Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 251
Filter
1.
Epilepsia ; 2024 Sep 10.
Article in English | MEDLINE | ID: mdl-39254637

ABSTRACT

OBJECTIVE: Defined as prospective single-patient crossover studies with repeated paired cycles of active and control intervention, N-of-1 trials have gained attention as an option to obtain high-quality evidence of efficacy, particularly for patients with rare epilepsies in whom conduction of well-powered randomized controlled trials can be challenging. The objective of this systematic review is to provide an appraisal of the literature on N-of-1 trials in individuals with epilepsy. METHODS: We searched PubMed and Embase on January 12, 2024, for studies meeting the following criteria: prospectively planned, within-patient, multiple-crossover design in individuals with epilepsy and outcomes related to comorbidities. Information on design, outcome measurements, intervention, and analyses was retrieved. Risk of bias assessment was performed using the Risk of Bias in N-of-1 Trials (RoBiNT) scale. We highlighted methodological aspects of the N-of-1 trials identified and discuss future recommendations. RESULTS: Five studies met our inclusion criteria. An additional multiple-crossover trial that evaluated treatment effects exclusively at group level was also included because of its relevance to N-of-1 study methodology. The studies enrolled individuals with focal seizures, absences or cognitive impairement and electrographic discharges. Treatments included established or investigational antiseizure medications, off-label medications, neurostimulation or lifestyle intervention. Three of the five N-of-1 trials reported on individual cases. The studies' strengths were the use of individualized treatment dosages and symptom-specific patient-reported outcomes. Limitations were related to minimal reporting of baseline characteristics and seizure burden. SIGNIFICANCE: The trials identified by our search exemplify how the N-of-1 design can be applied to assess interventions in individuals with epilepsy-related disorders. Future N-of-1 trials of antiseizure interventions should take into account baseline seizure frequency, should apply statistical models suited to capture seizure frequency changes reliably and make predefined interim assessments. Non-seizure outcome measures evaluable over short periods should be considered. Tailored N-of-1 methodology could pave the way to evidence-based, treatment selection for patients with rare epilepsies.

3.
J Neurol ; 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38954033

ABSTRACT

BACKGROUND: Clinical trials have shown that cenobamate (CNB) is an efficacious and safe anti-seizure medication (ASM) for drug-resistant focal epilepsy. Here, we analyzed one of the largest real-world cohorts, covering the entire spectrum of epilepsy syndromes, the efficacy and safety of CNB, and resulting changes in concomitant ASMs. METHODS: We conducted a retrospective observational study investigating CNB usage in two German tertiary referral centers between October 2020 and June 2023 with follow-up data up to 27 months of treatment. Our primary outcome was treatment response. Secondary outcomes comprised drug response after 12 and 18 months, seizure freedom rates, CNB dosage and retention, adverse drug reactions (ADRs), and changes in concomitant ASMs. RESULTS: 116 patients received CNB for at least two weeks. At 6 months, 98 patients were eligible for evaluation. Thereof 50% (49/98) were responders with no relevant change at 12 and 18 months. Seizure freedom was achieved in 18.4% (18/98) at 6 months, 16.7% (11/66), and 3.0% (1/33) at 12 and 18 months. The number of previous ASMs did not affect the seizure response rate. Overall, CNB was well-tolerated, however, in 7.7% (9/116), ADRs led to treatment discontinuation. The most frequent changes of concomitant ASMs included the discontinuation or reduction of sodium channel inhibitors, clobazam reduction, and perampanel discontinuation, while brivaracetam doses were usually left unchanged. CONCLUSIONS: CNB proved to be a highly effective and generally well-tolerated ASM in patients with severe drug-resistant epilepsy, comprising a broad array of epilepsy syndromes beyond focal epilepsy.

