Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
Appl Spectrosc ; : 37028241268158, 2024 Aug 02.
Article in English | MEDLINE | ID: mdl-39094004

ABSTRACT

The aim of this work was the development and morphological/chemical, spectroscopic, and structural characterization of titanium dioxide, niobium pentoxide, and titanium:niobium (Ti:Nb) oxides, as well as materials modified with ruthenium (Ru) with the purpose of provide improvement in photoactivation capacity with visible sunlight radiation. The new materials synthesized by the sol-gel methodology were characterized by the following techniques: scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDS), photoacoustic spectroscopy, and X-ray diffraction. The SEM-EDS analyses showed the high purity of the bases, and the modified samples showed the adsorption of ruthenium on the surface with the crystals formation and visible agglomerates for higher calcination temperature. The nondestructive characterization of photoacoustic spectroscopy in the ultraviolet-visible (UV-Vis) region suggested that increasing calcination temperature promoted changes in chemical structures and an apparent decrease in gap energy. The separation of superimposed absorption bands referring to charge transfers from the ligand to the metal and the nanodomains of the transition metals suggested the possible absorption centers present at the absorption threshold of the analyzed oxides. Through the XRD analysis, the formation of stable phases such as T-Nb16.8O42, o-Nb12O29, and rutile was observed at a lower temperature level, suggesting pore induction and an increase in surface area for the oxides studied, at a calcination temperature below that expected by the related literature. In addition, the synthesis with a higher temperature level altered the previously existing morphologies of the Ti:Nb, base and modified with Ru, forming the new mixed crystallographic phases Ti2Nb10O29 and TiNb2O7, respectively. As several semiconductor oxide applications aim to reduce costs with photoexcitation in visible light, the modified Ti:Ru oxide calcined at a temperature of 800 °C and synthesized according to the sol-gel methodology used in this work is suggested as the optimum preparation point. This material presented the formation of a stable crystallographic phase (rutile), a significant decrease in gap energy (2.01 eV), and a visible absorption threshold (620 nm).

2.
Environ Sci Pollut Res Int ; 31(12): 17788-17803, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38177647

ABSTRACT

In the present work, a study was carried out on the dosage of wastes from the chemical industry (tannery sludge) and civil construction (concrete and plaster) in mixtures used in concrete blocks' production. The objective was the application of these blocks in paving. The characterization of the materials used was performed employing X-ray diffractometry (XRD), scanning electron microscopy (SEM), and energy-dispersive X-ray spectroscopy (EDS). The effect of the different residues on the blocks' properties was evaluated through compressive strength, flexion-traction, water absorption, abrasion resistance, and leaching tests. The results indicated that the concrete paving blocks produced with the addition of residues did not obtain gains in the values of mechanical resistance to compression and traction in bending compared to blocks made with standard raw material. However, the blocks produced with construction waste presented satisfactory results for application in street paving after 7 days of concrete curing, reaching values between 36.54 and 44.6 MPa for the mentioned properties. These values also increased to 21.4% within 28 days of curing. The blocks produced with plaster showed values between 37.03 and 39.85 MPa after 28 days of curing, allowing their use for street paving. On the other hand, the blocks containing residues from the chemical industry had lower strengths, reaching a maximum of 29.36 MPa after 28 days of curing. In addition, it was also noted that the blocks produced with recycled concrete showed an improvement in performance for a composition of 50% recycled material.


Subject(s)
Construction Materials , Industrial Waste , Industrial Waste/analysis , Chemical Industry , Recycling/methods , Compressive Strength
3.
J Environ Sci Health B ; 59(2): 50-61, 2024.
Article in English | MEDLINE | ID: mdl-38054847

