/physiology , Oxalidaceae/physiology , Salvia officinalis/physiology , Carbon Dioxide/metabolism , Carbon Isotopes/analysis , Cell Respiration , Cistaceae/radiation effects , Darkness , Environment , Ericaceae/radiation effects , Light , Malates/metabolism , Oxalidaceae/radiation effects , Plant Leaves/metabolism , Plant Leaves/radiation effects , Salvia officinalis/radiation effects
3.
Endocrinology ; 138(5): 2021-32, 1997 May.
Article in English | MEDLINE | ID: mdl-9112401

ABSTRACT

To assess the autocrine function of insulin-like growth factor II (IGF-II) in the balance of proliferation and differentiation in HT29-D4 human colonic cancer cells, we studied the expression of IGF-I receptors (IGF-IR) and insulin receptors (IR) in relation to the state of cell differentiation. IGF-IR and IR were expressed in both undifferentiated and enterocyte-like differentiated HT29-D4 cells. IGF-IR had two isoforms with a 97-kDa and a 102-kDa beta-subunit. In addition, HT29-D4 cells expressed hybrid receptors (HR) formed by the association of two alphabeta heterodimers from both IR and IGF-IR. HR were evidenced through 1) inhibition of IGF-I binding by the B6 anti-IR antibody and 2) immunoprecipitation with the alpha-IR3 anti-IGF-IR antibody, which revealed an additional 95-kDa IR beta-subunit that disappeared when the heterotetrameric receptor was dissociated by disulfide reduction into alphabeta heterodimers before immunoprecipitation. Like IGF-IR, HR had a high affinity for IGF-I (Kd, approximately 1.5 nM), but did not bind insulin significantly; the latter interacted with the native IR only (Kd, approximately 4 nM). In the differentiated HT29-D4 cell monolayer, all receptor species were strongly polarized (>97%) toward the basolateral membrane. Moreover, HT29-D4 cell differentiation was accompanied by an approximately 2-fold increase in the number of IR, whereas the number of IGF-I-binding sites was unaltered. However, in differentiated HT29-D4 cells, approximately 55% of the latter were involved in HR vs. approximately 20% in undifferentiated HT29-D4 cells. Thus, HT29-D4 cell differentiation is characterized by an up-regulation (approximately 3-fold) of the level of HR coupled to a down-regulation (approximately 40%) of the level of native tetrameric IGF-IR. Alterations were induced early during the cell differentiation process, i.e. 5 days postconfluence, and remained unchanged for at least 21 days. Taken together, these results suggest that the IGF-II autocrine loop in HT29-D4 cells may trigger distinct signaling pathways if it activates native IGF-IR, which predominate in undifferentiated cells, or if it activates HR, which are up-regulated in differentiated cells.


Subject(s)
Cell Differentiation , Receptor, IGF Type 1/metabolism , Receptor, Insulin/metabolism , Binding, Competitive , Cross-Linking Reagents , Flow Cytometry , HT29 Cells , Humans , Immunosorbent Techniques , Insulin/metabolism , Insulin-Like Growth Factor I/metabolism , Iodine Radioisotopes
SELECTION OF CITATIONS
SEARCH DETAIL