4.
Am J Hum Genet ; 111(6): 1184-1205, 2024 06 06.
Article in English | MEDLINE | ID: mdl-38744284

ABSTRACT

Anoctamins are a family of Ca2+-activated proteins that may act as ion channels and/or phospholipid scramblases with limited understanding of function and disease association. Here, we identified five de novo and two inherited missense variants in ANO4 (alias TMEM16D) as a cause of fever-sensitive developmental and epileptic or epileptic encephalopathy (DEE/EE) and generalized epilepsy with febrile seizures plus (GEFS+) or temporal lobe epilepsy. In silico modeling of the ANO4 structure predicted that all identified variants lead to destabilization of the ANO4 structure. Four variants are localized close to the Ca2+ binding sites of ANO4, suggesting impaired protein function. Variant mapping to the protein topology suggests a preliminary genotype-phenotype correlation. Moreover, the observation of a heterozygous ANO4 deletion in a healthy individual suggests a dysfunctional protein as disease mechanism rather than haploinsufficiency. To test this hypothesis, we examined mutant ANO4 functional properties in a heterologous expression system by patch-clamp recordings, immunocytochemistry, and surface expression of annexin A5 as a measure of phosphatidylserine scramblase activity. All ANO4 variants showed severe loss of ion channel function and DEE/EE associated variants presented mild loss of surface expression due to impaired plasma membrane trafficking. Increased levels of Ca2+-independent annexin A5 at the cell surface suggested an increased apoptosis rate in DEE-mutant expressing cells, but no changes in Ca2+-dependent scramblase activity were observed. Co-transfection with ANO4 wild-type suggested a dominant-negative effect. In summary, we expand the genetic base for both encephalopathic sporadic and inherited fever-sensitive epilepsies and link germline variants in ANO4 to a hereditary disease.


Subject(s)
Anoctamins , Mutation, Missense , Humans , Anoctamins/genetics , Anoctamins/metabolism , Mutation, Missense/genetics , Male , Female , Epilepsy/genetics , Child , Phospholipid Transfer Proteins/genetics , Phospholipid Transfer Proteins/metabolism , Genetic Association Studies , Pedigree , Calcium/metabolism , Genes, Dominant , Child, Preschool , HEK293 Cells , Adolescent
5.
Neuropharmacology ; 250: 109892, 2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38428481

ABSTRACT

KCNQ5 encodes the voltage-gated potassium channel KV7.5, a member of the KV7 channel family, which conducts the M-current. This current is a potent regulator of neuronal excitability by regulating membrane potential in the subthreshold range of action potentials and mediating the medium and slow afterhyperpolarization. Recently, we have identified five loss-of-function variants in KCNQ5 in patients with genetic generalized epilepsy. Using the most severe dominant-negative variant (R359C), we set out to investigate pharmacological therapeutic intervention by KV7 channel openers on channel function and neuronal firing. Retigabine and gabapentin increased R359C-derived M-current amplitudes in HEK cells expressing homomeric or heteromeric mutant KV7.5 channels. Retigabine was most effective in restoring K+ currents. Ten µM retigabine was sufficient to reach the level of WT currents without retigabine, whereas 100 µM of gabapentin showed less than half of this effect and application of 50 µM ZnCl2 only significantly increased M-current amplitude in heteromeric channels. Overexpression of KV7.5-WT potently inhibited neuronal firing by increasing the M-current, whereas R359C overexpression had the opposite effect and additionally decreased the medium afterhyperpolarization current. Both aforementioned drugs and Zn2+ reversed the effect of R359C expression by reducing firing to nearly normal levels at high current injections. Our study shows that a dominant-negative variant with a complete loss-of-function in KV7.5 leads to largely increased neuronal firing which may explain a neuronal hyperexcitability in patients. KV7 channel openers, such as retigabine or gabapentin, could be treatment options for patients currently displaying pharmacoresistant epilepsy and carrying loss-of-function variants in KCNQ5.


