Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 434
Filter
1.
bioRxiv ; 2024 Aug 16.
Article in English | MEDLINE | ID: mdl-39185198

ABSTRACT

Goal-directed reaches give rise to dynamic neural activity across the brain as we move our eyes and arms, and process outcomes. High spatiotemporal resolution mapping of multiple cortical areas will improve our understanding of how these neural computations are spatially and temporally distributed across the brain. In this study, we used micro-electrocorticography (µECoG) recordings in two male monkeys performing visually guided reaches to map information related to eye movements, arm movements, and receiving rewards over a 1.37 cm2 area of frontal motor cortices (primary motor cortex, premotor cortex, frontal eye field, and dorsolateral pre-frontal cortex). Time-frequency and decoding analyses revealed that eye and arm movement information shifts across brain regions during a reach, likely reflecting shifts from planning to execution. We then used phase-based analyses to reveal potential overlaps of eye and arm information. We found that arm movement decoding performance was impacted by task-irrelevant eye movements, consistent with the presence of intermixed eye and arm information across much of motor cortices. Phase-based analyses also identified reward-related activity primarily around the principal sulcus in the pre-frontal cortex as well as near the arcuate sulcus in the premotor cortex. Our results demonstrate µECoG's strengths for functional mapping and provide further detail on the spatial distribution of eye, arm, and reward information processing distributed across frontal cortices during reaching. These insights advance our understanding of the overlapping neural computations underlying coordinated movements and reveal opportunities to leverage these signals to enhance future brain-computer interfaces.

2.
Mol Psychiatry ; 2024 Aug 23.
Article in English | MEDLINE | ID: mdl-39179904

ABSTRACT

Serotonin (5-HT) plays an essential role in reward processing, however, the possibilities to investigate 5-HT action in humans during emotional stimulation are particularly limited. Here we demonstrate the feasibility of assessing reward-specific dynamics in 5-HT synthesis using functional PET (fPET), combining its molecular specificity with the high temporal resolution of blood oxygen level dependent (BOLD) fMRI. Sixteen healthy volunteers underwent simultaneous fPET/fMRI with the radioligand [11C]AMT, a substrate for tryptophan hydroxylase. During the scan, participants completed the monetary incentive delay task and arterial blood samples were acquired for quantifying 5-HT synthesis rates. BOLD fMRI was recorded as a proxy of neuronal activation, allowing differentiation of reward anticipation and feedback. Monetary gain and loss resulted in substantial increases in 5-HT synthesis in the ventral striatum (VStr, +21% from baseline) and the anterior insula (+41%). In the VStr, task-specific 5-HT synthesis was further correlated with BOLD signal changes during reward feedback (ρ = -0.65), but not anticipation. Conversely, 5-HT synthesis in the anterior insula correlated with BOLD reward anticipation (ρ = -0.61), but not feedback. In sum, we provide a robust tool to identify task-induced changes in 5-HT action in humans, linking the dynamics of 5-HT synthesis to distinct phases of reward processing in a regionally specific manner. Given the relevance of altered reward processing in psychiatric disorders such as addiction, depression and schizophrenia, our approach offers a tailored assessment of impaired 5-HT signaling during cognitive and emotional processing.

4.
Front Neurosci ; 18: 1411797, 2024.
Article in English | MEDLINE | ID: mdl-38988766

ABSTRACT

Neuroimaging-based prediction of neurocognitive measures is valuable for studying how the brain's structure relates to cognitive function. However, the accuracy of prediction using popular linear regression models is relatively low. We propose a novel deep regression method, namely TractoSCR, that allows full supervision for contrastive learning in regression tasks using diffusion MRI tractography. TractoSCR performs supervised contrastive learning by using the absolute difference between continuous regression labels (i.e., neurocognitive scores) to determine positive and negative pairs. We apply TractoSCR to analyze a large-scale dataset including multi-site harmonized diffusion MRI and neurocognitive data from 8,735 participants in the Adolescent Brain Cognitive Development (ABCD) Study. We extract white matter microstructural measures using a fine parcellation of white matter tractography into fiber clusters. Using these measures, we predict three scores related to domains of higher-order cognition (general cognitive ability, executive function, and learning/memory). To identify important fiber clusters for prediction of these neurocognitive scores, we propose a permutation feature importance method for high-dimensional data. We find that TractoSCR obtains significantly higher accuracy of neurocognitive score prediction compared to other state-of-the-art methods. We find that the most predictive fiber clusters are predominantly located within the superficial white matter and projection tracts, particularly the superficial frontal white matter and striato-frontal connections. Overall, our results demonstrate the utility of contrastive representation learning methods for regression, and in particular for improving neuroimaging-based prediction of higher-order cognitive abilities. Our code will be available at: https://github.com/SlicerDMRI/TractoSCR.

