Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 75
1.
Article En | MEDLINE | ID: mdl-38383154

BACKGROUND: Spinal cord damage is a feature of many spinocerebellar ataxias (SCAs), but well-powered in vivo studies are lacking and links with disease severity and progression remain unclear. Here we characterise cervical spinal cord morphometric abnormalities in SCA1, SCA2, SCA3 and SCA6 using a large multisite MRI dataset. METHODS: Upper spinal cord (vertebrae C1-C4) cross-sectional area (CSA) and eccentricity (flattening) were assessed using MRI data from nine sites within the ENIGMA-Ataxia consortium, including 364 people with ataxic SCA, 56 individuals with preataxic SCA and 394 nonataxic controls. Correlations and subgroup analyses within the SCA cohorts were undertaken based on disease duration and ataxia severity. RESULTS: Individuals in the ataxic stage of SCA1, SCA2 and SCA3, relative to non-ataxic controls, had significantly reduced CSA and increased eccentricity at all examined levels. CSA showed large effect sizes (d>2.0) and correlated with ataxia severity (r<-0.43) and disease duration (r<-0.21). Eccentricity correlated only with ataxia severity in SCA2 (r=0.28). No significant spinal cord differences were evident in SCA6. In preataxic individuals, CSA was significantly reduced in SCA2 (d=1.6) and SCA3 (d=1.7), and the SCA2 group also showed increased eccentricity (d=1.1) relative to nonataxic controls. Subgroup analyses confirmed that CSA and eccentricity are abnormal in early disease stages in SCA1, SCA2 and SCA3. CSA declined with disease progression in all, whereas eccentricity progressed only in SCA2. CONCLUSIONS: Spinal cord abnormalities are an early and progressive feature of SCA1, SCA2 and SCA3, but not SCA6, which can be captured using quantitative MRI.

3.
Brain Commun ; 5(4): fcad196, 2023.
Article En | MEDLINE | ID: mdl-37483529

Friedreich ataxia is a progressive neurodegenerative disorder characterized by cerebellar and spinal atrophy. However, studies to elucidate the longitudinal progression of the pathology in the brain are somewhat inconsistent and limited, especially for early-stage Friedreich ataxia. Using a multimodal neuroimaging protocol, combined with advanced analysis methods, we sought to identify macrostructural and microstructural alterations in the brain of patients with early-stage Friedreich ataxia to better understand its distribution patterns and progression. We enrolled 28 patients with Friedreich ataxia and 20 age- and gender-matched controls. Longitudinal clinical and imaging data were collected in the patients at baseline, 12, 24 and 36 months. Macrostructural differences were observed in patients with Friedreich ataxia, compared to controls, including lower volume of the cerebellar white matter (but not cerebellar grey matter), superior cerebellar peduncle, thalamus and brainstem structures, and higher volume of the fourth ventricle. Diffusion tensor imaging and fixel-based analysis metrics also showed microstructural differences in several brain regions, especially in the cerebellum and corticospinal tract. Over time, many of these macrostructural and microstructural alterations progressed, especially cerebellar grey and white matter volumes, and microstructure of the superior cerebellar peduncle, posterior limb of the internal capsule and superior corona radiata. In addition, linear regressions showed significant associations between many of those imaging metrics and clinical scales. This study provides evidence of early-stage macrostructural and microstructural alterations and of progression over time in the brain in Friedreich ataxia. Moreover, it allows to non-invasively map such brain alterations over a longer period (3 years) than any previous study, and identifies several brain regions with significant involvement in the disease progression besides the cerebellum. We show that fixel-based analysis of diffusion MRI data is particularly sensitive to longitudinal change in the cerebellar peduncles, as well as motor and sensory white matter tracts. In combination with other morphometric measures, they may therefore provide sensitive imaging biomarkers of disease progression for clinical trials.