Subject(s)
Epilepsy , KCNQ2 Potassium Channel , Phenylenediamines , Humans , Gabapentin/pharmacology , KCNQ2 Potassium Channel/genetics , KCNQ2 Potassium Channel/metabolism , Epilepsy/drug therapy , Epilepsy/genetics , Carbamates/pharmacology , Carbamates/therapeutic use
6.
Biochim Biophys Acta Mol Basis Dis ; 1870(5): 167127, 2024 06.
Article in English | MEDLINE | ID: mdl-38519006

ABSTRACT

Mutations in the SCN8A gene, encoding the voltage-gated sodium channel NaV1.6, are associated with a range of neurodevelopmental syndromes. The p.(Gly1625Arg) (G1625R) mutation was identified in a patient diagnosed with developmental epileptic encephalopathy (DEE). While most of the characterized DEE-associated SCN8A mutations were shown to cause a gain-of-channel function, we show that the G1625R variant, positioned within the S4 segment of domain IV, results in complex effects. Voltage-clamp analyses of NaV1.6G1625R demonstrated a mixture of gain- and loss-of-function properties, including reduced current amplitudes, increased time constant of fast voltage-dependent inactivation, a depolarizing shift in the voltage dependence of activation and inactivation, and increased channel availability with high-frequency repeated depolarization. Current-clamp analyses in transfected cultured neurons revealed that these biophysical properties caused a marked reduction in the number of action potentials when firing was driven by the transfected mutant NaV1.6. Accordingly, computational modeling of mature cortical neurons demonstrated a mild decrease in neuronal firing when mimicking the patients' heterozygous SCN8A expression. Structural modeling of NaV1.6G1625R suggested the formation of a cation-π interaction between R1625 and F1588 within domain IV. Double-mutant cycle analysis revealed that this interaction affects the voltage dependence of inactivation in NaV1.6G1625R. Together, our studies demonstrate that the G1625R variant leads to a complex combination of gain and loss of function biophysical changes that result in an overall mild reduction in neuronal firing, related to the perturbed interaction network within the voltage sensor domain, necessitating personalized multi-tiered analysis for SCN8A mutations for optimal treatment selection.


Subject(s)
Action Potentials , Developmental Disabilities , Epilepsy , NAV1.6 Voltage-Gated Sodium Channel , Neurons , NAV1.6 Voltage-Gated Sodium Channel/genetics , NAV1.6 Voltage-Gated Sodium Channel/metabolism , Humans , Neurons/metabolism , Neurons/pathology , Epilepsy/genetics , Epilepsy/pathology , Epilepsy/metabolism , Developmental Disabilities/genetics , Developmental Disabilities/pathology , Animals , Male , Female , HEK293 Cells , Mutation
7.
Eur J Hum Genet ; 2024 Feb 05.
Article in English | MEDLINE | ID: mdl-38316952

ABSTRACT

Heterozygous PRRT2 variants are frequently implicated in Self-limited Infantile Epilepsy, whereas homozygous variants are so far linked to severe presentations including developmental and epileptic encephalopathy, movement disorders, and intellectual disability. In a study aiming to explore the genetics of epilepsy in the Sudanese population, we investigated several families including a consanguineous family with three siblings diagnosed with self-limited infantile epilepsy. We evaluated both dominant and recessive inheritance using whole exome sequencing and genomic arrays. We identified a pathogenic homozygous splice-site variant in the first intron of PRRT2 [NC_000016.10(NM_145239.3):c.-65-1G > A] that segregated with the phenotype in this family. This work taps into the genetics of epilepsy in an underrepresented African population and suggests that the phenotypes of homozygous PRRT2 variants may include milder epilepsy presentations without movement disorders.

