Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 86
Filter
1.
Phys Med Biol ; 2024 Aug 13.
Article in English | MEDLINE | ID: mdl-39137804

ABSTRACT

Background. Accurate timing offset calibration is crucial for time-of-flight (TOF) positron emission tomography (PET) to mitigate image artifacts and improve quantitative accuracy. However, existing methods are often time-consuming, complex, or costly.Objective. This paper presents a method for TOF PET timing offset calibration that eliminates the need for costly equipment, phantoms, short-half-life sources, and precise source positioning.Approach. We estimate channel timing offsets using stationary scans of a68Ge line source, typically used for routine quality control, at a minimum of three non-coplanar positions, with each position scanned for two minutes. The line source positions are determined accurately from reconstructed images using a simple algorithm, allowing precise calculation of arrival time differences. Channel timing offsets are estimated by solving a least squares problem. This method is assessed through analyses of phantoms and patient images using a RAYSOLUTION DigitMI 930 scanner.Main results. The estimated timing offsets ranged from -500 ps to 500 ps across all channels. Calibration with a minimum of three scanned positions was sufficient to correct these offsets, achieving less than a 1% discrepancy across various metrics of the image quality (IQ) phantom compared to 12 positions. This calibration significantly reduced edge artifacts in TOF reconstruction of both phantoms and patients. Furthermore, the IQ phantom displayed a 13% increase in average contrast recovery (CR), a 68% reduction in average background variability (BV) across all spheres, and an 80% reduction in average residual error. Consistent with the phantom results, patient data revealed enhancements in maximum standardized uptake values (SUVmax) from 14% to 55% for lesions measuring 6 mm to 14 mm. The calibration also improved lesion-to-background contrast and eliminated artifacts caused by the spillover effect of the kidneys and bladder.Significance. The proposed method is fast, user-friendly, and cost-effective, effectively improving lesion detection and diagnostic accuracy.

2.
Heliyon ; 10(14): e34133, 2024 Jul 30.
Article in English | MEDLINE | ID: mdl-39100477

ABSTRACT

Circular Synthetic Aperture Radar(CSAR) imaging is vulnerable to perturbations in the atmosphere and various other elements that can lead to position offset errors in the antenna's phase center as well as induce motion errors. Traditional phase compensation methods that operate in the time domain, such as Auto-regressive Back-projection (ARBP), typically require computation on a direction-by-direction basis, which can result in the considerable expenditure of time and memory resources. To address these challenges, thispaperintroduces a novel approach for focusing on CSAR images. This method leverages the training of a Generative Adversarial Network (GAN) to directly achieve focus on CSAR sub-aperture images. Additionally, to counteract the network's tendency towards low-frequency preferences, the Auto-focus Frequency Loss (AFFL) is introduced. Moreover, to enhance the accuracy of focus position extraction, the Focus Position Feature Attention (FPFA) is proposed. These innovations, along with a new fusion strategy for the sub-aperture images post-focusing, have been experimentally validated, demonstrating significant improvements in the efficiency and accuracy of CSAR image focusing.