5.
Sci Data ; 11(1): 787, 2024 Jul 17.
Article in English | MEDLINE | ID: mdl-39019877

ABSTRACT

The study of brain differences across Eastern and Western populations provides vital insights for understanding potential cultural and genetic influences on cognition and mental health. Diffusion MRI (dMRI) tractography is an important tool in assessing white matter (WM) connectivity and brain tissue microstructure across different populations. However, a comprehensive investigation into WM fiber tracts between Eastern and Western populations is challenged due to the lack of a cross-population WM atlas and the large site-specific variability of dMRI data. This study presents a dMRI tractography atlas, namely the East-West WM Atlas, for concurrent WM mapping between Eastern and Western populations and creates a large, harmonized dMRI dataset (n=306) based on the Human Connectome Project and the Chinese Human Connectome Project. The curated WM atlas, as well as subject-specific data including the harmonized dMRI data, the whole brain tractography data, and parcellated WM fiber tracts and their diffusion measures, are publicly released. This resource is a valuable addition to facilitating the exploration of brain commonalities and differences across diverse cultural backgrounds.


Subject(s)
Connectome , Diffusion Tensor Imaging , White Matter , Humans , White Matter/diagnostic imaging , White Matter/anatomy & histology , Brain/diagnostic imaging , Brain/anatomy & histology , Male , Diffusion Magnetic Resonance Imaging , Adult , Female , China
6.
Curr Opin Support Palliat Care ; 18(3): 138-144, 2024 Sep 01.
Article in English | MEDLINE | ID: mdl-38752576

ABSTRACT

PURPOSE OF REVIEW: Cachexia is a devasting syndrome which impacts a large number of patients with cancer. This review aims to provide a comprehensive overview of the central mechanisms of cancer cachexia. In particular, it focuses on the role of the central nervous system (CNS), the melanocortin system, circulating hormones and molecules which are produced by and act on the CNS and the psychological symptoms of cancer cachexia. RECENT FINDINGS: A growing body of evidence suggests that a central mechanism of action underpins this multi-system disorder. Recent research has focused on the role of neuroinflammation that drives the sickness behaviour seen in cancer cachexia, with emphasis on the role of the hypothalamus. Melanocortin receptor antagonists are showing promise in preclinical studies. There are also new pharmacological developments to overcome the short half-life of ghrelin. GDF-15 has been identified as a core target and trials of compounds that interfere with its signalling or its central receptor are underway. SUMMARY: Understanding the central mechanisms of cancer cachexia is pivotal for enhancing treatment outcomes in patients. While emerging pharmacological interventions targeting these pathways have shown promise, further research is essential.


Subject(s)
Cachexia , Ghrelin , Neoplasms , Cachexia/etiology , Cachexia/physiopathology , Humans , Neoplasms/complications , Ghrelin/metabolism , Melanocortins , Growth Differentiation Factor 15 , Hypothalamus/physiopathology , Central Nervous System/physiopathology , Neuroinflammatory Diseases/physiopathology
7.
J Cachexia Sarcopenia Muscle ; 15(3): 816-852, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38738581