8.
J Neurol Sci ; 457: 122893, 2024 Feb 15.
Article in English | MEDLINE | ID: mdl-38278097

ABSTRACT

Nodding Syndrome is a poorly understood epilepsy disorder in sub-Saharan Africa. The cause(s) of the disease, risk factors and long-term outcomes are unknown or controversial. The objectives of this study were to describe the long-term clinical course and treatment outcomes of individuals suffering from Nodding Syndrome. In addition, we aimed to provide a comprehensive characterization of the epileptological and social features of patients with Nodding Syndrome. From 11/2014 to 4/2015, we conducted a hospital-based, cross-sectional and observational study in Mahenge, Tanzania. Seventy-eight individuals (female:male ratio: 40:38, age at examination: 21.1 ± 6.39 (SD) years) have been enrolled, of whom 38 (49%) had also been examined in 2005 and in 2009. The 10-year clinical course analysis of this revisited subgroup revealed a calculated case fatality of 0.8-2.3%. Progressive physical or cognitive deterioration has not been observed in any of the 78 individuals and more than half of the people studied (38/69; 55%) managed to live and work independently. 14/78 individuals (18%) were seizure-free, (no head nodding, no other seizure types), 13 of whom were taking antiseizure medication. Phenytoin was more effective against head nodding seizures (14/19 (74%)) than monotherapy with other available antiseizure medication (phenobarbitone 12/25 (48%) and carbamazepine 7/22 (32%), p = 0.02, chi-square test). Our ten-year clinical outcome data show that Nodding Syndrome is not a fatal disease, however, the response to treatment is worse than in epilepsy patients in general. Phenytoin may be more effective than carbamazepine and phenobarbitone, but further studies are needed to confirm this observation.


Subject(s)
Epilepsy , Nodding Syndrome , Humans , Male , Female , Anticonvulsants/therapeutic use , Phenytoin/therapeutic use , Nodding Syndrome/drug therapy , Nodding Syndrome/epidemiology , Cross-Sectional Studies , Epilepsy/drug therapy , Phenobarbital/therapeutic use , Carbamazepine/adverse effects , Treatment Outcome , Benzodiazepines/therapeutic use , Disease Progression
9.
Front Neurosci ; 17: 1156362, 2023.
Article in English | MEDLINE | ID: mdl-37790589

ABSTRACT

Background: The anti-seizure medication vigabatrin (VGB) is effective for controlling seizures, especially infantile spasms. However, use is limited by VGB-associated visual field loss (VAVFL). The mechanisms by which VGB causes VAVFL remains unknown. Average peripapillary retinal nerve fibre layer (ppRNFL) thickness correlates with the degree of visual field loss (measured by mean radial degrees). Duration of VGB exposure, maximum daily VGB dose, and male sex are associated with ppRNFL thinning. Here we test the hypothesis that common genetic variation is a predictor of ppRNFL thinning in VGB exposed individuals. Identifying pharmacogenomic predictors of ppRNFL thinning in VGB exposed individuals could potentially enable safe prescribing of VGB and broader use of a highly effective drug. Methods: Optical coherence topography (OCT) and GWAS data were processed from VGB-exposed individuals (n = 71) recruited through the EpiPGX Consortium. We conducted quantitative GWAS analyses for the following OCT measurements: (1) average ppRNFL, (2) inferior quadrant, (3) nasal quadrant, (4) superior quadrant, (5) temporal quadrant, (6) inferior nasal sector, (7) nasal inferior sector, (8) superior nasal sector, and (9) nasal superior sector. Using the summary statistics from the GWAS analyses we conducted gene-based testing using VEGAS2. We conducted nine different PRS analyses using the OCT measurements. To determine if VGB-exposed individuals were predisposed to having a thinner RNFL, we calculated their polygenic burden for retinal thickness. PRS alleles for retinal thickness were calculated using published summary statistics from a large-scale GWAS of inner retinal morphology using the OCT images of UK Biobank participants. Results: The GWAS analyses did not identify a significant association after correction for multiple testing. Similarly, the gene-based and PRS analyses did not reveal a significant association that survived multiple testing. Conclusion: We set out to identify common genetic predictors for VGB induced ppRNFL thinning. Results suggest that large-effect common genetic predictors are unlikely to exist for ppRNFL thinning (as a marker of VAVFL). Sample size was a limitation of this study. However, further recruitment is a challenge as VGB is rarely used today because of this adverse reaction. Rare variants may be predictors of this adverse drug reaction and were not studied here.

10.
J Neurochem ; 2023 Oct 11.
Article in English | MEDLINE | ID: mdl-37822150

ABSTRACT

Voltage-gated calcium channels (VGCC) are abundant in the central nervous system and serve a broad spectrum of functions, either directly in cellular excitability or indirectly to regulate Ca2+ homeostasis. Ca2+ ions act as one of the main connections in excitation-transcription coupling, muscle contraction and excitation-exocytosis coupling, including synaptic transmission. In recent years, many genes encoding VGCCs main α or additional auxiliary subunits have been associated with epilepsy. This review sums up the current state of knowledge on disease mechanisms and provides guidance on disease-specific therapies where applicable.