4.
Cerebellum ; 2023 Jun 06.
Article En | MEDLINE | ID: mdl-37280482

With many viable strategies in the therapeutic pipeline, upcoming clinical trials in hereditary and sporadic degenerative ataxias will benefit from non-invasive MRI biomarkers for patient stratification and the evaluation of therapies. The MRI Biomarkers Working Group of the Ataxia Global Initiative therefore devised guidelines to facilitate harmonized MRI data acquisition in clinical research and trials in ataxias. Recommendations are provided for a basic structural MRI protocol that can be used for clinical care and for an advanced multi-modal MRI protocol relevant for research and trial settings. The advanced protocol consists of modalities with demonstrated utility for tracking brain changes in degenerative ataxias and includes structural MRI, magnetic resonance spectroscopy, diffusion MRI, quantitative susceptibility mapping, and resting-state functional MRI. Acceptable ranges of acquisition parameters are provided to accommodate diverse scanner hardware in research and clinical contexts while maintaining a minimum standard of data quality. Important technical considerations in setting up an advanced multi-modal protocol are outlined, including the order of pulse sequences, and example software packages commonly used for data analysis are provided. Outcome measures most relevant for ataxias are highlighted with use cases from recent ataxia literature. Finally, to facilitate access to the recommendations by the ataxia clinical and research community, examples of datasets collected with the recommended parameters are provided and platform-specific protocols are shared via the Open Science Framework.

5.
J Comput Graph Stat ; 32(2): 730-743, 2023.
Article En | MEDLINE | ID: mdl-37377729

Modern data often take the form of a multiway array. However, most classification methods are designed for vectors, i.e., 1-way arrays. Distance weighted discrimination (DWD) is a popular high-dimensional classification method that has been extended to the multiway context, with dramatic improvements in performance when data have multiway structure. However, the previous implementation of multiway DWD was restricted to classification of matrices, and did not account for sparsity. In this paper, we develop a general framework for multiway classification which is applicable to any number of dimensions and any degree of sparsity. We conducted extensive simulation studies, showing that our model is robust to the degree of sparsity and improves classification accuracy when the data have multiway structure. For our motivating application, magnetic resonance spectroscopy (MRS) was used to measure the abundance of several metabolites across multiple neurological regions and across multiple time points in a mouse model of Friedreich's ataxia, yielding a four-way data array. Our method reveals a robust and interpretable multi-region metabolomic signal that discriminates the groups of interest. We also successfully apply our method to gene expression time course data for multiple sclerosis treatment. An R implementation is available in the package MultiwayClassification at http://github.com/lockEF/MultiwayClassification.

6.
Commun Med (Lond) ; 3(1): 84, 2023 Jun 16.
Article En | MEDLINE | ID: mdl-37328685

BACKGROUND: Recent advances in MRI acquisitions and image analysis have increased the utility of neuroimaging in understanding disease-related changes. In this work, we aim to demonstrate increased sensitivity to disease progression as well as improved diagnostic accuracy in Amyotrophic lateral sclerosis (ALS) with multimodal MRI of the brain and cervical spinal cord. METHODS: We acquired diffusion MRI data from the brain and cervical cord, and T1 data from the brain, of 20 participants with ALS and 20 healthy control participants. Ten ALS and 14 control participants, and 11 ALS and 13 control participants were re-scanned at 6-month and 12-month follow-ups respectively. We estimated cross-sectional differences and longitudinal changes in diffusion metrics, cortical thickness, and fixel-based microstructure measures, i.e. fiber density and fiber cross-section. RESULTS: We demonstrate improved disease diagnostic accuracy and sensitivity through multimodal analysis of brain and spinal cord metrics. The brain metrics also distinguished lower motor neuron-predominant ALS participants from control participants. Fiber density and cross-section provided the greatest sensitivity to longitudinal change. We demonstrate evidence of progression in a cohort of 11 participants with slowly progressive ALS, including in participants with very slow change in ALSFRS-R. More importantly, we demonstrate that longitudinal change is detectable at a six-month follow-up visit. We also report correlations between ALSFRS-R and the fiber density and cross-section metrics. CONCLUSIONS: Our findings suggest that multimodal MRI is useful in improving disease diagnosis, and fixel-based measures may serve as potential biomarkers of disease progression in ALS clinical trials.


ALS is a disease affecting the brain and spinal cord which leads to weakness and muscle wasting. It is important to be able to measure disease-related changes whilst clinical trials are ongoing to assess whether the treatments being tested are working. We imaged the brain and spinal cord of people with and without ALS at 3 time points over a year. We found changes in the brain and spine over time. This study demonstrates that brain imaging could be potentially used to assess changes in disease progression during clinical trials, giving an indication of whether the treatments being tested are having an effect.

