Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Mol Cell ; 5(3): 569-79, 2000 Mar.
Article in English | MEDLINE | ID: mdl-10882141

ABSTRACT

The degree to which the eudicot-based ABC model of flower organ identity applies to the other major subclass of angrosperms, the monocots, has yet to be fully explored. We cloned silky1 (si1), a male sterile mutant of Zea mays that has homeotic conversions of stamens into carpels and lodicules into palea/lemma-like structures. Our studies indicate that si1 is a monocot B function MADS box gene. Moreover, the si1 zag1 double mutant produces a striking spikelet phenotype where normal glumes enclose reiterated palea/lemma-like organs. These studies indicate that B function gene activity is conserved among monocots as well as eudicots. In addition, they provide compelling developmental evidence for recognizing lodicules as modified petals and, possibly, palea and lemma as modified sepals.


Subject(s)
Genes, Homeobox , Genes, Plant , Magnoliopsida/genetics , Plant Shoots/genetics , Zea mays/genetics , Adaptor Protein Complex alpha Subunits , Adaptor Proteins, Vesicular Transport , Biological Evolution , Cloning, Molecular/methods , DEFICIENS Protein , DNA Transposable Elements , DNA-Binding Proteins/genetics , Homeodomain Proteins/genetics , MADS Domain Proteins , Membrane Proteins/genetics , Models, Biological , Morphogenesis/genetics , Mutation , Plant Proteins/genetics , Plant Shoots/anatomy & histology , Time Factors , Tissue Distribution , Transcription Factors/genetics , Zea mays/anatomy & histology
2.
Plant J ; 8(6): 845-54, 1995 Dec.
Article in English | MEDLINE | ID: mdl-8580958

ABSTRACT

Studies on distantly related dicot plant species have identified homeotic genes that specify floral meristem identity and determine the fate of floral organ primordia. Most of these genes belong to a family characterized by the presence of a structural motif, the MADS-box, which encodes a protein domain with DNA-binding properties. As part of an effort to understand how such genes may have been recruited during the evolution of flowers with different organ types such as those found in maize, two members of this gene family in maize, ZAG1 and ZAG2, have been characterized previously. Here, the isolation and characterization of four new members of this gene family, designated ZAP1, ZAG3, ZAG4 and ZAG5, are described and the genetic map position of these and 28 additional maize MADS-box genes is determined. The first new member of this family appears to be the Zea mays ortholog of the floral homeotic gene APETALA1 (AP1) and has been designated ZAP1. One of these genes, ZAG4, is unusual in that its deduced protein sequence includes the MADS domain but lacks the K-domain characteristically present in this family of genes. In addition, its copy number and expression varies among different inbreds. A large number of maize MADS-box genes map to duplicated regions of the genome, including one pair characterized here, ZAG3 and ZAG5. These data underscore the complexity of this gene family in maize, and provide the basis for further studies into the regulation of floral organ morphogenesis among the grasses.


Subject(s)
DNA-Binding Proteins/genetics , Genes, Homeobox , Genes, Plant , Homeodomain Proteins , MADS Domain Proteins , Multigene Family , Plant Proteins/genetics , Zea mays/genetics , Amino Acid Sequence , Base Sequence , Chromosome Mapping , DNA-Binding Proteins/biosynthesis , Molecular Sequence Data , Plant Proteins/biosynthesis , Polymorphism, Restriction Fragment Length , Sequence Homology, Amino Acid
4.
J Biol Chem ; 267(16): 11085-91, 1992 Jun 05.
Article in English | MEDLINE | ID: mdl-1375935

ABSTRACT

Chitin-binding proteins are present in a wide range of plant species, including both monocots and dicots, even though these plants contain no chitin. To investigate the relationship between in vitro antifungal and insecticidal activities of chitin-binding proteins and their unknown endogenous functions, the stinging nettle lectin (Urtica dioica agglutinin, UDA) cDNA was cloned using a synthetic gene as the probe. The nettle lectin cDNA clone contained an open reading frame encoding 374 amino acids. Analysis of the deduced amino acid sequence revealed a 21-amino acid putative signal sequence and the 86 amino acids encoding the two chitin-binding domains of nettle lectin. These domains were fused to a 19-amino acid "spacer" domain and a 244-amino acid carboxyl extension with partial identity to a chitinase catalytic domain. The authenticity of the cDNA clone was confirmed by deduced amino acid sequence identity with sequence data obtained from tryptic digests, RNA gel blot, and polymerase chain reaction analyses. RNA gel blot analysis also showed the nettle lectin message was present primarily in rhizomes and inflorescence (with immature seeds) but not in leaves or stems. Chitinase enzymatic activity was found when the chitinase-like domain alone or the chitinase-like domain with the chitin-binding domains were expressed in Escherichia coli. This is the first example of a chitin-binding protein with both a duplication of the 43-amino acid chitin-binding domain and a fusion of the chitin-binding domains to a structurally unrelated domain, the chitinase domain.