12.
Neuroimage Clin ; 39: 103474, 2023.
Article in English | MEDLINE | ID: mdl-37441820

ABSTRACT

BACKGROUND AND OBJECTIVES: Genetic generalized epilepsy (GGE) is the most common form of generalized epilepsy. Although individual patients with GGE typically present without structural alterations, group differences have been demonstrated in GGE and some GGE subtypes like juvenile myoclonic epilepsy (GGE-JME). Previous studies usually involved only small cohorts from single centers and therefore could not assess imaging markers of multiple GGE subtypes. METHODS: We performed a diffusion MRI mega-analysis in 192 participants consisting of 126 controls and 66 patients with GGE from four different cohorts and two different epilepsy centers. We applied whole-brain multi-site harmonization and analyzed fractional anisotropy (FA), as well as mean, radial and axial diffusivity (MD/RD/AD) to assess differences between controls, patients with GGE and the common GGE subtypes, i.e. GGE with generalized tonic-clonic seizures only (GGE-GTCS), GGE-JME and absence epilepsy (GGE-AE). We also analyzed relationships with patients' response to anti-seizure-medication (ASM). RESULTS: Relative to controls, we identified decreased anisotropy and increased RD in patients with GGE. We found no significant effects of disease duration, age of onset or seizure frequency on diffusion metrics. Patients with JME had increased MD and RD when compared to controls, while patients with GGE-GTCS showed decreased MD/AD when compared to controls. Compared to patients with GGE-AE, patients with GGE-GTCS had lower AD/MD. Compared to patients with GGE-GTCS, patients with GGE-JME had higher MD/RD and AD. Moreover, we found lower FA in patients with refractory when compared to patients with non-refractory GGE in the right cortico-spinal tract, but no significant differences in patients with active versus controlled epilepsy. DISCUSSION: We provide evidence that clinically defined GGE as a whole and GGE-subtypes harbor marked microstructural differences detectable with diffusion MRI. Moreover, we found an association between microstructural changes and treatment resistance. Our findings have important implications for future full-resolution multi-site studies when assessing GGE, its subtypes and ASM refractoriness.


Subject(s)
Epilepsy, Absence , Epilepsy, Generalized , Myoclonic Epilepsy, Juvenile , Humans , Epilepsy, Generalized/diagnostic imaging , Epilepsy, Generalized/genetics , Brain/diagnostic imaging , Diffusion Magnetic Resonance Imaging
13.
J Cell Sci ; 136(12)2023 06 15.
Article in English | MEDLINE | ID: mdl-37288813

ABSTRACT

The axon initial segment (AIS) is a highly specialized neuronal compartment that regulates the generation of action potentials and maintenance of neuronal polarity. Live imaging of the AIS is challenging due to the limited number of suitable labeling methods. To overcome this limitation, we established a novel approach for live labeling of the AIS using unnatural amino acids (UAAs) and click chemistry. The small size of UAAs and the possibility of introducing them virtually anywhere into target proteins make this method particularly suitable for labeling of complex and spatially restricted proteins. Using this approach, we labeled two large AIS components, the 186 kDa isoform of neurofascin (NF186; encoded by Nfasc) and the 260 kDa voltage-gated Na+ channel (NaV1.6, encoded by Scn8a) in primary neurons and performed conventional and super-resolution microscopy. We also studied the localization of epilepsy-causing NaV1.6 variants with a loss-of-function effect. Finally, to improve the efficiency of UAA incorporation, we developed adeno-associated viral (AAV) vectors for click labeling in neurons, an achievement that could be transferred to more complex systems such as organotypic slice cultures, organoids, and animal models.