7.
Magn Reson Med ; 90(2): 708-721, 2023 08.
Article En | MEDLINE | ID: mdl-37145027

PURPOSE: Recent studies indicate that T1 in white matter (WM) is influenced by fiber orientation in B0 . The purpose of the study was to investigate the interrelationships between axon fiber orientation in corpus callosum (CC) and T1 relaxation time in humans in vivo as well as in rat brain ex vivo. METHODS: Volunteers were scanned for relaxometric and diffusion MRI at 3 T and 7 T. Angular T1 plots from WM were computed using fractional anisotropy and fiber-to-field-angle maps. T1 and fiber-to-field angle were measured in five sections of CC to estimate the effects of inherently varying fiber orientations on T1 within the same tracts in vivo. Ex vivo rat-brain preparation encompassing posterior CC was rotated in B0 and T1 , and diffusion MRI images acquired at 9.4 T. T1 angular plots were determined at several rotation angles in B0 . RESULTS: Angular T1 plots from global WM provided reference for estimated fiber orientation-linked T1 changes within CC. In anterior midbody of CC in vivo, where small axons are dominantly present, a shift in axon orientation is accompanied by a change in T1 , matching that estimated from WM T1 data. In CC, where large and giant axons are numerous, the measured T1 change is about 2-fold greater than the estimated one. Ex vivo rotation of the same midsagittal CC region of interest produced angular T1 plots at 9.4 T, matching those observed at 7 T in vivo. CONCLUSION: These data causally link axon fiber orientation in B0 to the T1 relaxation anisotropy in WM.


White Matter , Humans , White Matter/diagnostic imaging , Corpus Callosum/diagnostic imaging , Anisotropy , Axons , Diffusion Magnetic Resonance Imaging/methods , Brain/diagnostic imaging
8.
Mov Disord ; 38(1): 45-56, 2023 01.
Article En | MEDLINE | ID: mdl-36308733

BACKGROUND: Spinal cord damage is a hallmark of Friedreich's ataxia (FRDA), but its progression and clinical correlates remain unclear. OBJECTIVE: The objective of this study was to perform a characterization of cervical spinal cord structural damage in a large multisite FRDA cohort. METHODS: We performed a cross-sectional analysis of cervical spinal cord (C1-C4) cross-sectional area (CSA) and eccentricity using magnetic resonance imaging data from eight sites within the ENIGMA-Ataxia initiative, including 256 individuals with FRDA and 223 age- and sex-matched control subjects. Correlations and subgroup analyses within the FRDA cohort were undertaken based on disease duration, ataxia severity, and onset age. RESULTS: Individuals with FRDA, relative to control subjects, had significantly reduced CSA at all examined levels, with large effect sizes (d > 2.1) and significant correlations with disease severity (r < -0.4). Similarly, we found significantly increased eccentricity (d > 1.2), but without significant clinical correlations. Subgroup analyses showed that CSA and eccentricity are abnormal at all disease stages. However, although CSA appears to decrease progressively, eccentricity remains stable over time. CONCLUSIONS: Previous research has shown that increased eccentricity reflects dorsal column (DC) damage, while decreased CSA reflects either DC or corticospinal tract (CST) damage, or both. Hence our data support the hypothesis that damage to the DC and damage to CST follow distinct courses in FRDA: developmental abnormalities likely define the DC, while CST alterations may be both developmental and degenerative. These results provide new insights about FRDA pathogenesis and indicate that CSA of the cervical spinal cord should be investigated further as a potential biomarker of disease progression. © 2022 The Authors. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society.


Friedreich Ataxia , Movement Disorders , Humans , Friedreich Ataxia/complications , Friedreich Ataxia/pathology , Ataxia , Magnetic Resonance Imaging/methods , Pyramidal Tracts
9.
NMR Biomed ; 36(1): e4815, 2023 01.
Article En | MEDLINE | ID: mdl-35994269

A high degree of structural order by white matter (WM) fibre tracts creates a physicochemical environment where water relaxations are rendered anisotropic. Recently, angularly dependent longitudinal relaxation has been reported in human WM. We have characterised interrelationships between T1 relaxation and diffusion MRI microstructural indices at 3 and 7 T. Eleven volunteers consented to participate in the study. Multishell diffusion MR images were acquired with b-values of 0/1500/3000 and 0/1000/2000 s/mm2 at 1.5 and 1.05 mm3 isotropic resolutions at 3 and 7 T, respectively. DTIFIT was used to compute DTI indices; the fibre-to-field angle (θFB ) maps were obtained using the principal eigenvector images. The orientations and volume fractions of multiple fibre populations were estimated using BedpostX in FSL, and the orientation dispersion index (ODI) was estimated using the NODDI protocol. MP2RAGE was used to acquire images for T1 maps at 1.0 and 0.9 mm3 isotropic resolutions at 3 and 7 T, respectively. At 3 T, T1 as a function of θFB in WM with high fractional anisotropy and one-fibre orientation volume fraction or low ODI shows a broad peak centred at 50o , but a flat baseline at 0o and 90o . The broad peak amounted up to 7% of the mean T1. At 7 T, the broad peak appeared at 40o and T1 in fibres running parallel to B0 was longer by up to 75 ms (8.3% of the mean T1) than in those perpendicular to the field. The peak at 40o was approximately 5% of mean T1 (i.e., proportionally smaller than that at 54o at 3 T). The data demonstrate T1 anisotropy in WM with high microstructural order at both fields. The angular patterns are indicative of the B0-dependency of T1 anisotropy. Thus myelinated WM fibres influence T1 contrast both by acting as a T1 contrast agent and rendering T1 dependent on fibre orientation with B0.


