Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Acta Psychiatr Scand ; 2024 Jun 18.
Article in English | MEDLINE | ID: mdl-38890010

ABSTRACT

BACKGROUND: Affective states influence the sympathetic nervous system, inducing variations in electrodermal activity (EDA), however, EDA association with bipolar disorder (BD) remains uncertain in real-world settings due to confounders like physical activity and temperature. We analysed EDA separately during sleep and wakefulness due to varying confounders and potential differences in mood state discrimination capacities. METHODS: We monitored EDA from 102 participants with BD including 35 manic, 29 depressive, 38 euthymic patients, and 38 healthy controls (HC), for 48 h. Fifteen EDA features were inferred by mixed-effect models for repeated measures considering sleep state, group and covariates. RESULTS: Thirteen EDA feature models were significantly influenced by sleep state, notably including phasic peaks (p < 0.001). During wakefulness, phasic peaks showed different values for mania (M [SD] = 6.49 [5.74, 7.23]), euthymia (5.89 [4.83, 6.94]), HC (3.04 [1.65, 4.42]), and depression (3.00 [2.07, 3.92]). Four phasic features during wakefulness better discriminated between HC and mania or euthymia, and between depression and euthymia or mania, compared to sleep. Mixed symptoms, average skin temperature, and anticholinergic medication affected the models, while sex and age did not. CONCLUSION: EDA measured from awake recordings better distinguished between BD states than sleep recordings, when controlled by confounders.

2.
Transl Psychiatry ; 14(1): 161, 2024 Mar 26.
Article in English | MEDLINE | ID: mdl-38531865

ABSTRACT

Mood disorders (MDs) are among the leading causes of disease burden worldwide. Limited specialized care availability remains a major bottleneck thus hindering pre-emptive interventions. MDs manifest with changes in mood, sleep, and motor activity, observable in ecological physiological recordings thanks to recent advances in wearable technology. Therefore, near-continuous and passive collection of physiological data from wearables in daily life, analyzable with machine learning (ML), could mitigate this problem, bringing MDs monitoring outside the clinician's office. Previous works predict a single label, either the disease state or a psychometric scale total score. However, clinical practice suggests that the same label may underlie different symptom profiles, requiring specific treatments. Here we bridge this gap by proposing a new task: inferring all items in HDRS and YMRS, the two most widely used standardized scales for assessing MDs symptoms, using physiological data from wearables. To that end, we develop a deep learning pipeline to score the symptoms of a large cohort of MD patients and show that agreement between predictions and assessments by an expert clinician is clinically significant (quadratic Cohen's κ and macro-average F1 score both of 0.609). While doing so, we investigate several solutions to the ML challenges associated with this task, including multi-task learning, class imbalance, ordinal target variables, and subject-invariant representations. Lastly, we illustrate the importance of testing on out-of-distribution samples.


Subject(s)
Affect , Mood Disorders , Humans , Mood Disorders/diagnosis , Machine Learning , Sleep
3.
JMIR Mhealth Uhealth ; 11: e45405, 2023 05 04.
Article in English | MEDLINE | ID: mdl-36939345