3.
Phys Med Biol ; 69(16)2024 Aug 05.
Article in English | MEDLINE | ID: mdl-39053501

ABSTRACT

Objective. Low-count positron emission tomography (PET) imaging is an efficient way to promote more widespread use of PET because of its short scan time and low injected activity. However, this often leads to low-quality PET images with clinical image reconstruction, due to high noise and blurring effects. Existing PET image restoration (IR) methods hinder their own restoration performance due to the semi-convergence property and the lack of suitable denoiser prior.Approach. To overcome these limitations, we propose a novel deep plug-and-play IR method called Deep denoiser Prior driven Relaxed Iterated Tikhonov method (DP-RI-Tikhonov). Specifically, we train a deep convolutional neural network denoiser to generate a flexible deep denoiser prior to handle high noise. Then, we plug the deep denoiser prior as a modular part into a novel iterative optimization algorithm to handle blurring effects and propose an adaptive parameter selection strategy for the iterative optimization algorithm.Main results. Simulation results show that the deep denoiser prior plays the role of reducing noise intensity, while the novel iterative optimization algorithm and adaptive parameter selection strategy can effectively eliminate the semi-convergence property. They enable DP-RI-Tikhonov to achieve an average quantitative result (normalized root mean square error, structural similarity) of (0.1364, 0.9574) at the stopping iteration, outperforming a conventional PET IR method with an average quantitative result of (0.1533, 0.9523) and a state-of-the-art deep plug-and-play IR method with an average quantitative result of (0.1404, 0.9554). Moreover, the advantage of DP-RI-Tikhonov becomes more obvious at the last iteration. Experiments on six clinical whole-body PET images further indicate that DP-RI-Tikhonov successfully reduces noise intensity and recovers fine details, recovering sharper and more uniform images than the comparison methods.Significance. DP-RI-Tikhonov's ability to reduce noise intensity and effectively eliminate the semi-convergence property overcomes the limitations of existing methods. This advancement may have substantial implications for other medical IR.


Subject(s)
Image Processing, Computer-Assisted , Positron-Emission Tomography , Signal-To-Noise Ratio , Positron-Emission Tomography/methods , Image Processing, Computer-Assisted/methods , Humans , Deep Learning , Phantoms, Imaging
4.
Nano Lett ; 24(31): 9569-9574, 2024 Aug 07.
Article in English | MEDLINE | ID: mdl-39074177

ABSTRACT

Chiral 3D perovskites pose challenges compared to lower-dimensional variants due to limited chiral organic cation options. Here, we present a universal and controlled method for synthesizing chiral 3D lead halide perovskites using organic amines or alcohols as chiral templates. Introducing these templates to PbCl2 in N,N-dimethylformamide (DMF) under acidic conditions induces the crystallization of R/S [DMA]PbCl3 (DMA = dimethylamine). The resulting structure aligns with the templates used, stemming from the helical Pb2Cl95- chain as verified by single-crystal X-ray diffraction. Furthermore, the chiral perovskite exhibits absorption and circular dichroism (CD) signals in the high-energy band, enabling the circularly polarized light (CPL) detection in the UV spectrum. A CPL detector constructed by this chiral perovskite demonstrates excellent performance, boasting an anisotropy factor for photocurrent (gIph) of 0.296. Our work not only introduces a novel and controllable method for crafting chiral perovskites but also opens new avenues for circularly polarized light detection.

5.
Nat Commun ; 15(1): 6064, 2024 Jul 18.
Article in English | MEDLINE | ID: mdl-39025851

ABSTRACT

The retina, an anatomical extension of the brain, forms physiological connections with the visual cortex of the brain. Although retinal structures offer a unique opportunity to assess brain disorders, their relationship to brain structure and function is not well understood. In this study, we conducted a systematic cross-organ genetic architecture analysis of eye-brain connections using retinal and brain imaging endophenotypes. We identified novel phenotypic and genetic links between retinal imaging biomarkers and brain structure and function measures from multimodal magnetic resonance imaging (MRI), with many associations involving the primary visual cortex and visual pathways. Retinal imaging biomarkers shared genetic influences with brain diseases and complex traits in 65 genomic regions, with 18 showing genetic overlap with brain MRI traits. Mendelian randomization suggests bidirectional genetic causal links between retinal structures and neurological and neuropsychiatric disorders, such as Alzheimer's disease. Overall, our findings reveal the genetic basis for eye-brain connections, suggesting that retinal images can help uncover genetic risk factors for brain disorders and disease-related changes in intracranial structure and function.


