Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 7 de 7
1.
Epilepsia ; 65(5): 1439-1450, 2024 May.
Article En | MEDLINE | ID: mdl-38491959

OBJECTIVE: YWHAG variant alleles have been associated with a rare disease trait whose clinical synopsis includes an early onset epileptic encephalopathy with predominantly myoclonic seizures, developmental delay/intellectual disability, and facial dysmorphisms. Through description of a large cohort, which doubles the number of reported patients, we further delineate the spectrum of YWHAG-related epilepsy. METHODS: We included in this study 24 patients, 21 new and three previously described, with pathogenic/likely pathogenic variants in YWHAG. We extended the analysis of clinical, electroencephalographic, brain magnetic resonance imaging, and molecular genetic information to 24 previously published patients. RESULTS: The phenotypic spectrum of YWHAG-related disorders ranges from mild developmental delay to developmental and epileptic encephalopathy (DEE). Epilepsy onset is in the first 2 years of life. Seizure freedom can be achieved in half of the patients (13/24, 54%). Intellectual disability (23/24, 96%), behavioral disorders (18/24, 75%), neurological signs (13/24, 54%), and dysmorphisms (6/24, 25%) are common. A genotype-phenotype correlation emerged, as DEE is more represented in patients with missense variants located in the ligand-binding domain than in those with truncating or missense variants in other domains (90% vs. 19%, p < .001). SIGNIFICANCE: This study suggests that pathogenic YWHAG variants cause a wide range of clinical presentations with variable severity, ranging from mild developmental delay to DEE. In this allelic series, a genotype-phenotype correlation begins to emerge, potentially providing prognostic information for clinical management and genetic counseling.


Epilepsy , Humans , Male , Female , Child, Preschool , Child , Adolescent , Epilepsy/genetics , Infant , Electroencephalography , Developmental Disabilities/genetics , Young Adult , Genetic Association Studies , Intellectual Disability/genetics , Cohort Studies , Phenotype , Adult , Magnetic Resonance Imaging
2.
Am J Med Genet A ; : e63531, 2024 Feb 29.
Article En | MEDLINE | ID: mdl-38421086

Duplications of the 3q29 cytoband are rare chromosomal copy number variations (CNVs) (overlapping or recurrent ~1.6 Mb 3q29 duplications). They have been associated with highly variable neurodevelopmental disorders (NDDs) with various associated features or reported as a susceptibility factor to the development of learning disabilities and neuropsychiatric disorders. The smallest region of overlap and the phenotype of 3q29 duplications remain uncertain. We here report a French cohort of 31 families with a 3q29 duplication identified by chromosomal microarray analysis (CMA), including 14 recurrent 1.6 Mb duplications, eight overlapping duplications (>1 Mb), and nine small duplications (<1 Mb). Additional genetic findings that may be involved in the phenotype were identified in 11 patients. Focusing on apparently isolated 3q29 duplications, patients present mainly mild NDD as suggested by a high rate of learning disabilities in contrast to a low proportion of patients with intellectual disabilities. Although some are de novo, most of the 3q29 duplications are inherited from a parent with a similar mild phenotype. Besides, the study of small 3q29 duplications does not provide evidence for any critical region. Our data suggest that the overlapping and recurrent 3q29 duplications seem to lead to mild NDD and that a severe or syndromic clinical presentation should warrant further genetic analyses.