Subject(s)
Axon Initial Segment , Click Chemistry , Animals , Action Potentials/physiology , Amino Acids/metabolism , Axon Initial Segment/metabolism , Neurons , Mice , Rats
14.
Brain ; 146(10): 4144-4157, 2023 10 03.
Article in English | MEDLINE | ID: mdl-37165652

ABSTRACT

Ataxia due to an autosomal dominant intronic GAA repeat expansion in FGF14 [GAA-FGF14 ataxia, spinocerebellar ataxia 27B (SCA27B)] has recently been identified as one of the most common genetic late-onset ataxias. We here aimed to characterize its phenotypic profile, natural history progression, and 4-aminopyridine (4-AP) treatment response. We conducted a multi-modal cohort study of 50 GAA-FGF14 patients, comprising in-depth phenotyping, cross-sectional and longitudinal progression data (up to 7 years), MRI findings, serum neurofilament light (sNfL) levels, neuropathology, and 4-AP treatment response data, including a series of n-of-1 treatment studies. GAA-FGF14 ataxia consistently presented as late-onset [60.0 years (53.5-68.5), median (interquartile range)] pancerebellar syndrome, partly combined with afferent sensory deficits (55%) and dysautonomia (28%). Dysautonomia increased with duration while cognitive impairment remained infrequent, even in advanced stages. Cross-sectional and longitudinal assessments consistently indicated mild progression of ataxia [0.29 Scale for the Assessment and Rating of Ataxia (SARA) points/year], not exceeding a moderate disease severity even in advanced stages (maximum SARA score: 18 points). Functional impairment increased relatively slowly (unilateral mobility aids after 8 years in 50% of patients). Corresponding to slow progression and low extra-cerebellar involvement, sNfL was not increased relative to controls. Concurrent second diseases (including progressive supranuclear palsy neuropathology) represented major individual aggravators of disease severity, constituting important caveats for planning future GAA-FGF14 trials. A treatment response to 4-AP with relevance for everyday living was reported by 86% of treated patients. A series of three prospective n-of-1 treatment experiences with on/off design showed marked reduction in daily symptomatic time and symptom severity on 4-AP. Our study characterizes the phenotypic profile, natural history progression, and 4-AP treatment response of GAA-FGF14 ataxia. It paves the way towards large-scale natural history studies and 4-AP treatment trials in this newly discovered, possibly most frequent, and treatable late-onset ataxia.


Subject(s)
Cerebellar Ataxia , Spinocerebellar Ataxias , Humans , Cerebellar Ataxia/genetics , Cohort Studies , Cross-Sectional Studies , Disease Progression , Prospective Studies
15.
Clin Neurophysiol Pract ; 8: 58-64, 2023.
Article in English | MEDLINE | ID: mdl-37033684

ABSTRACT

Objective: Emergency diagnostics, such as acquisition of an electroencephalogram (EEG), are of great diagnostic importance, but there is often a lack of experienced personnel. Wet active electrode sponge-based electroencephalogram (sp-EEG) systems can be applied rapidly and by inexperienced personnel. This makes them an attractive alternative to routine EEG (r-EEG) systems in these settings. Here, we examined the feasibility and signal quality of sp-EEG compared to r-EEG. Methods: In this case-control, single-blind, non-randomized study, EEG recordings using a sp- and a r-EEG system were performed in 18 individuals with a variety of epileptiform discharges and 11 healthy control subjects. The time was stopped until all electrodes in both systems displayed adequate skin-electrode impedances. The resulting 58 EEGs were visually inspected by 7 experienced, blinded neurologists. Raters were asked to score physiological and pathological graphoelements, and to distinguish between the different systems by visual inspection of the EEGs. Results: Time to signal acquisition for sp-EEG was significantly faster (4.8 min (SD 2.01) vs. r-EEG 13.3 min (SD 2.72), p < 0.001). All physiological and pathological graphoelements of all 58 EEGs could be identified. Raters were unable to distinguish between sp-EEG or r-EEG based on visual inspection of the EEGs alone. Conclusions: Sp-EEG represents a feasible alternative to r-EEG in emergency diagnostics or resource-limited settings. Significance: Given shortage of trained personnel or resources, the easy implementation and comparable quality of a novel sp-EEG system may increase general availability of EEG and thus improve patient care.