Subject(s)
Brain , Magnetic Resonance Imaging , Retina , Humans , Magnetic Resonance Imaging/methods , Retina/diagnostic imaging , Male , Brain/diagnostic imaging , Female , Visual Cortex/diagnostic imaging , Multimodal Imaging/methods , Adult , Visual Pathways/diagnostic imaging , Middle Aged , Mendelian Randomization Analysis , Endophenotypes , Aged
6.
Inorg Chem ; 63(28): 12894-12900, 2024 Jul 15.
Article in English | MEDLINE | ID: mdl-38938112

ABSTRACT

The latent value of nonlinear optical (NLO) crystals applied in solid-state laser equipment necessitates the development of applicable strategies for constructing noncentrosymmetric (NCS) crystals. By modulating the synthetic temperature and pressure to achieve the rearrangement of [TeO3]2- groups, a new NCS tellurium tungstate, ß-K2TeW3O12 (ß-KTW), with a strong second harmonic generation (SHG) response was synthesized based on its centrosymmetric polymorphic phase α-K2TeW3O12 (α-KTW). Computational calculation reveals that the large SHG response of ß-KTW (15 × KH2PO4@1064 and 1.5 × KTiOPO4@1950 nm) could be attributed to the uniform arrangement of the NLO-active [TeO3]2- and [WO6]6- groups. ß-KTW also exhibits enlarged birefringence (0.196@1064 nm) and a high laser damage threshold (42.3 MW cm-2), showing great potential as a nonlinear crystalline material. This work also provides a new route for the construction of NLO crystals based on centric structure, i.e., reverse pressure regulation.

7.
medRxiv ; 2024 Jun 03.
Article in English | MEDLINE | ID: mdl-38883759

ABSTRACT

The UK Biobank (UKB) imaging project is a crucial resource for biomedical research, but is limited to 100,000 participants due to cost and accessibility barriers. Here we used genetic data to predict heritable imaging-derived phenotypes (IDPs) for a larger cohort. We developed and evaluated 4,375 IDP genetic scores (IGS) derived from UKB brain and body images. When applied to UKB participants who were not imaged, IGS revealed links to numerous phenotypes and stratified participants at increased risk for both brain and somatic diseases. For example, IGS identified individuals at higher risk for Alzheimer's disease and multiple sclerosis, offering additional insights beyond traditional polygenic risk scores of these diseases. When applied to independent external cohorts, IGS also stratified those at high disease risk in the All of Us Research Program and the Alzheimer's Disease Neuroimaging Initiative study. Our results demonstrate that, while the UKB imaging cohort is largely healthy and may not be the most enriched for disease risk management, it holds immense potential for stratifying the risk of various brain and body diseases in broader external genetic cohorts.

8.
Inorg Chem ; 63(24): 10932-10937, 2024 Jun 17.
Article in English | MEDLINE | ID: mdl-38814671

ABSTRACT

Inorganic supramolecular compounds are the emergent class of infrared (IR) nonlinear optical (NLO) materials. However, the reported inorganic supramolecular IR NLO pnictides are still scarce. In this work, a new inorganic supramolecular IR NLO phosphide, EuSi7P10, has been synthesized using the metal salt flux method. The structure of EuSi7P10 features an anionic host framework containing the oriented [Si7P16] dual-T2 supertetrahedra with the guest Eu2+ cations filling in the intervals. Additionally, EuSi7P10 exhibits strong phase-matched (PM) second-harmonic generation (SHG) (4.0 × AgGaS2), large birefringence (0.087 @2050 nm), and wide infrared transparency. This study highlights the potential of inorganic supramolecular pnictides for exploring high-performance IR NLO crystals.

9.
bioRxiv ; 2024 Mar 16.
Article in English | MEDLINE | ID: mdl-38559152

ABSTRACT

As large-scale biobanks provide increasing access to deep phenotyping and genomic data, genome-wide association studies (GWAS) are rapidly uncovering the genetic architecture behind various complex traits and diseases. GWAS publications typically make their summary-level data (GWAS summary statistics) publicly available, enabling further exploration of genetic overlaps between phenotypes gathered from different studies and cohorts. However, systematically analyzing high-dimensional GWAS summary statistics for thousands of phenotypes can be both logistically challenging and computationally demanding. In this paper, we introduce BIGA (https://bigagwas.org/), a website that aims to offer unified data analysis pipelines and processed data resources for cross-trait genetic architecture analyses using GWAS summary statistics. We have developed a framework to implement statistical genetics tools on a cloud computing platform, combined with extensive curated GWAS data resources. Through BIGA, users can upload data, submit jobs, and share results, providing the research community with a convenient tool for consolidating GWAS data and generating new insights.