3.
Genet Med ; 26(1): 101007, 2024 Jan.
Article En | MEDLINE | ID: mdl-37860968

PURPOSE: BCL11B-related disorder (BCL11B-RD) arises from rare genetic variants within the BCL11B gene, resulting in a distinctive clinical spectrum encompassing syndromic neurodevelopmental disorder, with or without intellectual disability, associated with facial features and impaired immune function. This study presents an in-depth clinico-biological analysis of 20 newly reported individuals with BCL11B-RD, coupled with a characterization of genome-wide DNA methylation patterns of this genetic condition. METHODS: Through an international collaboration, clinical and molecular data from 20 individuals were systematically gathered, and a comparative analysis was conducted between this series and existing literature. We further scrutinized peripheral blood DNA methylation profile of individuals with BCL11B-RD, contrasting them with healthy controls and other neurodevelopmental disorders marked by established episignature. RESULTS: Our findings unveil rarely documented clinical manifestations, notably including Rubinstein-Taybi-like facial features, craniosynostosis, and autoimmune disorders, all manifesting within the realm of BCL11B-RD. We refine the intricacies of T cell compartment alterations of BCL11B-RD, revealing decreased levels naive CD4+ T cells and recent thymic emigrants while concurrently observing an elevated proportion of effector-memory expressing CD45RA CD8+ T cells (TEMRA). Finally, a distinct DNA methylation episignature exclusive to BCL11B-RD is unveiled. CONCLUSION: This study serves to enrich our comprehension of the clinico-biological landscape of BCL11B-RD, potentially furnishing a more precise framework for diagnosis and follow-up of individuals carrying pathogenic BCL11B variant. Moreover, the identification of a unique DNA methylation episignature offers a valuable diagnosis tool for BCL11B-RD, thereby facilitating routine clinical practice by empowering physicians to reevaluate variants of uncertain significance within the BCL11B gene.


Intellectual Disability , Neurodevelopmental Disorders , Humans , CD8-Positive T-Lymphocytes/metabolism , Transcription Factors/genetics , Neurodevelopmental Disorders/genetics , Intellectual Disability/genetics , DNA Methylation/genetics , Tumor Suppressor Proteins/genetics , Repressor Proteins/genetics , Repressor Proteins/metabolism
4.
Eur J Med Genet ; 66(10): 104848, 2023 Oct.
Article En | MEDLINE | ID: mdl-37739061

The association of both uniparental disomy and small supernumerary marker chromosomes is rare. Clinical impact depends on the presence of imprinted genes and/or the unmasking of a recessive mutation of the chromosome involved in the uniparental disomy and the euchromatic content of the sSMC. Here, we report on the second case of a patient harbouring a de novo supernumerary marker chromosome 6 causing partial trisomy 6p12.3p11.1 associated with a paternal uniparental isodisomy of chromosome 6. Our patient presented with intrauterine growth retardation, macroglossia, initial developmental delay and transient neonatal diabetes mellitus followed by a congenital hyperinsulinism. Diabetes and intrauterine growth retardation can be linked to the paternal isodisomy of the imprinted locus on chromosome 6q24 whereas developmental delay is probably due to the small supernumerary marker chromosome. However, the clinical impact of partial trisomy 6p is difficult to address due to a limited number of patients. The careful clinical examination and the molecular characterization of additional patients with trisomy 6p are needed to further predict the phenotype for genetic counselling. Finally, uniparental disomy should be considered when a sSMC involving a chromosome containing imprinted regions is detected, especially in the prenatal setting.

5.
Am J Hum Genet ; 109(10): 1909-1922, 2022 10 06.
Article En | MEDLINE | ID: mdl-36044892

The transmembrane protein TMEM147 has a dual function: first at the nuclear envelope, where it anchors lamin B receptor (LBR) to the inner membrane, and second at the endoplasmic reticulum (ER), where it facilitates the translation of nascent polypeptides within the ribosome-bound TMCO1 translocon complex. Through international data sharing, we identified 23 individuals from 15 unrelated families with bi-allelic TMEM147 loss-of-function variants, including splice-site, nonsense, frameshift, and missense variants. These affected children displayed congruent clinical features including coarse facies, developmental delay, intellectual disability, and behavioral problems. In silico structural analyses predicted disruptive consequences of the identified amino acid substitutions on translocon complex assembly and/or function, and in vitro analyses documented accelerated protein degradation via the autophagy-lysosomal-mediated pathway. Furthermore, TMEM147-deficient cells showed CKAP4 (CLIMP-63) and RTN4 (NOGO) upregulation with a concomitant reorientation of the ER, which was also witnessed in primary fibroblast cell culture. LBR mislocalization and nuclear segmentation was observed in primary fibroblast cells. Abnormal nuclear segmentation and chromatin compaction were also observed in approximately 20% of neutrophils, indicating the presence of a pseudo-Pelger-Huët anomaly. Finally, co-expression analysis revealed significant correlation with neurodevelopmental genes in the brain, further supporting a role of TMEM147 in neurodevelopment. Our findings provide clinical, genetic, and functional evidence that bi-allelic loss-of-function variants in TMEM147 cause syndromic intellectual disability due to ER-translocon and nuclear organization dysfunction.