White Matter , Humans , White Matter/diagnostic imaging
10.
Neurol Genet ; 8(6): e200034, 2022 Dec.
Article En | MEDLINE | ID: mdl-36524101

Background and Objectives: Friedreich ataxia (FRDA) is an autosomal recessive ataxia with no approved treatments. Leriglitazone is a selective peroxisome proliferator-activated receptor γ agonist that crosses the blood-brain barrier and, in preclinical models, improved mitochondrial function and energy production. We assessed effects of leriglitazone in patients with FRDA in a proof-of-concept study. Methods: In this double-blind, randomized controlled trial, eligible participants (age 12-60 years) had genetically confirmed FRDA, a Scale for the Assessment and Rating of Ataxia (SARA) total score <25, and a SARA item 1 score of 2-6, inclusive. Key exclusion criteria were age at FRDA onset ≥25 years and history of cardiac dysfunction. Participants were randomly assigned (2:1) to receive a daily, oral, individualized dose of leriglitazone or placebo for 48 weeks. The primary endpoint was the change from baseline to week 48 in spinal cord area (C2-C3) (measured by MRI). Secondary endpoints included the change from baseline to week 48 in iron accumulation in the dentate nucleus (quantitative susceptibility mapping) and total N-acetylaspartate to myo-inositol (tNAA/mIns) ratio. Results: Overall, 39 patients were enrolled (mean age 24 years; 43.6% women; mean time since symptom onset 10.5 years): 26 patients received leriglitazone (20 completed) and 13 received placebo (12 completed). There was no difference between groups in spinal cord area from baseline to week 48 (least-squares [LS] mean change [standard error (SE)]: leriglitazone, -0.39 [0.55] mm2; placebo, 0.08 [0.72] mm2; p = 0.61). Iron accumulation in the dentate nucleus was greater with placebo (LS mean change [SE]: leriglitazone, 0.10 [1.33] ppb; placebo, 4.86 [1.84] ppb; p = 0.05), and a numerical difference was seen in tNAA/mIns ratio (LS mean change [SE]: leriglitazone, 0.03 [0.02]; placebo, -0.02 [0.03]; p = 0.25). The most frequent adverse event was peripheral edema (leriglitazone 73.1%, placebo 0%). Discussion: The primary endpoint of change in spinal cord area was not met. Secondary endpoints provide evidence supporting proof of concept for leriglitazone mode of action and, with acceptable safety data, support larger studies in patients with FRDA. Trial Registration Information: ClinicalTrials.gov: NCT03917225; EudraCT: 2018-004405-64; submitted April 17, 2019; first patient enrolled April 2, 2019. clinicaltrials.gov/ct2/show/NCT03917225?term=NCT03917225&draw=2&rank=1. Classification of Evidence: This study provides Class I evidence that individualized dosing of leriglitazone, compared with placebo, is not associated with changes in spinal cord area in patients with FRDA.