10.
Inorg Chem ; 63(9): 4011-4016, 2024 Mar 04.
Article in English | MEDLINE | ID: mdl-38363859

ABSTRACT

Exploring new material systems is a highly significant task in the field of inorganic chemistry. A new mixed-valent selenium compound, Hg3Se(SeO3)(SO4), was successfully synthesized through in situ reactions. This compound exhibits a novel three-dimensional structure composed of Hg3Se(SO4) layers bridged by SeO3 trigonal pyramids. It is the first structure containing (SeO3)2-, (SO4)2-, and Se2- simultaneously. In addition, Hg3Se(SeO3)(SO4) possesses a wide bandgap (3.5 eV), moderate birefringence (Cal:0.064@546 nm, Exp:0.069@546 nm), a high laser-induced damage threshold (23.35 MW cm-2), and a wide transmittance window (0.28-6.6 µm). Our work demonstrates that mixed-valent (+4, -2) selenite selenide can be potential optical materials for the mid-infrared region.

11.
Environ Pollut ; 345: 123423, 2024 Mar 15.
Article in English | MEDLINE | ID: mdl-38307242

ABSTRACT

The surface water in coastal areas involving algae, is often affected by saline and emerging contaminants caused by saltwater intrusion, and expanding aquaculture industry. Therefore, it is necessary to conduct studies to address the issues that affect ecological safety and health of aquatic environments. This study presents the development of an enhanced electrooxidation/electrocoagulation-ultrafiltration (EO/EC-UF) membrane process using S2O42- (DTN@EO/EC-UF) for the treatment of saline water containing algae. Our results have shown that significant removal of NH3-N (95.1 %), UV254 (89.4 %) and algae (75.7 %) was achieved with the addition of S2O42- (DTN). Additionally, an optimal DTN dosage of 40 mg/L was used in the DTN@EO/EC process to enhance water purification, utilizing reactive species such as SO4·- and ·OH. After coupling with the ultrafiltration (UF) process, optimal operating conditions (DTN: 40 mg/L, current density: 4.65 mA/cm2, electrolysis: 60 s) were applied to treat the saline algae-containing surface water. The generated free chlorine, including NHCl2, accounted for approximately 22 % (0.14 mg/L). In addition, DTN significantly improved the ceramic membrane's permeability and anti-fouling characteristics, with a maximum increasing specific flux from 0.76 to 0.93, mainly attributing to the reduced the irreversible fouling resistance. Furthermore, we discovered that common membrane cleaning using acid or base enhanced the DTN@EO/EC-UF process. In conclusion, this study established an innovative DTN@EO/EC-UF process with excellent performance in terms of water purification and membrane self-cleaning. The results provided a promising alternative for treating saline algae-containing surface water.


Subject(s)
Racepinephrine , Sulfates , Water Purification , Electrocoagulation , Membranes, Artificial , Permeability , Ultrafiltration , Water Purification/methods , Oxidation-Reduction
12.
Angew Chem Int Ed Engl ; 63(12): e202319424, 2024 Mar 18.
Article in English | MEDLINE | ID: mdl-38270334

ABSTRACT

Polar molecular crystals, with their densely stacked polar nonlinear optical (NLO) active units, are favored for their large second harmonic generation (SHG) responses and birefringence. However, their potential for practical applications as Infrared (IR) NLO materials has historically been underappreciated due to the weak inter-molecular interaction forces that may compromise their physicochemical properties. In this study, we propose molecular crystals with polar molecular cages as a treasure-house for the development of superior IR NLO materials and a representative system, binary chalcogenide molecular crystals, composed of [P4 Sn ] (n=3-9) polar molecular cages, is introduced. These crystals may not only achieve wide band gap, large SHG response, and birefringence in a single structure, but also exhibit favorable physicochemical properties. We subsequently obtained a polar molecular crystal, α-P4 S5 , which demonstrated exceptional IR optical properties, including a strong SHG response (1.1×AGS), wide band gap (3.02 eV), large birefringence (0.134@2050 nm), and a broad transmission range (0.41-14.7 µm). Moreover, it showed excellent water resistance and hardness. These findings highlight the potential of polar molecular crystals as a promising platform for the development of high-performance IR NLO materials.