ABSTRACT

Significant variation exists in the outcomes used in cancer cachexia trials, including measures of body composition, which are often selected as primary or secondary endpoints. To date, there has been no review of the most commonly selected measures or their potential sensitivity to detect changes resulting from the interventions being examined. The aim of this systematic review is to assess the frequency and diversity of body composition measures that have been used in cancer cachexia trials. MEDLINE, Embase and Cochrane Library databases were systematically searched between January 1990 and June 2021. Eligible trials examined adults (≥18 years) who had received an intervention aiming to treat or attenuate the effects of cancer cachexia for >14 days. Trials were also of a prospective controlled design and included body weight or at least one anthropometric, bioelectrical or radiological endpoint pertaining to body composition, irrespective of the modality of intervention (e.g., pharmacological, nutritional, physical exercise and behavioural) or comparator. Trials with a sample size of <40 patients were excluded. Data extraction used Covidence software, and reporting followed the Preferred Reporting Items for Systematic Reviews and Meta-Analyses guidance. This review was prospectively registered (PROSPERO: CRD42022276710). A total of 84 clinical trials, comprising 13 016 patients, were eligible for inclusion. Non-small-cell lung cancer and pancreatic cancer were studied most frequently. The majority of trial interventions were pharmacological (52%) or nutritional (34%) in nature. The most frequently reported endpoints were assessments of body weight (68 trials, n = 11 561) followed by bioimpedance analysis (BIA)-based estimates (23 trials, n = 3140). Sixteen trials (n = 3052) included dual-energy X-ray absorptiometry (DEXA)-based endpoints, and computed tomography (CT) body composition was included in eight trials (n = 841). Discrepancies were evident when comparing the efficacy of interventions using BIA-based estimates of lean tissue mass against radiological assessment modalities. Body weight, BIA and DEXA-based endpoints have been most frequently used in cancer cachexia trials. Although the optimal endpoints cannot be determined from this review, body weight, alongside measurements from radiological body composition analysis, would seem appropriate. The choice of radiological modality is likely to be dependent on the trial setting, population and intervention in question. CT and magnetic resonance imaging, which have the ability to accurately discriminate tissue types, are likely to be more sensitive and provide greater detail. Endpoints are of particular importance when aligned with the intervention's mechanism of action and/or intended patient benefit.


Subject(s)
Body Composition , Body Weight , Cachexia , Neoplasms , Humans , Cachexia/etiology , Cachexia/therapy , Neoplasms/complications , Clinical Trials as Topic
9.
J Cachexia Sarcopenia Muscle ; 15(3): 853-867, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38783477

ABSTRACT

Regulatory agencies require evidence that endpoints correlate with clinical benefit before they can be used to approve drugs. Biomarkers are often considered surrogate endpoints. In cancer cachexia trials, the measurement of biomarkers features frequently. The aim of this systematic review was to assess the frequency and diversity of biomarker endpoints in cancer cachexia trials. A comprehensive electronic literature search of MEDLINE, Embase and Cochrane (1990-2023) was completed. Eligible trials met the following criteria: adults (≥18 years), prospective design, more than 40 participants, use of a cachexia intervention for more than 14 days and use of a biomarker(s) as an endpoint. Biomarkers were defined as any objective measure that was assayed from a body fluid, including scoring systems based on these assays. Routine haematology and biochemistry to monitor intervention toxicity were not considered. Data extraction was performed using Covidence, and reporting followed PRISMA guidance (PROSPERO: CRD42022276710). A total of 5975 studies were assessed, of which 52 trials (total participants = 6522) included biomarkers as endpoints. Most studies (n = 29, 55.7%) included a variety of cancer types. Pharmacological interventions (n = 27, 51.9%) were most evaluated, followed by nutritional interventions (n = 20, 38.4%). Ninety-nine different biomarkers were used across the trials, and of these, 96 were assayed from blood. Albumin (n = 29, 55.8%) was assessed most often, followed by C-reactive protein (n = 22, 42.3%), interleukin-6 (n = 16, 30.8%) and tumour necrosis factor-α (n = 14, 26.9%), the latter being the only biomarker that was used to guide sample size calculations. Biomarkers were explicitly listed as a primary outcome in six trials. In total, 12 biomarkers (12.1% of 99) were used in six trials or more. Insulin-like growth factor binding protein 3 (IGFBP-3) and insulin-like growth factor 1 (IGF-1) levels both increased significantly in all three trials in which they were both used. This corresponded with a primary outcome, lean body mass, and was related to the pharmacological mechanism. Biomarkers were predominately used as exploratory rather than primary endpoints. The most commonly used biomarker, albumin, was limited by its lack of responsiveness to nutritional intervention. For a biomarker to be responsive to change, it must be related to the mechanism of action of the intervention and/or the underlying cachexia process that is modified by the intervention, as seen with IGFBP-3, IGF-1 and anamorelin. To reach regulatory approval as an endpoint, the relationship between the biomarker and clinical benefit must be clarified.