ABSTRACT

In this work, a comparison was made between the synthesis of niobium-based materials (Nb2O5), both in terms of material characterization and catalytic performance. The methods used were chemical mixtures: modified sol-gel and Pechini. The materials were calcined at different temperatures (753, 873 and 993K) and characterized by the following techniques: photoacousticspectroscopy (PAS), zero charge point (pHPZC), scanning electron microscopy (SEM/EDS), thermogravimetric analysis (TGA/DTG) and X-ray diffraction (XRD). The photocatalytic process was carried out to evaluate the degradation of 2,4-dichlorophenoxyacetic acid (2,4-D) under UV radiation (250 W mercury vapor lamp) and different experimental conditions. In addition, to better understand the influence of parameters such as pH, catalyst concentration (0.2, 0.5 and 0.8 g L-1) and calcination temperature, a Design of Experiments (DoE) was used. The results indicated that despite having similar structures and phases in the XRD analysis, the morphology presents two distinct surfaces, due to the preparation method. Differences in the synthesis method affected the catalytic activity in the parameters studied. Although the zero charge point values are close (6.18-6.36), we observed differences in the band gap depending on the calcination temperature. In the optimal condition studied, the catalyst prepared by the sol-gel method obtained the best results.


Subject(s)
Herbicides , Niobium/chemistry , Ultraviolet Rays , Microscopy, Electron, Scanning , 2,4-Dichlorophenoxyacetic Acid
4.
Article in English | MEDLINE | ID: mdl-36069164

ABSTRACT

This study describes the synthesis of Cu/Nb2O5, Fe/Nb2O5, and Cu-Fe/Nb2O5 catalysts obtained by incorporating copper and/or iron metals into niobium pentoxide (Nb2O5). The new materials were characterized by the following techniques: Thermogravimetric Analysis (TA), surface and pore analysis, X-ray diffractometry (XRD), and Fourier Transform Infrared Spectroscopy (FT-IR). The catalyst was applied in the photocatalytic degradation of salicylic acid (SA). The influence of different parameters (calcined temperature, pH, and metal addition) on the photocatalytic reaction was evaluated. The results indicated that catalysts containing copper were more active and pH influenced the SA degradation process. SA removal results indicated that Cu/Nb2O5 photocatalyst presented a 1.5 fold higher degradation after 120 min in comparison to Cu-Fe/Nb2O5 and 4.6 fold higher than Fe/Nb2O5 catalyst, all them calcined at 400 °C. In tests carried out in the presence of formic acid, increasing the pH from about 3 to 7 allowed an almost 3.4-fold increase in SA degradation for the Cu-Fe/Nb2O5 catalyst calcined at 400 °C.


Subject(s)
Copper , Niobium/chemistry , Oxides/chemistry , Catalysis , Iron/chemistry , Metals , Salicylic Acid , Spectroscopy, Fourier Transform Infrared
5.
Sensors (Basel) ; 22(5)2022 Feb 25.
Article in English | MEDLINE | ID: mdl-35270964

ABSTRACT

This paper presents the results of studies on reducing the amount of vibrations in different frequency ranges generated by a combustion engine through the use of different types of engine mounts. Three different types of engine supports are experimentally and numerically analyzed, namely an elastomeric engine mount, an elastomeric engine mount with a hydraulic component and standard decoupling, and an elastomeric engine mount with a hydraulic component and a modified decoupler-with this engineering design being a novelty in the literature. Experimental tests that considered different excitation frequencies were performed for the three types of engine mounts. Experimental data for stiffness and damping were used to obtain nonlinear mathematical models of the two systems with hydraulic components through the use of an Artificial Neural Network (ANN). For the results, all of the mathematical models presented coefficients of determination, R2, greater than 0.985 for both stiffness and damping, showing an excellent fit for the nonlinear experimental data. Numerical results using a quarter-car suspension model showed a large reduction in vibration amplitudes for the first vibration model when using the hydraulic systems, with values ranging between 48.58% and 66.47%, depending on the tests. The modified system presented smaller amplitudes and smoother behavior when compared to the standard hydraulic model.