13.
Small ; 20(6): e2304563, 2024 Feb.
Article in English | MEDLINE | ID: mdl-37786270

ABSTRACT

It is substantially challenging for non-centrosymmetric (NCS) Hg-based chalcogenides for infrared nonlinear optical (IR-NLO) applications to realize wide band gap (Eg > 3.0 eV) and sufficient phase-matching (PM) second-harmonic-generation intensity (deff > 1.0 × benchmark AgGaS2 ) simultaneously due to the inherent incompatibility. To address this issue, this work presents a diagonal synergetic substitution strategy for creating two new NCS quaternary Hg-based chalcogenides, AEHgGeS4 (AE = Sr and Ba), based on the centrosymmetric (CS) AEIn2 S4 . The derived AEHgGeS4 displays excellent NLO properties such as a wide Eg (≈3.04-3.07 eV), large PM deff (≈2.2-3.0 × AgGaS2 ), ultra-high laser-induced damage threshold (≈14.8-15 × AgGaS2 ), and suitable Δn (≈0.19-0.24@2050 nm), making them highly promising candidates for IR-NLO applications. Importantly, such excellent second-order NLO properties are primarily attributed to the synergistic combination of tetrahedral [HgS4 ] and [GeS4 ] functional primitives, as supported by detailed theoretical calculations. This study reports the first two NCS Hg-based materials with well-balanced comprehensive properties (i.e., Eg > 3.0 eV and deff > 1.0 × benchmark AgGaS2 ) and puts forward a new design avenue for the construction of more efficient IR-NLO candidates.

14.
Phys Med Biol ; 69(2)2024 Jan 12.
Article in English | MEDLINE | ID: mdl-38100841

ABSTRACT

Objective.Time-of-flight (TOF) capability and high sensitivity are essential for brain-dedicated positron emission tomography (PET) imaging, as they improve the contrast and the signal-to-noise ratio (SNR) enabling a precise localization of functional mechanisms in the different brain regions.Approach.We present a new brain PET system with transverse and axial field-of-view (FOV) of 320 mm and 255 mm, respectively. The system head is an array of 6 × 6 detection elements, each consisting of a 3.9 × 3.9 × 20 mm3lutetium-yttrium oxyorthosilicate crystal coupled with a 3.93 × 3.93 mm2SiPM. The SiPMs analog signals are individually digitized using the multi-voltage threshold (MVT) technology, employing a 1:1:1 coupling configuration.Main results.The brain PET system exhibits a TOF resolution of 249 ps at 5.3 kBq ml-1, an average sensitivity of 22.1 cps kBq-1, and a noise equivalent count rate (NECR) peak of 150.9 kcps at 8.36 kBq ml-1. Furthermore, the mini-Derenzo phantom study demonstrated the system's ability to distinguish rods with a diameter of 2.0 mm. Moreover, incorporating the TOF reconstruction algorithm in an image quality phantom study optimizes the background variability, resulting in reductions ranging from 44% (37 mm) to 75% (10 mm) with comparable contrast. In the human brain imaging study, the SNR improved by a factor of 1.7 with the inclusion of TOF, increasing from 27.07 to 46.05. Time-dynamic human brain imaging was performed, showing the distinctive traits of cortex and thalamus uptake, as well as of the arterial and venous flow with 2 s per time frame.Significance.The system exhibited a good TOF capability, which is coupled with the high sensitivity and count rate performance based on the MVT digital sampling technique. The developed TOF-enabled brain PET system opens the possibility of precise kinetic brain PET imaging, towards new quantitative predictive brain diagnostics.