Subject(s)
Biomarkers , Cachexia , Neoplasms , Cachexia/etiology , Cachexia/diagnosis , Humans , Neoplasms/complications , Clinical Trials as Topic
10.
Br J Surg ; 111(4)2024 Apr 03.
Article in English | MEDLINE | ID: mdl-38593042

ABSTRACT

BACKGROUND: Features of cancer cachexia adversely influence patient outcomes, yet few currently inform clinical decision-making. This study assessed the value of the cachexia index (CXI), a novel prognostic marker, in patients for whom neoadjuvant chemotherapy and surgery for oesophagogastric cancer is planned. METHODS: Consecutive patients newly diagnosed with locally advanced (T3-4 or at least N1) oesophagogastric cancer between 1 January 2010 and 31 December 2015 were identified through the West of Scotland and South-East Scotland Cancer Networks. CXI was calculated as (L3 skeletal muscle index) × (serum albumin)/(neutrophil lymphocyte ratio). Sex-stratified cut-off values were determined based on the area under the curve (AUC), and patients were divided into groups with low or normal CXI. Primary outcomes were disease progression during neoadjuvant chemotherapy and overall survival (at least 5 years of follow-up). RESULTS: Overall, 385 patients (72% men, median age 66 years) were treated with neoadjuvant chemotherapy for oesophageal (274) or gastric (111) cancer across the study interval. Although patients with a low CXI (men: CXI below 52 (AUC 0.707); women: CXI below 41 (AUC 0.759)) were older with more co-morbidity, disease characteristics were comparable to those in patients with a normal CXI. Rates of disease progression during neoadjuvant chemotherapy, leading to inoperability, were higher in patients with a low CXI (28 versus 12%; adjusted OR 3.07, 95% c.i. 1.67 to 5.64; P < 0.001). Low CXI was associated with worsened postoperative mortality (P = 0.019) and decreased overall survival (median 14.9 versus 56.9 months; adjusted HR 1.85, 1.42 to 2.42; P < 0.001). CONCLUSION: CXI is associated with disease progression, worse postoperative mortality, and overall survival, and could improve prognostication and decision-making in patients with locally advanced oesophagogastric cancer.


Subject(s)
Stomach Neoplasms , Male , Humans , Female , Aged , Stomach Neoplasms/complications , Stomach Neoplasms/surgery , Stomach Neoplasms/drug therapy , Cachexia/etiology , Lymphocytes , Disease Progression , Cohort Studies , Prognosis , Retrospective Studies
11.
Cancers (Basel) ; 16(8)2024 Apr 15.
Article in English | MEDLINE | ID: mdl-38672590

ABSTRACT

Non-small cell lung cancer (NSCLC) is a common malignancy and is associated with poor survival outcomes. Biomarkers of systemic inflammation derived from blood tests collected as part of routine clinical care offer prognostic information for patients with NSCLC that may assist clinical decision making. They are an attractive tool, as they are inexpensive, easily measured, and reproducible in a variety of healthcare settings. Despite the wealth of evidence available to support them, these inflammatory biomarkers are not yet routinely used in clinical practice. In this narrative review, the key inflammatory indices reported in the literature and their prognostic significance in NSCLC are described. Key challenges limiting their clinical application are highlighted, including the need to define the optimal biomarker of systemic inflammation, a lack of understanding of the systemic inflammatory landscape of NSCLC as a heterogenous disease, and the lack of clinical relevance in reported outcomes. These challenges may be overcome with standardised recording and reporting of inflammatory biomarkers, clinicopathological factors, and survival outcomes. This will require a collaborative approach, to which this field of research lends itself. This work may be aided by the rise of data-driven research, including the potential to utilise modern electronic patient records and advanced data-analysis techniques.