16.
PLoS Comput Biol ; 19(3): e1010959, 2023 03.
Article in English | MEDLINE | ID: mdl-36877742

ABSTRACT

Missense variants in genes encoding ion channels are associated with a spectrum of severe diseases. Variant effects on biophysical function correlate with clinical features and can be categorized as gain- or loss-of-function. This information enables a timely diagnosis, facilitates precision therapy, and guides prognosis. Functional characterization presents a bottleneck in translational medicine. Machine learning models may be able to rapidly generate supporting evidence by predicting variant functional effects. Here, we describe a multi-task multi-kernel learning framework capable of harmonizing functional results and structural information with clinical phenotypes. This novel approach extends the human phenotype ontology towards kernel-based supervised machine learning. Our gain- or loss-of-function classifier achieves high performance (mean accuracy 0.853 SD 0.016, mean AU-ROC 0.912 SD 0.025), outperforming both conventional baseline and state-of-the-art methods. Performance is robust across different phenotypic similarity measures and largely insensitive to phenotypic noise or sparsity. Localized multi-kernel learning offered biological insight and interpretability by highlighting channels with implicit genotype-phenotype correlations or latent task similarity for downstream analysis.


Subject(s)
Ion Channels , Machine Learning , Humans , Phenotype , Ion Channels/genetics , Genetic Association Studies , Supervised Machine Learning
17.
Cereb Cortex ; 33(12): 7454-7467, 2023 06 08.
Article in English | MEDLINE | ID: mdl-36977636

ABSTRACT

The Phospholipid Phosphatase Related 4 gene (PLPPR4,  *607813) encodes the Plasticity-Related-Gene-1 (PRG-1) protein. This cerebral synaptic transmembrane-protein modulates cortical excitatory transmission on glutamatergic neurons. In mice, homozygous Prg-1 deficiency causes juvenile epilepsy. Its epileptogenic potential in humans was unknown. Thus, we screened 18 patients with infantile epileptic spasms syndrome (IESS) and 98 patients with benign familial neonatal/infantile seizures (BFNS/BFIS) for the presence of PLPPR4 variants. A girl with IESS had inherited a PLPPR4-mutation (c.896C > G, NM_014839; p.T299S) from her father and an SCN1A-mutation from her mother (c.1622A > G, NM_006920; p.N541S). The PLPPR4-mutation was located in the third extracellular lysophosphatidic acid-interacting domain and in-utero electroporation (IUE) of the Prg-1p.T300S construct into neurons of Prg-1 knockout embryos demonstrated its inability to rescue the electrophysiological knockout phenotype. Electrophysiology on the recombinant SCN1Ap.N541S channel revealed partial loss-of-function. Another PLPPR4 variant (c.1034C > G, NM_014839; p.R345T) that was shown to result in a loss-of-function aggravated a BFNS/BFIS phenotype and also failed to suppress glutamatergic neurotransmission after IUE. The aggravating effect of Plppr4-haploinsufficiency on epileptogenesis was further verified using the kainate-model of epilepsy: double heterozygous Plppr4-/+|Scn1awt|p.R1648H mice exhibited higher seizure susceptibility than either wild-type, Plppr4-/+, or Scn1awt|p.R1648H littermates. Our study shows that a heterozygous PLPPR4 loss-of-function mutation may have a modifying effect on BFNS/BFIS and on SCN1A-related epilepsy in mice and humans.


Subject(s)
Epilepsy , Seizures , Animals , Female , Humans , Mice , Epilepsy/metabolism , Hippocampus/metabolism , Mutation/genetics , NAV1.1 Voltage-Gated Sodium Channel/genetics , Phenotype , Seizures/genetics , Seizures/metabolism
18.
Ann Clin Transl Neurol ; 10(4): 656-663, 2023 04.
Article in English | MEDLINE | ID: mdl-36793218

ABSTRACT

Precision medicine for Mendelian epilepsy is rapidly developing. We describe an early infant with severely pharmacoresistant multifocal epilepsy. Exome sequencing revealed the de novo variant p.(Leu296Phe) in the gene KCNA1, encoding the voltage-gated K+ channel subunit KV 1.1. So far, loss-of-function variants in KCNA1 have been associated with episodic ataxia type 1 or epilepsy. Functional studies of the mutated subunit in oocytes revealed a gain-of-function caused by a hyperpolarizing shift of voltage dependence. Leu296Phe channels are sensitive to block by 4-aminopyridine. Clinical use of 4-aminopyridine was associated with reduced seizure burden, enabled simplification of co-medication and prevented rehospitalization.