Subject(s)
Brain , Lutetium , Positron-Emission Tomography , Silicates , Humans , Positron-Emission Tomography/methods , Brain/diagnostic imaging , Signal-To-Noise Ratio , Phantoms, Imaging
15.
Med Phys ; 51(2): 1034-1046, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38103259

ABSTRACT

BACKGROUND: Computed tomography (CT)-based positron emission tomography (PET) attenuation correction (AC) is a commonly used method in PET AC. However, the CT truncation caused by the subject's limbs outside the CT field-of-view (FOV) leads to errors in PET AC. PURPOSE: In order to enhance the quantitative accuracy of PET imaging in the all-digital DigitMI 930 PET/CT system, we assessed the impact of FOV truncation on its image quality and investigated the effectiveness of geometric shape-based FOV extension algorithms in this system. METHODS: We implemented two geometric shape-based FOV extension algorithms. By setting the data from different numbers of detector channels on either side of the sinogram to zero, we simulated various levels of truncation. Specific regions of interest (ROI) were selected, and the mean values of these ROIs were calculated to visually compare the differences between truncated CT, CT extended using the FOV extension algorithms, and the original CT. Furthermore, we conducted statistical analyses on the mean and standard deviation of residual maps between truncated/extended CT and the original CT at different levels of truncation. Subsequently, similar data processing was applied to PET images corrected using original CT and those corrected using simulated truncated and extended CT images. This allowed us to evaluate the influence of FOV truncation on the images produced by the DigitMI 930 PET/CT system and assess the effectiveness of the FOV extension algorithms. RESULTS: Truncation caused bright artifacts at the CT FOV edge and a slight increase in pixel values within the FOV. When using truncated CT data for PET AC, the PET activity outside the CT FOV decreased, while the extension algorithm effectively reduced these effects. Patient data showed that the activity within the CT FOV decreased by 60% in the truncated image compared to the base image, but this number could be reduced to at least 17.3% after extension. CONCLUSION: The two geometric shape-based algorithms effectively eliminate CT truncation artifacts and restore the true distribution of CT shape and PET emission data outside the FOV in the all-digital DigitMI 930 PET/CT system. These two algorithms can be used as basic solutions for CT FOV extension in all-digital PET/CT systems.


Subject(s)
Positron Emission Tomography Computed Tomography , Tomography, X-Ray Computed , Humans , Tomography, X-Ray Computed/methods , Algorithms , Positron-Emission Tomography/methods , Phantoms, Imaging , Artifacts , Image Processing, Computer-Assisted/methods
16.
Opt Express ; 31(21): 35032-35040, 2023 Oct 09.
Article in English | MEDLINE | ID: mdl-37859244

ABSTRACT

We present a method for phase retardation measurement of intracavity optical elements which is based on frequency splitting caused by weak phase anisotropy of Nd: YAG. The measurement range covers 0-π and the measurement uncertainty is less than 0.0300 rad. A theoretical analysis is provided to obtain the phase retardation of intracavity optical elements by using the phase difference or frequency difference of two eigenmodes. The minimum error is 0.0036 rad by using the composite wave plate to verify various phase retardation conditions. This work provides a rapid and accurate intracavity method for measuring the phase retardation of optical elements.

17.
J Am Chem Soc ; 145(41): 22577-22583, 2023 Oct 18.
Article in English | MEDLINE | ID: mdl-37812140

ABSTRACT

Atoms in special lattice sites can play a crucial role in realizing materials properties, which is long pursued but difficult to control. Herein, by adopting a stereochemically active lone-pair-containing metal substitution strategy, a nonlinear-optical (NLO) silicate crystal Li3(OH)PbSiO4 was successfully synthesized, featuring [PbSiO4]∞ layers with the perfect orientation of the stereochemically active lone-pair Pb(II) cation in the polar-axis lattice. Li3(OH)PbSiO4 overcomes the long-standing problem of silicates, that is, poor nonlinear properties because it exhibits both the largest birefringence of 0.082 and the largest phase-matchable second-harmonic-generation (SHG) efficiency of 21 × KDP among the known silicates. The successful polar-axis lattice substitution could offer a new direction for realizing the rational control of materials structures and properties.