12.
Eur J Nucl Med Mol Imaging ; 51(8): 2283-2292, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38491215

ABSTRACT

PURPOSE: Functional positron emission tomography (fPET) with [18F]FDG allows quantification of stimulation-induced changes in glucose metabolism independent of neurovascular coupling. However, the gold standard for quantification requires invasive arterial blood sampling, limiting its widespread use. Here, we introduce a novel fPET method without the need for an input function. METHODS: We validated the approach using two datasets (DS). For DS1, 52 volunteers (23.2 ± 3.3 years, 24 females) performed Tetris® during a [18F]FDG fPET scan (bolus + constant infusion). For DS2, 18 participants (24.2 ± 4.3 years, 8 females) performed an eyes-open/finger tapping task (constant infusion). Task-specific changes in metabolism were assessed with the general linear model (GLM) and cerebral metabolic rate of glucose (CMRGlu) was quantified with the Patlak plot as reference. We then estimated simplified outcome parameters, including GLM beta values and percent signal change (%SC), and compared them, region and whole-brain-wise. RESULTS: We observed higher agreement with the reference for DS1 than DS2. Both DS resulted in strong correlations between regional task-specific beta estimates and CMRGlu (r = 0.763…0.912). %SC of beta values exhibited strong agreement with %SC of CMRGlu (r = 0.909…0.999). Average activation maps showed a high spatial similarity between CMRGlu and beta estimates (Dice = 0.870…0.979) as well as %SC (Dice = 0.932…0.997), respectively. CONCLUSION: The non-invasive method reliably estimates task-specific changes in glucose metabolism without blood sampling. This streamlines fPET, albeit with the trade-off of being unable to quantify baseline metabolism. The simplification enhances its applicability in research and clinical settings.


Subject(s)
Brain , Fluorodeoxyglucose F18 , Glucose , Positron-Emission Tomography , Humans , Female , Male , Glucose/metabolism , Brain/diagnostic imaging , Brain/metabolism , Adult , Young Adult
13.
Med Image Anal ; 94: 103120, 2024 May.
Article in English | MEDLINE | ID: mdl-38458095

ABSTRACT

We propose a geometric deep-learning-based framework, TractGeoNet, for performing regression using diffusion magnetic resonance imaging (dMRI) tractography and associated pointwise tissue microstructure measurements. By employing a point cloud representation, TractGeoNet can directly utilize tissue microstructure and positional information from all points within a fiber tract without the need to average or bin data along the streamline as traditionally required by dMRI tractometry methods. To improve regression performance, we propose a novel loss function, the Paired-Siamese Regression loss, which encourages the model to focus on accurately predicting the relative differences between regression label scores rather than just their absolute values. In addition, to gain insight into the brain regions that contribute most strongly to the prediction results, we propose a Critical Region Localization algorithm. This algorithm identifies highly predictive anatomical regions within the white matter fiber tracts for the regression task. We evaluate the effectiveness of the proposed method by predicting individual performance on two neuropsychological assessments of language using a dataset of 20 association white matter fiber tracts from 806 subjects from the Human Connectome Project Young Adult dataset. The results demonstrate superior prediction performance of TractGeoNet compared to several popular regression models that have been applied to predict individual cognitive performance based on neuroimaging features. Of the twenty tracts studied, we find that the left arcuate fasciculus tract is the most highly predictive of the two studied language performance assessments. Within each tract, we localize critical regions whose microstructure and point information are highly and consistently predictive of language performance across different subjects and across multiple independently trained models. These critical regions are widespread and distributed across both hemispheres and all cerebral lobes, including areas of the brain considered important for language function such as superior and anterior temporal regions, pars opercularis, and precentral gyrus. Overall, TractGeoNet demonstrates the potential of geometric deep learning to enhance the study of the brain's white matter fiber tracts and to relate their structure to human traits such as language performance.


