Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 13 de 13
Filter
Add more filters










Publication year range
1.
Life (Basel) ; 13(3)2023 Feb 23.
Article in English | MEDLINE | ID: mdl-36983782

ABSTRACT

Plants have been recognized as key components of bioregenerative life support systems for space exploration, and many experiments have been carried out to evaluate their adaptability to spaceflight. Unfortunately, few of these experiments have involved monocot plants, which constitute most of the crops used on Earth as sources of food, feed, and fiber. To better understand the ability of monocot plants to adapt to spaceflight, we germinated and grew Brachypodium distachyon seedlings of the Bd21, Bd21-3, and Gaz8 accessions in a customized growth unit on the International Space Station, along with 1-g ground controls. At the end of a 4-day growth period, seedling organ's growth and morphologies were quantified, and root and shoot transcriptomic profiles were investigated using RNA-seq. The roots of all three accessions grew more slowly and displayed longer root hairs under microgravity conditions relative to ground control. On the other hand, the shoots of Bd21-3 and Gaz-8 grew at similar rates between conditions, whereas those of Bd21 grew more slowly under microgravity. The three Brachypodium accessions displayed dramatically different transcriptomic responses to microgravity relative to ground controls, with the largest numbers of differentially expressed genes (DEGs) found in Gaz8 (4527), followed by Bd21 (1353) and Bd21-3 (570). Only 47 and six DEGs were shared between accessions for shoots and roots, respectively, including DEGs encoding wall-associated proteins and photosynthesis-related DEGs. Furthermore, DEGs associated with the "Oxidative Stress Response" GO group were up-regulated in the shoots and down-regulated in the roots of Bd21 and Gaz8, indicating that Brachypodium roots and shoots deploy distinct biological strategies to adapt to the microgravity environment. A comparative analysis of the Brachypodium oxidative-stress response DEGs with the Arabidopsis ROS wheel suggests a connection between retrograde signaling, light response, and decreased expression of photosynthesis-related genes in microgravity-exposed shoots. In Gaz8, DEGs were also found to preferentially associate with the "Plant Hormonal Signaling" and "MAP Kinase Signaling" KEGG pathways. Overall, these data indicate that Brachypodium distachyon seedlings exposed to the microgravity environment of ISS display accession- and organ-specific responses that involve oxidative stress response, wall remodeling, photosynthesis inhibition, expression regulation, ribosome biogenesis, and post-translational modifications. The general characteristics of these responses are similar to those displayed by microgravity-exposed Arabidopsis thaliana seedlings. However, organ- and accession-specific components of the response dramatically differ both within and between species. These results suggest a need to directly evaluate candidate-crop responses to microgravity to better understand their specific adaptability to this novel environment and develop cultivation strategies allowing them to strive during spaceflight.

2.
Front Plant Sci ; 14: 1284529, 2023.
Article in English | MEDLINE | ID: mdl-38162303

ABSTRACT

Outside the protection of Earth's magnetic field, organisms are constantly exposed to space radiation consisting of energetic protons and other heavier charged particles. With the goal of crewed Mars exploration, the production of fresh food during long duration space missions is critical for meeting astronauts' nutritional and psychological needs. However, the biological effects of space radiation on plants have not been sufficiently investigated and characterized. To that end, 10-day-old Arabidopsis seedlings were exposed to simulated Galactic Cosmic Rays (GCR) and assessed for transcriptomic changes. The simulated GCR irradiation was carried out in the NASA Space Radiation Laboratory (NSRL) at Brookhaven National Lab (BNL). The exposures were conducted acutely for two dose points at 40 cGy or 80 cGy, with sequential delivery of proton, helium, oxygen, silicon, and iron ions. Control and irradiated seedlings were then harvested and preserved in RNAlater at 3 hrs post irradiation. Total RNA was isolated for transcriptomic analyses using RNAseq. The data revealed that the transcriptomic responses were dose-dependent, with significant upregulation of DNA repair pathways and downregulation of glucosinolate biosynthetic pathways. Glucosinolates are important for plant pathogen defense and for the taste of a plant, which are both relevant to growing plants for spaceflight. These findings fill in knowledge gaps of how plants respond to radiation in beyond-Earth environments.