Subject(s)
Chitinases/genetics , Lectins/genetics , Plants, Toxic/metabolism , Amino Acid Sequence , Base Sequence , Blotting, Northern , Blotting, Southern , Chitinases/metabolism , DNA/genetics , Escherichia coli/genetics , Genes, Synthetic , Molecular Sequence Data , Plant Lectins , Polymerase Chain Reaction , Protein Sorting Signals/genetics , RNA/genetics , Sequence Homology, Nucleic Acid
6.
Plant Physiol ; 91(1): 124-9, 1989 Sep.
Article in English | MEDLINE | ID: mdl-16666982

ABSTRACT

Cereal lectins are a class of biochemically and antigenically related proteins localized in a tissue-specific manner in embryos and adult plants. To study the specificity of lectin expression, a barley (Hordeum vulgare L.) embryo cDNA library was constructed and a clone (BLc3) for barley lectin was isolated. BLc3 is 972 nucleotides long and includes an open reading frame of 212 amino acids. The deduced amino acid sequence contains a putative signal peptide of 26 amino acid residues followed by a 186 amino acid polypeptide. This polypeptide has 95% sequence identity to the antigenically indistinguishable wheat germ agglutinin isolectin-B (WGA-B) suggesting that BLc3 encodes barley lectin. Further evidence that BLc3 encodes barley lectin was obtained by immunoprecipitation of the in vitro translation products of BLc3 RNA transcripts and barley embryo poly(A(+)) RNA. In situ hybridizations with BLc3 showed that barley lectin gene expression is confined to the outermost cell layers of both embryonic and adult root tips. On Northern blots, BLc3 hybridizes to a 1.0 kilobyte mRNA in poly(A(+)) RNA from both embryos and root tips. We suggest, on the basis of immunoblot experiments, that barley lectin is synthesized as a glycosylated precursor and processed by removal of a portion of the carboxyl terminus including the single N-linked glycosylation site.

7.
Planta ; 171(4): 453-65, 1987 Aug.
Article in English | MEDLINE | ID: mdl-24225706

ABSTRACT

Murine monoclonal antibodies to protoplast membrne antigens were generated using mouse myelomas and spleen cells from mice immunized with Nicotiana tabacum L. leaf protoplasts. For selecting antibody-secreting clones, a sensitive and rapid enzyme-linked immunosorbent assay (ELISA) for monoclonal antibody binding to immobilized cellular membrane preparations or immobilized protoplasts was developed. With intact protoplasts as immobilized antigen, the ELISA is selective for antibodies that bind to plasma-membrane epitopes present on the external surface of protoplasts. Using the membrane ELISA, a total of 24 hybridoma lines were identified that secreted antibodies to plant membrane epitopes. The protoplast ELISA and subsequent immunofluorescence studies identified four hybridoma lines as secreting antibodies which bound to the external surface of protoplasts and cells. The corresponding antigens were not species- or tissue-specific, were periodatesensitive, and were located in membranes which equilibrated broadly throughout a linear sucrose gradient. When protein blots of electrophoretically separated membrane proteins were probed with these antibodies, a band of Mr 14 kilodaltons (kDa) and a smear of bands of Mr 45-120 kDa were labeled. An additional set of three antibodies appeared by immunofluorescence to bind to the plasma membrane of broken but not intact protoplasts and labeled membranes equilibrating at a density of approx. 1.12 kg·l(-1) in a linear sucrose density gradient. These classes of monoclonal antibodies enlarge the library of monoclonal antibodies (Norman et al. 1986, Planta 167, 452-459) available for the study of plant plasma-membrane structure and function.

SELECTION OF CITATIONS
SEARCH DETAIL