Subject(s)
Connectome , Deep Learning , White Matter , Young Adult , Humans , Brain/diagnostic imaging , Brain/pathology , Diffusion Magnetic Resonance Imaging , White Matter/diagnostic imaging , White Matter/pathology , Language , Neural Pathways
14.
J Cachexia Sarcopenia Muscle ; 15(3): 794-815, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38553255

ABSTRACT

The use of patient-reported outcomes (PROMs) of quality of life (QOL) is common in cachexia trials. Patients' self-report on health, functioning, wellbeing, and perceptions of care, represent important measures of efficacy. This review describes the frequency, variety, and reporting of QOL endpoints used in cancer cachexia clinical trials. Electronic literature searches were performed in Medline, Embase, and Cochrane (1990-2023). Seven thousand four hundred thirty-five papers were retained for evaluation. Eligibility criteria included QOL as a study endpoint using validated measures, controlled design, adults (>18 years), ≥40 participants randomized, and intervention exceeding 2 weeks. The Covidence software was used for review procedures and data extractions. Four independent authors screened all records for consensus. Papers were screened by titles and abstracts, prior to full-text reading. PRISMA guidance for systematic reviews was followed. The protocol was prospectively registered via PROSPERO (CRD42022276710). Fifty papers focused on QOL. Twenty-four (48%) were double-blind randomized controlled trials. Sample sizes varied considerably (n = 42 to 469). Thirty-nine trials (78%) included multiple cancer types. Twenty-seven trials (54%) featured multimodal interventions with various drugs and dietary supplements, 11 (22%) used nutritional interventions alone and 12 (24%) used a single pharmacological intervention only. The median duration of the interventions was 12 weeks (4-96). The most frequent QOL measure was the EORTC QLQ-C30 (60%), followed by different FACIT questionnaires (34%). QOL was a primary, secondary, or exploratory endpoint in 15, 31 and 4 trials respectively, being the single primary in six. Statistically significant results on one or more QOL items favouring the intervention group were found in 18 trials. Eleven of these used a complete multidimensional measure. Adjustments for multiple testing when using multicomponent QOL measures were not reported. Nine trials (18%) defined a statistically or clinically significant difference for QOL, five with QOL as a primary outcome, and four with QOL as a secondary outcome. Correlation statistics with other study outcomes were rarely performed. PROMs including QOL are important endpoints in cachexia trials. We recommend using well-validated QOL measures, including cachexia-specific items such as weight history, appetite loss, and nutritional intake. Appropriate statistical methods with definitions of clinical significance, adjustment for multiple testing and few co-primary endpoints are encouraged, as is an understanding of how interventions may relate to changes in QOL endpoints. A strategic and scientific-based approach to PROM research in cachexia trials is warranted, to improve the research base in this field and avoid the use of QOL as supplementary measures.


Subject(s)
Cachexia , Neoplasms , Quality of Life , Humans , Cachexia/etiology , Cachexia/therapy , Neoplasms/complications , Neoplasms/psychology , Clinical Trials as Topic , Patient Reported Outcome Measures
15.
J Cachexia Sarcopenia Muscle ; 15(2): 513-535, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38343065

ABSTRACT

There is no consensus on the optimal endpoint(s) in cancer cachexia trials. Endpoint variation is an obstacle when comparing interventions and their clinical value. The aim of this systematic review was to summarize and evaluate endpoints used to assess appetite and dietary intake in cancer cachexia clinical trials. A search for studies published from 1 January 1990 until 2 June 2021 was conducted using MEDLINE, Embase and Cochrane Central Register of Controlled Trials. Eligible studies examined cancer cachexia treatment versus a comparator in adults with assessments of appetite and/or dietary intake as study endpoints, a sample size ≥40 and an intervention lasting ≥14 days. Reporting was in line with PRISMA guidance, and a protocol was published in PROSPERO (2022 CRD42022276710). This review is part of a series of systematic reviews examining cachexia endpoints. Of the 5975 articles identified, 116 were eligible for the wider review series and 80 specifically examined endpoints of appetite (65 studies) and/or dietary intake (21 studies). Six trials assessed both appetite and dietary intake. Appetite was the primary outcome in 15 trials and dietary intake in 7 trials. Median sample size was 101 patients (range 40-628). Forty-nine studies included multiple primary tumour sites, while 31 studies involved single primary tumour sites (15 gastrointestinal, 7 lung, 7 head and neck and 2 female reproductive organs). The most frequently reported appetite endpoints were visual analogue scale (VAS) and numerical rating scale (NRS) (40%). The appetite item from the European Organisation for Research and Treatment of Cancer Quality of Life Questionnaire (EORTC QLQ) C30/C15 PAL (38%) and the appetite question from North Central Cancer Treatment Group anorexia questionnaire (17%) were also frequently applied. Of the studies that assessed dietary intake, 13 (62%) used food records (prospective registrations) and 10 (48%) used retrospective methods (24-h recall or dietary history). For VAS/NRS, a mean change of 1.3 corresponded to Hedge's g of 0.5 and can be considered a moderate change. For food records, a mean change of 231 kcal/day or 11 g of protein/day corresponded to a moderate change. Choice of endpoint in cachexia trials will depend on factors pertinent to the trial to be conducted. Nevertheless, from trials assessed and available literature, NRS or EORTC QLQ C30/C15 PAL seems suitable for appetite assessments. Appetite and dietary intake endpoints are rarely used as primary outcomes in cancer cachexia. Dietary intake assessments were used mainly to monitor compliance and are not validated in cachexia populations. Given the importance to cachexia studies, dietary intake endpoints must be validated before they are used as endpoints in clinical trials.