Subject(s)
Epilepsy, Generalized , Epilepsy , Humans , 4-Aminopyridine/pharmacology , 4-Aminopyridine/therapeutic use , Gain of Function Mutation , Mutation , Epilepsy/drug therapy , Epilepsy/genetics , Kv1.1 Potassium Channel/genetics
19.
Stem Cell Res ; 67: 103028, 2023 03.
Article in English | MEDLINE | ID: mdl-36652844

ABSTRACT

The STX1B gene encodes the presynaptic protein syntaxin-1B, which plays a major role in regulating fusion of synaptic vesicles. Mutations in STX1B are known to cause epilepsy syndromes, such as genetic epilepsies with febrile seizures plus (GEFS+). Here, we reprogrammed skin fibroblasts from a female patient affected by GEFS+ to human induced pluripotent stem cells (iPSCs). The patient carries an InDel mutation (c.133_134insGGATGTGCATTG; p.Lys45delinsArgMetCysIleGlu and c.135_136AC > GA; p.Leu46Met), located in the regulatory Habc-domain of STX1B. Successful reprogramming of cells was confirmed by a normal karyotype, expression of several pluripotency markers and the potential to differentiate into all three germ layers.


Subject(s)
Epilepsy , Induced Pluripotent Stem Cells , Humans , Female , Induced Pluripotent Stem Cells/metabolism , Mutation , Epilepsy/genetics , INDEL Mutation , Fibroblasts , Cell Differentiation , Syntaxin 1/genetics , Syntaxin 1/metabolism
20.
Epilepsia Open ; 8(2): 360-370, 2023 06.
Article in English | MEDLINE | ID: mdl-36693811

ABSTRACT

OBJECTIVE: Cannabidiol (CBD) is approved for treatment of Dravet syndrome (DS), Lennox-Gastaut syndrome (LGS), and tuberous sclerosis complex (TSC). Several studies suggest antiseizure effects also beyond these three epilepsy syndromes. METHODS: In a retrospective multicenter study, we analyzed the efficacy and tolerability of CBD in patients with epilepsy at 16 epilepsy centers. RESULTS: The study cohort comprised 311 patients with epilepsy with a median age of 11.3 (0-72) years (235 children and adolescents, 76 adults). Therapy with CBD was off-label in 91.3% of cases due to age, epilepsy subtype, lack of adjunct therapy with clobazam, and/or higher dose applied. CBD titration regimens were slower than recommended, with good tolerability of higher doses particularly in children. Of all patients, 36.9% experienced a reduction in seizure frequency of >50%, independent of their epilepsy subtype or clobazam co-medication. The median observation period was 15.8 months. About one third of all patients discontinued therapy within the observation period due to adverse effects or lack of efficacy. Adverse effects were reported frequently (46.9%). SIGNIFICANCE: Our study highlights that CBD has an antiseizure effect comparable to other antiseizure medications with a positive safety profile independent of the epilepsy subtype. Comedication with clobazam was not associated with a better outcome. Higher doses to achieve seizure frequency reduction were safe, particularly in children. These findings call for further trials for an extended approval of CBD for other epilepsy subtypes and for children <2 years of age.


Subject(s)
Cannabidiol , Drug-Related Side Effects and Adverse Reactions , Epilepsy , Child , Adult , Adolescent , Humans , Young Adult , Middle Aged , Aged , Cannabidiol/therapeutic use , Anticonvulsants , Retrospective Studies , Epilepsy/drug therapy , Seizures/drug therapy , Clobazam/therapeutic use , Drug-Related Side Effects and Adverse Reactions/drug therapy
SELECTION OF CITATIONS
SEARCH DETAIL