11.
Ann Neurol ; 2022 Dec 13.
Article En | MEDLINE | ID: mdl-36511514

OBJECTIVE: This study was undertaken to identify magnetic resonance (MR) metrics that are most sensitive to early changes in the brain in spinocerebellar ataxia type 1 (SCA1) and type 3 (SCA3) using an advanced multimodal MR imaging (MRI) protocol in the multisite trial setting. METHODS: SCA1 or SCA3 mutation carriers and controls (n = 107) underwent MR scanning in the US-European READISCA study to obtain structural, diffusion MRI, and MR spectroscopy data using an advanced protocol at 3T. Morphometric, microstructural, and neurochemical metrics were analyzed blinded to diagnosis and compared between preataxic SCA (n = 11 SCA1, n = 28 SCA3), ataxic SCA (n = 14 SCA1, n = 37 SCA3), and control (n = 17) groups using nonparametric testing accounting for multiple comparisons. MR metrics that were most sensitive to preataxic abnormalities were identified using receiver operating characteristic (ROC) analyses. RESULTS: Atrophy and microstructural damage in the brainstem and cerebellar peduncles and neurochemical abnormalities in the pons were prominent in both preataxic groups, when patients did not differ from controls clinically. MR metrics were strongly associated with ataxia symptoms, activities of daily living, and estimated ataxia duration. A neurochemical measure was the most sensitive metric to preataxic changes in SCA1 (ROC area under the curve [AUC] = 0.95), and a microstructural metric was the most sensitive metric to preataxic changes in SCA3 (AUC = 0.92). INTERPRETATION: Changes in cerebellar afferent and efferent pathways underlie the earliest symptoms of both SCAs. MR metrics collected with a harmonized advanced protocol in the multisite trial setting allow detection of disease effects in individuals before ataxia onset with potential clinical trial utility for subject stratification. ANN NEUROL 2022.

12.
PLoS One ; 17(11): e0269649, 2022.
Article En | MEDLINE | ID: mdl-36410013

INTRODUCTION: Drug development for neurodegenerative diseases such as Friedreich's ataxia (FRDA) is limited by a lack of validated, sensitive biomarkers of pharmacodynamic response in affected tissue and disease progression. Studies employing neuroimaging measures to track FRDA have thus far been limited by their small sample sizes and limited follow up. TRACK-FA, a longitudinal, multi-site, and multi-modal neuroimaging natural history study, aims to address these shortcomings by enabling better understanding of underlying pathology and identifying sensitive, clinical trial ready, neuroimaging biomarkers for FRDA. METHODS: 200 individuals with FRDA and 104 control participants will be recruited across seven international study sites. Inclusion criteria for participants with genetically confirmed FRDA involves, age of disease onset ≤ 25 years, Friedreich's Ataxia Rating Scale (FARS) functional staging score of ≤ 5, and a total modified FARS (mFARS) score of ≤ 65 upon enrolment. The control cohort is matched to the FRDA cohort for age, sex, handedness, and years of education. Participants will be evaluated at three study visits over two years. Each visit comprises of a harmonized multimodal Magnetic Resonance Imaging (MRI) and Spectroscopy (MRS) scan of the brain and spinal cord; clinical, cognitive, mood and speech assessments and collection of a blood sample. Primary outcome measures, informed by previous neuroimaging studies, include measures of: spinal cord and brain morphometry, spinal cord and brain microstructure (measured using diffusion MRI), brain iron accumulation (using Quantitative Susceptibility Mapping) and spinal cord biochemistry (using MRS). Secondary and exploratory outcome measures include clinical, cognitive assessments and blood biomarkers. DISCUSSION: Prioritising immediate areas of need, TRACK-FA aims to deliver a set of sensitive, clinical trial-ready neuroimaging biomarkers to accelerate drug discovery efforts and better understand disease trajectory. Once validated, these potential pharmacodynamic biomarkers can be used to measure the efficacy of new therapeutics in forestalling disease progression. CLINICAL TRIAL REGISTRATION: ClinicalTrails.gov Identifier: NCT04349514.


Friedreich Ataxia , Adult , Humans , Biomarkers , Brain/pathology , Disease Progression , Friedreich Ataxia/pathology , Magnetic Resonance Spectroscopy
13.
PLoS One ; 17(10): e0266349, 2022.
Article En | MEDLINE | ID: mdl-36240243

High-impact temporomandibular disorder (TMD) pain may involve brain mechanisms related to maladaptive central pain modulation. We investigated brain responses to stimulation of trigeminal sites not typically associated with TMD pain by applying noxious dentoalveolar pressure to high- and low-impact TMD pain cases and pain-free controls during functional magnetic resonance imaging (fMRI). Fifty female participants were recruited and assigned to one of three groups based on the Diagnostic Criteria for Temporomandibular Disorders (DC/TMD) and Graded Chronic Pain Scale: controls (n = 17), low-impact (n = 17) and high-impact TMD (n = 16). Multimodal whole-brain MRI was acquired following the Human Connectome Project Lifespan protocol, including stimulus-evoked fMRI scans during which painful dentoalveolar pressure was applied to the buccal gingiva of participants. Group analyses were performed using non-parametric permutation tests for parcellated cortical and subcortical neuroimaging data. There were no significant between-group differences for brain activations/deactivations evoked by the noxious dentoalveolar pressure. For individual group mean activations/deactivations, a gradient in the number of parcels surviving thresholding was found according to the TMD pain grade, with the highest number seen in the high-impact group. Among the brain regions activated in chronic TMD pain groups were those previously implicated in sensory-discriminative and motivational-affective pain processing. These results suggest that dentoalveolar pressure pain evokes abnormal brain responses to sensory processing of noxious stimuli in high-impact TMD pain participants, which supports the presence of maladaptive brain plasticity in chronic TMD pain.