Subject(s)
Appetite , Neoplasms , Humans , Cachexia/therapy , Cachexia/drug therapy , Eating , Neoplasms/complications , Prospective Studies , Quality of Life , Retrospective Studies , Clinical Trials as Topic
16.
Genet Med ; 26(3): 101053, 2024 03.
Article in English | MEDLINE | ID: mdl-38131307

ABSTRACT

PURPOSE: Niemann-Pick disease type C (NPC) is a rare lysosomal storage disease characterized by progressive neurodegeneration and neuropsychiatric symptoms. This study investigated pathophysiological mechanisms underlying motor deficits, particularly speech production, and cognitive impairment. METHODS: We prospectively phenotyped 8 adults with NPC and age-sex-matched healthy controls using a comprehensive assessment battery, encompassing clinical presentation, plasma biomarkers, hand-motor skills, speech production, cognitive tasks, and (micro-)structural and functional central nervous system properties through magnetic resonance imaging. RESULTS: Patients with NPC demonstrated deficits in fine-motor skills, speech production timing and coordination, and cognitive performance. Magnetic resonance imaging revealed reduced cortical thickness and volume in cerebellar subdivisions (lobule VI and crus I), cortical (frontal, temporal, and cingulate gyri) and subcortical (thalamus and basal ganglia) regions, and increased choroid plexus volumes in NPC. White matter fractional anisotropy was reduced in specific pathways (intracerebellar input and Purkinje tracts), whereas diffusion tensor imaging graph theory analysis identified altered structural connectivity. Patients with NPC exhibited altered activity in sensorimotor and cognitive processing hubs during resting-state and speech production. Canonical component analysis highlighted the role of cerebellar-cerebral circuitry in NPC and its integration with behavioral performance and disease severity. CONCLUSION: This deep phenotyping approach offers a comprehensive systems neuroscience understanding of NPC motor and cognitive impairments, identifying potential central nervous system biomarkers.


Subject(s)
Diffusion Tensor Imaging , Niemann-Pick Disease, Type C , Adult , Humans , Niemann-Pick Disease, Type C/genetics , Niemann-Pick Disease, Type C/pathology , Magnetic Resonance Imaging/methods , Cerebellum/diagnostic imaging , Biomarkers
17.
FASEB J ; 37(12): e23272, 2023 12.
Article in English | MEDLINE | ID: mdl-37997495

ABSTRACT

Parkinson's disease (PD) is a progressive, neurodegenerative disorder with an increasing incidence, unknown etiology, and is currently incurable. Advances in understanding the pathological mechanisms at a molecular level have been slow, with little attention focused on the early prodromal phase of the disease. Consequently, the development of early-acting disease-modifying therapies has been hindered. The olfactory bulb (OB), the brain region responsible for initial processing of olfactory information, is particularly affected early in PD at both functional and molecular levels but there is little information on how the cells in this region are affected by disease. Organotypic and primary OB cultures were developed and characterized. These platforms were then used to assess the effects of 3,4-dihydroxyphenylacetylaldehyde (DOPAL), a metabolite of dopamine present in increased levels in post-mortem PD tissue and which is thought to contribute to PD pathogenesis. Our findings showed that DOPAL exposure can recapitulate many aspects of PD pathology. Oxidative stress, depolarization of mitochondrial membranes, and neurodegeneration were all induced by DOPAL addition, as were measured transcriptomic changes consistent with those reported in PD clinical studies. These olfactory models of prodromal disease lend credence to the catecholaldehyde hypothesis of PD and provide insight into the mechanisms by which the OB may be involved in disease progression.