3.
Life (Basel) ; 12(2)2022 Jan 19.
Article in English | MEDLINE | ID: mdl-35207432

ABSTRACT

One of the major concerns for long-term exploration missions beyond the Earth's magnetosphere is consequences from exposures to solar particle event (SPE) protons and galactic cosmic rays (GCR). For long-term crewed Lunar and Mars explorations, the production of fresh food in space will provide both nutritional supplements and psychological benefits to the astronauts. However, the effects of space radiation on plants and plant propagules have not been sufficiently investigated and characterized. In this study, we evaluated the effect of two different compositions of charged particles-simulated GCR, and simulated SPE protons on dry and hydrated seeds of the model plant Arabidopsis thaliana and the crop plant Mizuna mustard [Brassica rapa var. japonica]. Exposures to charged particles, simulated GCRs (up to 80 cGy) or SPEs (up to 200 cGy), were performed either acutely or at a low dose rate using the NASA Space Radiation Laboratory (NSRL) facility at Brookhaven National Lab (BNL). Control and irradiated seeds were planted in a solid phytogel and grown in a controlled environment. Five to seven days after planting, morphological parameters were measured to evaluate radiation-induced damage in the seedlings. After exposure to single types of charged particles, as well as to simulated GCR, the hydrated Arabidopsis seeds showed dose- and quality-dependent responses, with heavier ions causing more severe defects. Seeds exposed to simulated GCR (dry seeds) and SPE (hydrated seeds) had significant, although much less damage than seeds exposed to heavier and higher linear energy transfer (LET) particles. In general, the extent of damage depends on the seed type.

4.
Methods Mol Biol ; 2368: 281-299, 2022.
Article in English | MEDLINE | ID: mdl-34647262

ABSTRACT

Since opportunities to conduct experiments in space are scarce, various microgravity simulators and analogs have been widely used in space biology ground studies. Even though microgravity simulators do not produce all of the biological effects observed in the true microgravity environment, they provide alternative test platforms that are effective, affordable, and readily available to facilitate microgravity research. The Microgravity Simulation Support Facility (MSSF) at the National Aeronautics and Space Administration (NASA) John F. Kennedy Space Center (KSC) has been established for conducting short duration experiments, typically less than 1 month, utilizing a variety of microgravity simulation devices for research at different gravity levels. The simulators include, but are not limited to, 2D Clinostats, 3D Clinostats, Random Positioning Machines, and Rotating Wall Vessels. In this chapter, we will discuss current MSSF capabilities, development concepts, and the physical characteristics of these microgravity simulators.


Subject(s)
Space Flight , Weightlessness Simulation , Weightlessness , United States , United States National Aeronautics and Space Administration
5.
Int J Mol Sci ; 21(18)2020 Sep 15.
Article in English | MEDLINE | ID: mdl-32942630

ABSTRACT

Microgravity is known to affect the organization of the cytoskeleton, cell and nuclear morphology and to elicit differential expression of genes associated with the cytoskeleton, focal adhesions and the extracellular matrix. Although the nucleus is mechanically connected to the cytoskeleton through the Linker of Nucleoskeleton and Cytoskeleton (LINC) complex, the role of this group of proteins in these responses to microgravity has yet to be defined. In our study, we used a simulated microgravity device, a 3-D clinostat (Gravite), to investigate whether the LINC complex mediates cellular responses to the simulated microgravity environment. We show that nuclear shape and differential gene expression are both responsive to simulated microgravity in a LINC-dependent manner and that this response changes with the duration of exposure to simulated microgravity. These LINC-dependent genes likely represent elements normally regulated by the mechanical forces imposed by gravity on Earth.