Chronic Pain , Temporomandibular Joint Disorders , Brain/diagnostic imaging , Female , Humans , Magnetic Resonance Imaging/methods , Pain Measurement/methods , Temporomandibular Joint Disorders/complications
14.
Brain Commun ; 4(5): fcac246, 2022.
Article En | MEDLINE | ID: mdl-36300142

Friedreich ataxia is the most common hereditary ataxia. Atrophy of the spinal cord is one of the hallmarks of the disease. MRI and magnetic resonance spectroscopy are powerful and non-invasive tools to investigate pathological changes in the spinal cord. A handful of studies have reported cross-sectional alterations in Friedreich ataxia using MRI and diffusion MRI. However, to our knowledge no longitudinal MRI, diffusion MRI or MRS results have been reported in the spinal cord. Here, we investigated early-stage cross-sectional alterations and longitudinal changes in the cervical spinal cord in Friedreich ataxia, using a multimodal magnetic resonance protocol comprising morphometric (anatomical MRI), microstructural (diffusion MRI), and neurochemical (1H-MRS) assessments.We enrolled 28 early-stage individuals with Friedreich ataxia and 20 age- and gender-matched controls (cross-sectional study). Disease duration at baseline was 5.5 ± 4.0 years and Friedreich Ataxia Rating Scale total neurological score at baseline was 42.7 ± 13.6. Twenty-one Friedreich ataxia participants returned for 1-year follow-up, and 19 of those for 2-year follow-up (cohort study). Each visit consisted in clinical assessments and magnetic resonance scans. Controls were scanned at baseline only. At baseline, individuals with Friedreich ataxia had significantly lower spinal cord cross-sectional area (-31%, P = 8 × 10-17), higher eccentricity (+10%, P = 5 × 10-7), lower total N-acetyl-aspartate (tNAA) (-36%, P = 6 × 10-9) and higher myo-inositol (mIns) (+37%, P = 2 × 10-6) corresponding to a lower ratio tNAA/mIns (-52%, P = 2 × 10-13), lower fractional anisotropy (-24%, P = 10-9), as well as higher radial diffusivity (+56%, P = 2 × 10-9), mean diffusivity (+35%, P = 10-8) and axial diffusivity (+17%, P = 4 × 10-5) relative to controls. Longitudinally, spinal cord cross-sectional area decreased by 2.4% per year relative to baseline (P = 4 × 10-4), the ratio tNAA/mIns decreased by 5.8% per year (P = 0.03), and fractional anisotropy showed a trend to decrease (-3.2% per year, P = 0.08). Spinal cord cross-sectional area correlated strongly with clinical measures, with the strongest correlation coefficients found between cross-sectional area and Scale for the Assessment and Rating of Ataxia (R = -0.55, P = 7 × 10-6) and between cross-sectional area and Friedreich ataxia Rating Scale total neurological score (R = -0.60, P = 4 × 10-7). Less strong but still significant correlations were found for fractional anisotropy and tNAA/mIns. We report here the first quantitative longitudinal magnetic resonance results in the spinal cord in Friedreich ataxia. The largest longitudinal effect size was found for spinal cord cross-sectional area, followed by tNAA/mIns and fractional anisotropy. Our results provide direct evidence that abnormalities in the spinal cord result not solely from hypoplasia, but also from neurodegeneration, and show that disease progression can be monitored non-invasively in the spinal cord.