Subject(s)
Parkinson Disease , Humans , Parkinson Disease/metabolism , Olfactory Bulb/metabolism , Microphysiological Systems , Brain/metabolism , Dopamine/metabolism
18.
J Cardiovasc Dev Dis ; 10(10)2023 Oct 11.
Article in English | MEDLINE | ID: mdl-37887870

ABSTRACT

Cardiac catheter ablation (CCA) is a common method used to correct cardiac arrhythmia. Pulsed Field Ablation (PFA) is a recently-adapted CCA technology whose ablation is dependent on electrode and waveform parameters (factors). In this work, the use of the Design of Experiments (DoE) methodology is investigated for the design and optimization of a PFA device. The effects of the four factors (input voltage, electrode spacing, electrode width, and on-time) and their interactions are analyzed. An empirical model is formed to predict and optimize the ablation size responses. Based on the ranges tested, the significant factors were the input voltage, the electrode spacing, and the on time, which is in line with the literature. Two-factor interactions were found to be significant and need to be considered in the model. The resulting empirical model was found to predict ablation sizes with less than 2.1% error in the measured area and was used for optimization. The findings and the strong predictive model developed highlight that the DoE approach can be used to help determine PFA device design, to optimize for certain ablation zone sizes, and to help inform device design to tackle specific cardiac arrhythmias.

19.
BJS Open ; 7(5)2023 09 05.
Article in English | MEDLINE | ID: mdl-37875126

ABSTRACT

BACKGROUND: Groin hernias commonly present acutely in high-risk populations and can be challenging to manage. This retrospective, observational study aimed to report on patient demographics and outcomes, following acute admissions with a groin hernia, in relation to contemporary investigative and management practices. METHODS: Adult (≥18 years old) patients who presented acutely with a groin hernia to nine National Health Service trusts in the north of England between 2002 and 2016 were included. Data were collected regarding patient demographics, radiological investigations, and operative intervention. The primary outcome of interest was 30-day inpatient mortality rate. RESULTS: Overall, 6165 patients with acute groin hernia were included (4698 inguinal and 1467 femoral hernias). There was a male preponderance (72.5 per cent) with median age of 73 years (interquartile range (i.q.r.) 58-82). The burden of patient co-morbidity increased over the study period (P < 0.001). Operative repair was performed in 2258 (55.1 per cent) of patients with an inguinal and 1321 (90.1 per cent) of patients with a femoral hernia. Bowel resection was more commonly required for femoral hernias (14.7 per cent) than inguinal hernias (3.5 per cent, P < 0.001) and in obstructed (14.6 versus 0.2 per cent, P < 0.001) or strangulated (58.4 versus 4.5 per cent, P < 0.001) hernias. The 30-day mortality rate was 3.1 per cent for the overall cohort and 3.9 per cent for those who underwent surgery. Bowel resection was associated with increased duration of hospital stay (P < 0.001) and 30-day inpatient mortality rate (P < 0.001). Following adjustment for confounding variables, advanced age, co-morbidity, obstruction, and strangulation were all associated with an increased 30-day mortality rate (all P < 0.001). CONCLUSION: Emergency hernia repair has high mortality rates. Advanced age and co-morbidity increase both duration of hospital stay and 30-day mortality rate.


Subject(s)
Hernia, Femoral , Hernia, Inguinal , Aged , Humans , Male , Demography , Groin , Hernia, Femoral/epidemiology , Hernia, Femoral/surgery , Hernia, Inguinal/diagnosis , Hernia, Inguinal/epidemiology , Hernia, Inguinal/surgery , Retrospective Studies , State Medicine , Female , Middle Aged , Aged, 80 and over
SELECTION OF CITATIONS
SEARCH DETAIL