18.
Sensors (Basel) ; 23(18)2023 Sep 13.
Article in English | MEDLINE | ID: mdl-37765906

ABSTRACT

Circular synthetic aperture radar (CSAR) can obtain higher image resolution and more target information using 360° observation of the target. Due to the anisotropy of target scattering characteristics in the actual scene, the sub-aperture imaging method is usually used for CSAR imaging. However, the uniformly divided overlapping sub-aperture CSAR imaging algorithm only considers phase compensation, ignoring the effect of target scattering characteristics on echo amplitude. In CSAR imaging scenarios carried by small rotor unmanned aerial vehicles (SRUAVs), the size of the observed scene cannot be ignored compared to the distance between the target and the antenna and the effect of the anisotropy of the target scattered energy on the echo amplitude should be considered. In this paper, a sub-aperture CSAR imaging method based on adaptive overlapping sub-aperture is proposed. First, the boundary points of the sub-aperture are determined by analyzing the correlation coefficient and the variation coefficient of the energy function. Next, the overlapping sub-aperture division schemes are automatically generated by screening and combining the boundary points. The sub-aperture images are then generated by a Back Projection (BP) algorithm. Finally, sub-aperture image registration and incoherent superposition are used to generate the final CSAR image. Verified by the CSAR field echo data, the proposed method can realize imaging of the original echo data without the Inertial Navigation System (INS) and Global Positioning System (GPS) observation data. Compared with the CSAR full-aperture BP imaging algorithm, the entropy of the image generated by the proposed method increased by 66.77%. Compared with the sub-aperture CSAR imaging algorithm, the entropy of the image generated by the proposed method was improved by 11.12%, retaining more details of the target, improving the target contour features, and enhancing the focusing effect.

19.
Inorg Chem ; 62(37): 15329-15333, 2023 Sep 18.
Article in English | MEDLINE | ID: mdl-37677152

ABSTRACT

Two new mixed-anion cerium iodates, namely, Ce(IO3)3F and Ce(IO3)2(NO3), have been rationally designed through the integration of hybrid anionic functional building blocks (FBBs). The structure of Ce(IO3)3F features a novel [Ce(IO3)3F] bilayer, and the material exhibits large birefringence (0.225 @546 nm). The structure of Ce(IO3)2(NO3) features [Ce3(IO3)6]3+ triple layers that are further linked by planar NO3- units. Ce(IO3)2(NO3) shows a moderate SHG response (1 × KDP) and a high laser-induced damage threshold value (22 × AgGaS2). This work demonstrates that the rich coordination geometries of cerium cations facilitate tuning of the structures of related compounds through modulating anionic FBBs.

20.
Inorg Chem ; 62(40): 16299-16303, 2023 Oct 09.
Article in English | MEDLINE | ID: mdl-37768782

ABSTRACT

Metal oxychalcogenides as candidates for novel mid-infrared nonlinear-optical materials have attracted great interest due to the distinctive advantages of oxides and chalcogenides in this field. Herein, the first melilite-type rare-earth (RE) oxythiogermanates Eu2MGe2OS6 [M = Mn (1), Fe (2), Co (3)] are obtained by combining RE metals with localized f electrons, magnetic transition metals with delocalized d electrons, and the highly distorted mixed anionic group [GeOS3] into one structure. They belong to the tetragonal P4̅21m space group, and highly distorted [EuOS7] bicapped trigonal prisms bridge adjacent {[MGe2OS6]4-}∞ layers to build the three-dimensional network. Their optical band gaps are determined as 2.40, 2.11 and 2.14 eV, and they show moderate second-harmonic-generation (SHG) responses (0.3, 0.3 and 0.5 × AGS) and large laser-induced damage thresholds (2.77-8.31 × AGS). Theoretical calculation results indicate that the synergistic effect of [EuOS7] and [MS4] units acts on the SHG effect. This work enriches the crystal chemistry of melilite-structure materials.

SELECTION OF CITATIONS
SEARCH DETAIL