Subject(s)
Cell Nucleus/physiology , Cytoskeleton/physiology , Gene Expression/physiology , Nuclear Matrix/physiology , Cell Line , Extracellular Matrix/physiology , Focal Adhesions/physiology , Humans , Weightlessness , Weightlessness Simulation/methods
6.
Front Plant Sci ; 11: 673, 2020.
Article in English | MEDLINE | ID: mdl-32625217

ABSTRACT

The Advanced Plant Habitat (APH) is the largest research plant growth facility deployed on the International Space Station (ISS). APH is a fully enclosed, closed-loop plant life support system with an environmentally controlled growth chamber designed for conducting both fundamental and applied plant research during experiments extending as long as 135 days. APH was delivered to the ISS in parts aboard two commercial resupply missions: OA-7 in April 2017 and SpaceX-11 in June 2017, and was assembled and installed in the Japanese Experiment Module Kibo in November 2018. We report here on a 7-week-long hardware validation test that utilized a root module planted with both Arabidopsis (cv. Col 0) and wheat (cv. Apogee) plants. The validation test examined the APH's ability to control light intensity, spectral quality, humidity, CO2 concentration, photoperiod, temperature, and root zone moisture using commanding from ground facilities at the Kennedy Space Center (KSC). The test also demonstrated the execution of programmed experiment profiles that scheduled: (1) changes in environmental combinations (e.g., a daily photoperiod at constant relative humidity), (2) predetermined photographic events using the three APH cameras [overhead, sideview, and sideview near-infrared (NIR)], and (3) execution of experimental sequences during the life cycle of a crop (e.g., measure photosynthetic CO2 drawdown experiments). Arabidopsis and wheat were grown in microgravity to demonstrate crew procedures, planting protocols and watering schemes within APH. The ability of APH to contain plant debris was assessed during the harvest of mature Arabidopsis plants. Wheat provided a large evaporative load that tested root zone moisture control and the recovery of transpired water by condensation. The wheat canopy was also used to validate the ability of APH to measure gas exchange of plants from non-invasive gas exchange measurements (i.e., canopy photosynthesis and respiration). These features were evaluated by executing experiment profiles that utilized the CO2 drawdown technique to measure daily rates of canopy photosynthesis and dark-period CO2 increase for respiration. This hardware validation test confirmed that APH can measure fundamental plant responses to spaceflight conditions.

7.
Am J Bot ; 100(1): 226-34, 2013 Jan.
Article in English | MEDLINE | ID: mdl-23281389

ABSTRACT

The relationship between fundamental plant biology and space biology was especially synergistic in the era of the Space Shuttle. While all terrestrial organisms are influenced by gravity, the impact of gravity as a tropic stimulus in plants has been a topic of formal study for more than a century. And while plants were parts of early space biology payloads, it was not until the advent of the Space Shuttle that the science of plant space biology enjoyed expansion that truly enabled controlled, fundamental experiments that removed gravity from the equation. The Space Shuttle presented a science platform that provided regular science flights with dedicated plant growth hardware and crew trained in inflight plant manipulations. Part of the impetus for plant biology experiments in space was the realization that plants could be important parts of bioregenerative life support on long missions, recycling water, air, and nutrients for the human crew. However, a large part of the impetus was that the Space Shuttle enabled fundamental plant science essentially in a microgravity environment. Experiments during the Space Shuttle era produced key science insights on biological adaptation to spaceflight and especially plant growth and tropisms. In this review, we present an overview of plant science in the Space Shuttle era with an emphasis on experiments dealing with fundamental plant growth in microgravity. This review discusses general conclusions from the study of plant spaceflight biology enabled by the Space Shuttle by providing historical context and reviews of select experiments that exemplify plant space biology science.


Subject(s)
Biology , Plants/metabolism , Space Flight
8.
Radiat Res ; 169(6): 607-14, 2008 Jun.
Article in English | MEDLINE | ID: mdl-18494551

ABSTRACT

Astronauts on exploratory missions will experience a complex environment, including microgravity and radiation. While the deleterious effects of unloading on bone are well established, fewer studies have focused on the effects of radiation. We previously demonstrated that 2 Gy of ionizing radiation has deleterious effects on trabecular bone in mice 4 months after exposure. The present study investigated the skeletal response after total doses of proton radiation that astronauts may be exposed to during a solar particle event. We exposed mice to 0.5, 1 or 2 Gy of whole-body proton radiation and killed them humanely 117 days later. Tibiae and femora were analyzed using microcomputed tomography, mechanical testing, mineral composition and quantitative histomorphometry. Relative to control mice, mice exposed to 2 Gy had significant differences in trabecular bone volume fraction (-20%), trabecular separation (+11%), and trabecular volumetric bone mineral density (-19%). Exposure to 1 Gy radiation induced a nonsignificant trend in trabecular bone volume fraction (-13%), while exposure to 0.5 Gy resulted in no differences. No response was detected in cortical bone. Further analysis of the 1-Gy mice using synchrotron microCT revealed a significantly lower trabecular bone volume fraction (-13%) than in control mice. Trabecular bone loss 4 months after exposure to 1 Gy highlights the importance of further examination of how space radiation affects bone.