16.
Neuroimage ; 255: 119200, 2022 07 15.
Article En | MEDLINE | ID: mdl-35427769

Diffu0sion-weighted magnetic resonance imaging (dMRI) is a non-invasive imaging technique that provides information about the barriers to the diffusion of water molecules in tissue. In the brain, this information can be used in several important ways, including to examine tissue abnormalities associated with brain disorders and to infer anatomical connectivity and the organization of white matter bundles through the use of tractography algorithms. However, dMRI also presents certain challenges. For example, historically, the biological validation of tractography models has shown only moderate correlations with anatomical connectivity as determined through invasive tract-tracing studies. Some of the factors contributing to such issues are low spatial resolution, low signal-to-noise ratios, and long scan times required for high-quality data, along with modeling challenges like complex fiber crossing patterns. Leveraging the capabilities provided by an ultra-high field scanner combined with denoising, we have acquired whole-brain, 0.58 mm isotropic resolution dMRI with a 2D-single shot echo planar imaging sequence on a 10.5 Tesla scanner in anesthetized macaques. These data produced high-quality tractograms and maps of scalar diffusion metrics in white matter. This work demonstrates the feasibility and motivation for in-vivo dMRI studies seeking to benefit from ultra-high fields.


Diffusion Magnetic Resonance Imaging , Macaca , Animals , Brain/diagnostic imaging , Diffusion Magnetic Resonance Imaging/methods , Echo-Planar Imaging/methods , Humans , Image Processing, Computer-Assisted/methods , Magnetic Resonance Imaging
17.
Brain Commun ; 4(2): fcac027, 2022.
Article En | MEDLINE | ID: mdl-35310831

People with Parkinson's disease who have elevated muscle activity during rapid eye movement sleep (REM sleep without atonia) typically have a worse motor and cognitive impairment compared with those with normal muscle atonia during rapid eye movement sleep. This study used tract-based spatial statistics to compare diffusion MRI measures of fractional anisotropy, radial, mean and axial diffusivity (measures of axonal microstructure based on the directionality of water diffusion) in white matter tracts between people with Parkinson's disease with and without rapid eye movement sleep without atonia and controls and their relationship to measures of motor and cognitive function. Thirty-eight individuals with mild-to-moderate Parkinson's disease and 21 matched control subjects underwent ultra-high field MRI (7 T), quantitative motor assessments of gait and bradykinesia and neuropsychological testing. The Parkinson's disease cohort was separated post hoc into those with and without elevated chin or leg muscle activity during rapid eye movement sleep based on polysomnography findings. Fractional anisotropy was significantly higher, and diffusivity significantly lower, in regions of the corpus callosum, projection and association white matter pathways in the Parkinson's group with normal rapid eye movement sleep muscle tone compared with controls, and in a subset of pathways relative to the Parkinson's disease group with rapid eye movement sleep without atonia. The Parkinson's disease group with elevated rapid eye movement sleep muscle tone showed significant impairments in the gait and upper arm speed compared with controls and significantly worse scores in specific cognitive domains (executive function, visuospatial memory) compared with the Parkinson's disease group with normal rapid eye movement sleep muscle tone. Regression analyses showed that gait speed and step length in the Parkinson's disease cohort were predicted by measures of fractional anisotropy of the anterior corona radiata, whereas elbow flexion velocity was predicted by fractional anisotropy of the superior corona radiata. Visuospatial memory task performance was predicted by the radial diffusivity of the posterior corona radiata. These findings show that people with mild-to-moderate severity of Parkinson's disease who have normal muscle tone during rapid eye movement sleep demonstrate compensatory-like adaptations in axonal microstructure that are associated with preserved motor and cognitive function, but these adaptations are reduced or absent in those with increased rapid eye movement sleep motor tone.

18.
Sci Rep ; 12(1): 1657, 2022 01 31.
Article En | MEDLINE | ID: mdl-35102207

Temporomandibular disorders (TMD) patients can present clinically significant jaw pain fluctuations which can be debilitating and lead to poor global health. The Graded Chronic Pain Scale evaluates pain-related disability and its dichotomous grading (high/low impact pain) can determine patient care pathways and in general high-impact pain patients have worse treatment outcomes. Individuals with low-impact TMD pain are thought to have better psychosocial functioning, more favorable disease course, and better ability to control pain, while individuals with high-impact pain can present with higher levels of physical and psychological symptoms. Thereby, there is reason to believe that individuals with low- and high-impact TMD pain could experience different pain trajectories over time. Our primary objective was to determine if short-term jaw pain fluctuations serve as a clinical marker for the impact status of TMD pain. To this end, we estimated the association between high/low impact pain status and jaw pain fluctuations over three visits (≤ 21-day-period) in 30 TMD cases. Secondarily, we measured the association between jaw pain intensity and pressure pain thresholds (PPT) over the face and hand, the latter measurements compared to matched pain-free controls (n = 17). Jaw pain fluctuations were more frequent among high-impact pain cases (n = 15) than low-impact pain cases (n = 15) (OR 5.5; 95% CI 1.2, 26.4; p value = 0.033). Jaw pain ratings were not associated with PPT ratings (p value > 0.220), suggesting different mechanisms for clinical versus experimental pain. Results from this proof-of-concept study suggest that targeted treatments to reduce short-term pain fluctuations in high-impact TMD pain is a potential strategy to achieve improved patient perception of clinical pain management outcomes.