ABSTRACT

BACKGROUND: Depressive and manic episodes within bipolar disorder (BD) and major depressive disorder (MDD) involve altered mood, sleep, and activity, alongside physiological alterations wearables can capture. OBJECTIVE: Firstly, we explored whether physiological wearable data could predict (aim 1) the severity of an acute affective episode at the intra-individual level and (aim 2) the polarity of an acute affective episode and euthymia among different individuals. Secondarily, we explored which physiological data were related to prior predictions, generalization across patients, and associations between affective symptoms and physiological data. METHODS: We conducted a prospective exploratory observational study including patients with BD and MDD on acute affective episodes (manic, depressed, and mixed) whose physiological data were recorded using a research-grade wearable (Empatica E4) across 3 consecutive time points (acute, response, and remission of episode). Euthymic patients and healthy controls were recorded during a single session (approximately 48 h). Manic and depressive symptoms were assessed using standardized psychometric scales. Physiological wearable data included the following channels: acceleration (ACC), skin temperature, blood volume pulse, heart rate (HR), and electrodermal activity (EDA). Invalid physiological data were removed using a rule-based filter, and channels were time aligned at 1-second time units and segmented at window lengths of 32 seconds, as best-performing parameters. We developed deep learning predictive models, assessed the channels' individual contribution using permutation feature importance analysis, and computed physiological data to psychometric scales' items normalized mutual information (NMI). We present a novel, fully automated method for the preprocessing and analysis of physiological data from a research-grade wearable device, including a viable supervised learning pipeline for time-series analyses. RESULTS: Overall, 35 sessions (1512 hours) from 12 patients (manic, depressed, mixed, and euthymic) and 7 healthy controls (mean age 39.7, SD 12.6 years; 6/19, 32% female) were analyzed. The severity of mood episodes was predicted with moderate (62%-85%) accuracies (aim 1), and their polarity with moderate (70%) accuracy (aim 2). The most relevant features for the former tasks were ACC, EDA, and HR. There was a fair agreement in feature importance across classification tasks (Kendall W=0.383). Generalization of the former models on unseen patients was of overall low accuracy, except for the intra-individual models. ACC was associated with "increased motor activity" (NMI>0.55), "insomnia" (NMI=0.6), and "motor inhibition" (NMI=0.75). EDA was associated with "aggressive behavior" (NMI=1.0) and "psychic anxiety" (NMI=0.52). CONCLUSIONS: Physiological data from wearables show potential to identify mood episodes and specific symptoms of mania and depression quantitatively, both in BD and MDD. Motor activity and stress-related physiological data (EDA and HR) stand out as potential digital biomarkers for predicting mania and depression, respectively. These findings represent a promising pathway toward personalized psychiatry, in which physiological wearable data could allow the early identification and intervention of mood episodes.


Subject(s)
Bipolar Disorder , Depressive Disorder, Major , Humans , Female , Adult , Male , Depressive Disorder, Major/diagnosis , Depressive Disorder, Major/complications , Depressive Disorder, Major/psychology , Prospective Studies , Mania/complications , Bipolar Disorder/diagnosis , Biomarkers
4.
Front Comput Neurosci ; 16: 887633, 2022.
Article in English | MEDLINE | ID: mdl-36093418

ABSTRACT

Vast quantities of Magnetic Resonance Images (MRI) are routinely acquired in clinical practice but, to speed up acquisition, these scans are typically of a quality that is sufficient for clinical diagnosis but sub-optimal for large-scale precision medicine, computational diagnostics, and large-scale neuroimaging collaborative research. Here, we present a critic-guided framework to upsample low-resolution (often 2D) MRI full scans to help overcome these limitations. We incorporate feature-importance and self-attention methods into our model to improve the interpretability of this study. We evaluate our framework on paired low- and high-resolution brain MRI structural full scans (i.e., T1-, T2-weighted, and FLAIR sequences are simultaneously input) obtained in clinical and research settings from scanners manufactured by Siemens, Phillips, and GE. We show that the upsampled MRIs are qualitatively faithful to the ground-truth high-quality scans (PSNR = 35.39; MAE = 3.78E-3; NMSE = 4.32E-10; SSIM = 0.9852; mean normal-appearing gray/white matter ratio intensity differences ranging from 0.0363 to 0.0784 for FLAIR, from 0.0010 to 0.0138 for T1-weighted and from 0.0156 to 0.074 for T2-weighted sequences). The automatic raw segmentation of tissues and lesions using the super-resolved images has fewer false positives and higher accuracy than those obtained from interpolated images in protocols represented with more than three sets in the training sample, making our approach a strong candidate for practical application in clinical and collaborative research.

SELECTION OF CITATIONS
SEARCH DETAIL
...