Subject(s)
Models, Theoretical , Neural Networks, Computer , Elasticity , Nonlinear Dynamics , Vibration
6.
J Environ Sci Health B ; 56(6): 523-531, 2021.
Article in English | MEDLINE | ID: mdl-33979272

ABSTRACT

This study describes the experimental design and optimization of application TiO2 catalysts doped with 0.5, 1, 1.5, 2.0% of Fe. The catalysts were prepared using the impregnation method applied in Paraquat herbicide degradation. The catalysts were characterized by the following techniques: specific surface area and volume, mean pore diameter (BET method), scanning electron microscopy and photoacoustic spectroscopy. The characterization presented results indicating that both calcination temperature and the increase nominal metallic load affected by the structure of catalysts, changing the textural properties, as well as the band gap. The catalyst that presented the best herbicide removal percentage was TiO2 calcined at 773 K with removal of 90.2%. However, according to the experimental design and optimization, both variables (calcination temperature and Fe percentage) are significant in the process. In addition, a positive effect was found in the interaction between the two variables. The values show that a third order kinetic model better described the Paraquat photocatalytic degradation.


Subject(s)
Herbicides/chemistry , Iron/radiation effects , Paraquat/chemistry , Titanium/radiation effects , Ultraviolet Rays , Catalysis , Iron/chemistry , Microscopy, Electron, Scanning , Photolysis , Temperature , Titanium/chemistry
7.
Ecotoxicol Environ Saf ; 151: 127-131, 2018 Apr 30.
Article in English | MEDLINE | ID: mdl-29331917

ABSTRACT

The oxidation of As(III) to As(V) in aqueous solution was evaluated using heterogeneous photocatalysis and photolysis. The influence of TiO2 as catalyst in different crystalline (rutile, anatase) and commercial forms was evaluated in a batch reactor and an insignificant difference was observed between them. The process by photocatalysis reached up to 97% As(III) oxidation and no significant difference was observed comparing to results obtained by photolysis. The photolysis experiments (UV radiation only), also carried out in a batch system, showed a high oxidation rate of As(III) (90% in 20min). The influence of different matrices (well water, river water and public water supply) were evaluated. Additionally, the effect of As(V) concentration, generated during the oxidation process, was studied. Continuous photolysis experiments using only UV radiation were performed, resulting in a high As(III) oxidation rate. Using a flow rate of 5mLmin-1 and an initial concentration of As(III) 200µgL-1, gave an oxidation percentage of As(III) of up to 72%, showing a simple and economical alternative to the oxidation step of As(III) to As(V) in the treatment of water contaminated with arsenic.


Subject(s)
Water Pollutants, Chemical/chemistry , Water Purification/methods , Arsenic/chemistry , Catalysis , Oxidation-Reduction , Photochemical Processes , Photolysis , Titanium/chemistry , Ultraviolet Rays , Water/chemistry
8.
Ecotoxicol Environ Saf ; 124: 329-336, 2016 Feb.
Article in English | MEDLINE | ID: mdl-26590694

ABSTRACT

The biosorption of orange solimax TGL 182% (OS-TGL) textile dye onto new and low cost biossorbent (malt bagasse) in aqueous solutions was investigated. The malt bagasse was characterized by Fourier transform infrared spectroscopy and specific surface area (BET method).Batch biosorption experiments were conducted in order to determine the following parameters: particles size, pH, agitation speed, temperature, contact time, biomass dosage, influence of the ionic strength and, finally, the influence of other textile dye on the OS-TGL biosorption. The optimum conditions for OS-TGL removal were obtained at pH 1.5, agitation speed of 150rpm, contact time of 180min and biomass dosage 2, 8gL(-1). The results show that the kinetics of biosorption followed a pseudo-second-order model and by increasing the temperature from 293 up to 313K, the biosorption capacity was improved. The Langmuir model showed better fit and the estimated biosorption capacity was 23.2mgg(-1). The negative values of Gibbs free energy, ΔG°, and positive value of enthalpy, ΔH°, confirm the spontaneous nature and endothermic character of the biosorption process. The results of the ionic strength effect indicated that the biosorption process under study had a strong tolerance in high salt concentrations. The removal capacity (>95%) was not affected with the presence of other textile dyes.


Subject(s)
Coloring Agents/isolation & purification , Water Pollutants, Chemical/isolation & purification , Water Purification/methods , Adsorption , Biomass , Cellulose , Hydrogen-Ion Concentration , Industrial Waste , Kinetics , Particle Size , Spectroscopy, Fourier Transform Infrared , Temperature , Textiles , Thermodynamics
SELECTION OF CITATIONS
SEARCH DETAIL