Subject(s)
Bone and Bones/radiation effects , Femur/radiation effects , Protons , Tibia/radiation effects , Animals , Dose-Response Relationship, Radiation , Female , Mice , Mice, Inbred C57BL , Radiation, Ionizing , Stress, Mechanical , Sunlight , Synchrotrons , Tomography, X-Ray Computed/methods , Ultraviolet Rays
9.
Exp Neurol ; 210(1): 274-9, 2008 Mar.
Article in English | MEDLINE | ID: mdl-18076878

ABSTRACT

Generation of new neurons in the adult brain, a process that is likely to be essential for learning, memory, and mood regulation, is impaired by radiation. Therefore, radiation exposure might have not only such previously expected consequences as increased probability of developing cancer, but might also impair cognitive function and emotional stability. Radiation exposure is encountered in settings ranging from cancer therapy to space travel; evaluating the neurogenic risks of radiation requires identifying the at-risk populations of stem and progenitor cells in the adult brain. Here we have used a novel reporter mouse line to find that early neural progenitors are selectively affected by conditions simulating the space radiation environment. This is reflected both in a decrease in the number of these progenitors in the neurogenic regions and in an increase in the number of dying cells in these regions. Unexpectedly, we found that quiescent neural stem cells, rather than their rapidly dividing progeny, are most sensitive to radiation. Since these stem cells are responsible for adult neurogenesis, their death would have a profound impact on the production of new neurons in the irradiated adult brain. Our finding raises an important concern about cognitive and emotional risks associated with radiation exposure.


Subject(s)
Adult Stem Cells/radiation effects , Cell Proliferation/radiation effects , Cosmic Radiation , Animals , Bromodeoxyuridine/metabolism , Caspase 3/metabolism , Cell Differentiation/radiation effects , Green Fluorescent Proteins/biosynthesis , Green Fluorescent Proteins/genetics , Intermediate Filament Proteins/genetics , Mice , Mice, Inbred C57BL , Mice, Transgenic , Nerve Tissue Proteins/genetics , Nerve Tissue Proteins/metabolism , Nestin
10.
Acta Astronaut ; 56(6): 623-8, 2005 Mar.
Article in English | MEDLINE | ID: mdl-15736319

ABSTRACT

Spaceflight experiments involving biological specimens face unique challenges with regard to the on orbit harvest and preservation of material for later ground-based analyses. Preserving plant material for gene expression analyses requires that the tissue be prepared and stored in a manner that maintains the integrity of RNA. The liquid preservative RNAlater (Ambion) provides an effective alternative to conventional freezing strategies, which are limited or unavailable in current spaceflight experiment scenarios. The spaceflight use of RNAlater is enabled by the Kennedy space center fixation tube (KFT), hardware designed to provide the necessary containment of fixatives during the harvest and stowage of biological samples in space. Pairing RNAlater with the KFT system provides a safe and effective strategy for preserving plant material for subsequent molecular analyses, a strategy that has proven effective in several spaceflight experiments. Possible spaceflight scenarios for the use of RNAlater and KFTs are explored and discussed.


Subject(s)
RNA Stability , RNA, Plant/analysis , Space Flight , Specimen Handling/methods , Tissue Preservation/methods , Weightlessness , Arabidopsis , Bioreactors , Cryopreservation , Fixatives , Gene Expression , Plant Cells , Triticum
11.
Habitation (Elmsford) ; 10(2): 117-26, 2005.
Article in English | MEDLINE | ID: mdl-15751144