Intellectual Disability , Musculoskeletal Abnormalities , Pelger-Huet Anomaly , Cell Nucleus/genetics , Child , Chromatin , Humans , Intellectual Disability/genetics , Loss of Heterozygosity , Pelger-Huet Anomaly/genetics
6.
Prenat Diagn ; 42(1): 118-135, 2022 Jan.
Article En | MEDLINE | ID: mdl-34894355

OBJECTIVE: Terminal 6q deletion is a rare genetic condition associated with a neurodevelopmental disorder characterized by intellectual disability and structural brain anomalies. Interestingly, a similar phenotype is observed in patients harboring pathogenic variants in the DLL1 gene. Our study aimed to further characterize the prenatal phenotype of this syndrome as well as to attempt to establish phenotype-genotype correlations. METHOD: We collected ultrasound findings from 22 fetuses diagnosed with a pure 6qter deletion. We reviewed the literature and compared our 22 cases with 14 fetuses previously reported as well as with patients with heterozygous DLL1 pathogenic variants. RESULTS: Brain structural alterations were observed in all fetuses. The most common findings (>70%) were cerebellar hypoplasia, ventriculomegaly, and corpus callosum abnormalities. Gyration abnormalities were observed in 46% of cases. Occasional findings included cerebral heterotopia, aqueductal stenosis, vertebral malformations, dysmorphic features, and kidney abnormalities. CONCLUSION: This is the first series of fetuses diagnosed with pure terminal 6q deletion. Based on our findings, we emphasize the prenatal sonographic anomalies, which may suggest the syndrome. Furthermore, this study highlights the importance of chromosomal microarray analysis to search for submicroscopic deletions of the 6q27 region involving the DLL1 gene in fetuses with these malformations.


Calcium-Binding Proteins/analysis , Chromosome Disorders/complications , Membrane Proteins/analysis , Adult , Calcium-Binding Proteins/genetics , Chromosome Disorders/genetics , Chromosomes, Human, Pair 6/genetics , Female , Humans , Membrane Proteins/genetics , Phenotype , Pregnancy , Retrospective Studies , Trisomy/genetics , Virulence/genetics , Virulence/physiology
7.
Eur J Med Genet ; 64(11): 104323, 2021 Nov.
Article En | MEDLINE | ID: mdl-34474177

Transcription factor IID is a multimeric protein complex that is essential for the initiation of transcription by RNA polymerase II. One of its critical components, the TATA-binding protein-associated factor 2, is encoded by the gene TAF2. Pathogenic variants of this gene have been shown to be responsible for the Mental retardation, autosomal recessive 40 syndrome. This syndrome is characterized by severe intellectual disability, postnatal microcephaly, pyramidal signs and thin corpus callosum. Until now, only three families have been reported separately. Here we report four individuals, from two unrelated families, who present with severe intellectual disability and global developmental delay, postnatal microcephaly, feet deformities and thin corpus callosum and who carry homozygous TAF2 missense variants detected by Exome Sequencing. Taken together, our findings and those of previously reported subjects allow us to further delineate the clinical phenotype associated with TAF2 biallelic mutations.


Developmental Disabilities/genetics , Foot Deformities, Congenital/genetics , Microcephaly/genetics , Phenotype , TATA-Binding Protein Associated Factors/genetics , Transcription Factor TFIID/genetics , Adolescent , Adult , Alleles , Child , Child, Preschool , Corpus Callosum/pathology , Developmental Disabilities/pathology , Female , Foot Deformities, Congenital/pathology , Humans , Male , Microcephaly/pathology
...