Chronic Pain/physiopathology , Facial Pain/physiopathology , Jaw/innervation , Pain Threshold , Temporomandibular Joint Disorders/physiopathology , Adult , Case-Control Studies , Chronic Pain/diagnosis , Cost of Illness , Facial Pain/diagnosis , Female , Humans , Male , Middle Aged , Pain Measurement , Proof of Concept Study , Temporomandibular Joint Disorders/diagnosis , Time Factors , Young Adult
19.
J Clin Med ; 10(19)2021 Sep 23.
Article En | MEDLINE | ID: mdl-34640340

Investigation of brain changes in functional connectivity and functional network topology from receiving 8-week selective serotonin reuptake inhibitor (SSRI) treatments is conducted in 12 unmedicated adolescents with major depressive disorder (MDD) by using wavelet-filtered resting-state functional magnetic resonance imaging (fMRI). Changes are observed in frontal-limbic, temporal, and default mode networks. In particular, topological analysis shows, at the global scale and in the 0.12-0.25 Hz band, that the normalized clustering coefficient and smallworldness of brain networks decreased after treatment. Regional changes in clustering coefficient and efficiency were observed in the bilateral caudal middle frontal gyrus, rostral middle frontal gyrus, superior temporal gyrus, left pars triangularis, putamen, and right superior frontal gyrus. Furthermore, changes of nodal centrality and changes of connectivity associated with these frontal and temporal regions confirm the global topological alternations. Moreover, frequency dependence is observed from FDR-controlled subnetworks for the limbic-cortical connectivity change. In the high-frequency band, the altered connections involve mostly frontal regions, while the altered connections in the low-frequency bands spread to parietal and temporal areas. Due to the limitation of small sample sizes and lack of placebo control, these preliminary findings require confirmation with future work using larger samples. Confirmation of biomarkers associated with treatment could suggest potential avenues for clinical applications such as tracking treatment response and neurobiologically informed treatment optimization.

20.
Ann Neurol ; 90(4): 570-583, 2021 10.
Article En | MEDLINE | ID: mdl-34435700

OBJECTIVE: Friedreich ataxia (FRDA) is an inherited neurological disease defined by progressive movement incoordination. We undertook a comprehensive characterization of the spatial profile and progressive evolution of structural brain abnormalities in people with FRDA. METHODS: A coordinated international analysis of regional brain volume using magnetic resonance imaging data charted the whole-brain profile, interindividual variability, and temporal staging of structural brain differences in 248 individuals with FRDA and 262 healthy controls. RESULTS: The brainstem, dentate nucleus region, and superior and inferior cerebellar peduncles showed the greatest reductions in volume relative to controls (Cohen d = 1.5-2.6). Cerebellar gray matter alterations were most pronounced in lobules I-VI (d = 0.8), whereas cerebral differences occurred most prominently in precentral gyri (d = 0.6) and corticospinal tracts (d = 1.4). Earlier onset age predicted less volume in the motor cerebellum (rmax  = 0.35) and peduncles (rmax  = 0.36). Disease duration and severity correlated with volume deficits in the dentate nucleus region, brainstem, and superior/inferior cerebellar peduncles (rmax  = -0.49); subgrouping showed these to be robust and early features of FRDA, and strong candidates for further biomarker validation. Cerebral white matter abnormalities, particularly in corticospinal pathways, emerge as intermediate disease features. Cerebellar and cerebral gray matter loss, principally targeting motor and sensory systems, preferentially manifests later in the disease course. INTERPRETATION: FRDA is defined by an evolving spatial profile of neuroanatomical changes beyond primary pathology in the cerebellum and spinal cord, in line with its progressive clinical course. The design, interpretation, and generalization of research studies and clinical trials must consider neuroanatomical staging and associated interindividual variability in brain measures. ANN NEUROL 2021;90:570-583.


Brain/pathology , Friedreich Ataxia/diagnostic imaging , Image Processing, Computer-Assisted , Adult , Age of Onset , Brain/anatomy & histology , Disease Progression , Female , Humans , Magnetic Resonance Imaging/methods , Male , Middle Aged , Pyramidal Tracts/pathology , Young Adult
...