ABSTRACT

Control of water and air in the root zone of plants remains a challenge in the microgravity environment of space. Due to limited flight opportunities, research aimed at resolving microgravity porous media fluid dynamics must often be conducted on Earth. The NASA KC-135 reduced gravity flight program offers an opportunity for Earth-based researchers to study physical processes in a variable gravity environment. The objectives of this study were to obtain measurements of water content and matric potential during the parabolic profile flown by the KC-135 aircraft. The flight profile provided 20-25 s of microgravity at the top of the parabola, while pulling 1.8 g at the bottom. The soil moisture sensors (Temperature and Moisture Acquisition System: Orbital Technologies, Madison, WI) used a heat-pulse method to indirectly estimate water content from heat dissipation. Tensiometers were constructed using a stainless steel porous cup with a pressure transducer and were used to measure the matric potential of the medium. The two types of sensors were placed at different depths in a substrate compartment filled with 1-2 mm Turface (calcined clay). The ability of the heat-pulse sensors to monitor overall changes in water content in the substrate compartment decreased with water content. Differences in measured water content data recorded at 0, 1, and 1.8 g were not significant. Tensiometer readings tracked pressure differences due to the hydrostatic force changes with variable gravity. The readings may have been affected by changes in cabin air pressure that occurred during each parabola. Tensiometer porous membrane conductivity (function of pore size) and fluid volume both influence response time. Porous media sample height and water content influence time-to-equilibrium, where shorter samples and higher water content achieve faster equilibrium. Further testing is needed to develop these sensors for space flight applications.


Subject(s)
Biosensing Techniques/instrumentation , Plant Roots/metabolism , Porosity , Space Flight , Water , Weightlessness , Culture Media , Hot Temperature , Hydroponics , Hypergravity , Soil , Temperature , Transducers, Pressure
12.
Adv Space Res ; 31(10): 2261-8, 2003.
Article in English | MEDLINE | ID: mdl-14686441

ABSTRACT

This experiment was conducted as part of a risk mitigation payload aboard the Space Shuttle Atlantis on STS-101. The objectives were to test a newly developed water delivery system, and to determine the optimal combination of water volume and substrate for the imbibition and germination of flax (Linum usitatissimum) seeds in space. Two different combinations of germination paper were tested for their ability to absorb, distribute, and retain water in microgravity. A single layer of thick germination paper was compared with one layer of thin germination paper under a layer of thick paper. Paper strips were cut to fit snugly into seed cassettes, and seeds were glued to them with the micropyle ends pointing outward. Water was delivered in small increments that traveled through the paper via capillary action. Three water delivery volumes were tested, with the largest (480 microliters) outperforming the 400 microliters and 320 microliters volumes for percent germination (90.6%) and root growth (mean=4.1 mm) during the 34-hour spaceflight experiment. The ground control experiment yielded similar results, but with lower rates of germination (84.4%) and shorter root lengths (mean=2.8 mm). It is not clear if the roots emerged more quickly in microgravity and/or grew faster than the ground controls. The single layer of thick germination paper generally exhibited better overall growth than the two layered option. Significant seed position effects were observed in both the flight and ground control experiments. Overall, the design of the water delivery system, seed cassettes and the germination paper strip concept was validated as an effective method for promoting seed germination and root growth under microgravity conditions.


Subject(s)
Flax/growth & development , Germination/physiology , Hydroponics/instrumentation , Space Flight/instrumentation , Water Supply , Weightlessness , Equipment Design , Evaluation Studies as Topic , Hydroponics/methods , Plant Roots/growth & development , Seeds/growth & development , Temperature
13.
Curr Opin Plant Biol ; 5(3): 258-63, 2002 Jun.
Article in English | MEDLINE | ID: mdl-11960745

ABSTRACT

Virtually all scenarios for the long-term habitation of spacecraft and other extraterrestrial structures involve plants as important parts of the contained environment that would support humans. Recent experiments have identified several effects of spaceflight on plants that will need to be more fully understood before plant-based life support can become a reality. The International Space Station (ISS) is the focus for the newest phase of space-based research, which should solve some of the mysteries of how spaceflight affects plant growth. Research carried out on the ISS and in the proposed terrestrial facility for Advanced Life Support testing will bring the requirements for establishing extraterrestrial plant-based life support systems into clearer focus.


Subject(s)
Ecological Systems, Closed , Extraterrestrial Environment , Plant Development , Space Flight , Adaptation, Physiological/physiology , Humans
SELECTION OF CITATIONS
SEARCH DETAIL
...