ABSTRACT
PURPOSE: Shen-fu injection (SFI) was used to intervene in the resuscitation of porcine hemorrhagic shock (HS) model to study its protective effects on acute kidney injury. METHODS: After 60 min of HS, 28 animals were randomly assigned into four groups. The groups were as follows: hemorrhagic shock group (HS); HS resuscitation with shed-blood group (HSR); HS resuscitation with shed-blood and SFI (1 mL·kg-1) group (HSR-SFI); and the sham operation group (Sham). The bloods were analyzed for serum creatinine (sCr), cystatin C (CysC) and neutrophil gelatinase-associated lipocalin (NGAL). BAX, Bcl-2, and caspase-3 protein expressions by Western blot analysis and immunohistochemical staining. The renal tissues were removed and pathologic changes were observed. RESULTS: Mean aortic pressure (MAP) in HSR-SFI groups were higher than that in HSR groups after shock. At the 6th hour after shock, the urine volume per hour in the HSR-SFI groups was more than that in the HSR groups. The sCr, NGAL, CysC and cytokine levels of HSR-SFI groups were lower. The Bcl-2 expression was increased in the HSR-SFI groups. The BAX and caspase-3 expressions were reduced. The histopathologic score in the HSR-SFI was lower. CONCLUSIONS: SFI may reduce the risk of acute kidney injury (AKI) following hemorrhagic shock by attenuating systemic inflammatory responses, and regulating the expression of apoptosis-related proteins.
Subject(s)
Acute Kidney Injury , Shock, Hemorrhagic , Acute Kidney Injury/drug therapy , Acute Kidney Injury/prevention & control , Animals , Apoptosis , Cytokines , Drugs, Chinese Herbal , Shock, Hemorrhagic/drug therapy , SwineABSTRACT
ABSTRACT Purpose Shen-fu injection (SFI) was used to intervene in the resuscitation of porcine hemorrhagic shock (HS) model to study its protective effects on acute kidney injury. Methods After 60 min of HS, 28 animals were randomly assigned into four groups. The groups were as follows: hemorrhagic shock group (HS); HS resuscitation with shed-blood group (HSR); HS resuscitation with shed-blood and SFI (1 mL·kg-1) group (HSR-SFI); and the sham operation group (Sham). The bloods were analyzed for serum creatinine (sCr), cystatin C (CysC) and neutrophil gelatinase-associated lipocalin (NGAL). BAX, Bcl-2, and caspase-3 protein expressions by Western blot analysis and immunohistochemical staining. The renal tissues were removed and pathologic changes were observed. Results Mean aortic pressure (MAP) in HSR-SFI groups were higher than that in HSR groups after shock. At the 6th hour after shock, the urine volume per hour in the HSR-SFI groups was more than that in the HSR groups. The sCr, NGAL, CysC and cytokine levels of HSR-SFI groups were lower. The Bcl-2 expression was increased in the HSR-SFI groups. The BAX and caspase-3 expressions were reduced. The histopathologic score in the HSR-SFI was lower. Conclusions SFI may reduce the risk of acute kidney injury (AKI) following hemorrhagic shock by attenuating systemic inflammatory responses, and regulating the expression of apoptosis-related proteins.
Subject(s)
Animals , Shock, Hemorrhagic/drug therapy , Acute Kidney Injury/prevention & control , Acute Kidney Injury/drug therapy , Swine , Drugs, Chinese Herbal , Cytokines , ApoptosisABSTRACT
PROPOSE: We aimed to explore the potential molecular mechanism and independent prognostic genes for colon cancer (CC). METHODS: Microarray datasets GSE17536 and GSE39582 were downloaded from Gene Expression Omnibus. Meanwhile, the whole CC-related dataset were downloaded from The Cancer Genome Atlas (TCGA) database. Differentially expressed mRNA (DEMs) were identified between cancer tissue samples and para-carcinoma tissue samples in TCGA dataset, followed by the KEGG pathway and GO function analyses. Furthermore, the clinical prognostic analysis including overall survival (OS) and disease-free survival (DFS) were performed in all three datasets. RESULTS: A total of 633 up- and 321 down-regulated mRNAs were revealed in TCGA dataset. The up-regulated mRNAs were mainly assembled in functions including extracellular matrix and pathways including Wnt signaling. The down-regulated mRNAs were mainly assembled in functions like Digestion and pathways like Drug metabolism. Furthermore, up-regulation of UL16-binding protein 2 (ULBP2) was associated with OS in CC patients. A total of 12 DEMs including Surfactant Associated 2 (SFTA2) were potential DFS prognostic genes in CC patients. Meanwhile, the GRP and Transmembrane Protein 37 (TMEM37) were two outstanding independent DFS prognostic genes in CC. CONCLUSIONS: ULBP2 might be a potential novel OS prognostic biomarker in CC, while GRP and TMEM37 could be served as the independent DFS prognostic genes in CC. Furthermore, functions including extracellular matrix and digestion, as well as pathways including Wnt signaling and drug metabolism might play important roles in the process of CC.
Subject(s)
Colonic Neoplasms/diagnosis , Colonic Neoplasms/genetics , Gene Expression Profiling/methods , Animals , Biomarkers, Tumor/genetics , Biomarkers, Tumor/metabolism , Colonic Neoplasms/metabolism , Disease-Free Survival , Down-Regulation/genetics , GPI-Linked Proteins/genetics , GPI-Linked Proteins/metabolism , Gastrin-Releasing Peptide/genetics , Gastrin-Releasing Peptide/metabolism , Gene Expression Regulation, Neoplastic , Genetic Markers , Humans , Intercellular Signaling Peptides and Proteins/genetics , Intercellular Signaling Peptides and Proteins/metabolism , Kaplan-Meier Estimate , Microarray Analysis , Murinae , Pulmonary Surfactant-Associated Protein A/genetics , Pulmonary Surfactant-Associated Protein A/metabolism , RNA, Messenger/genetics , RNA, Messenger/metabolism , Risk Factors , Up-Regulation/geneticsABSTRACT
PROPOSE: We aimed to explore the potential molecular mechanism and independent prognostic genes for colon cancer (CC). METHODS: Microarray datasets GSE17536 and GSE39582 were downloaded from Gene Expression Omnibus. Meanwhile, the whole CC-related dataset were downloaded from The Cancer Genome Atlas (TCGA) database. Differentially expressed mRNA (DEMs) were identified between cancer tissue samples and para-carcinoma tissue samples in TCGA dataset, followed by the KEGG pathway and GO function analyses. Furthermore, the clinical prognostic analysis including overall survival (OS) and disease-free survival (DFS) were performed in all three datasets. RESULTS: A total of 633 up- and 321 down-regulated mRNAs were revealed in TCGA dataset. The up-regulated mRNAs were mainly assembled in functions including extracellular matrix and pathways including Wnt signaling. The down-regulated mRNAs were mainly assembled in functions like Digestion and pathways like Drug metabolism. Furthermore, up-regulation of UL16-binding protein 2 (ULBP2) was associated with OS in CC patients. A total of 12 DEMs including Surfactant Associated 2 (SFTA2) were potential DFS prognostic genes in CC patients. Meanwhile, the GRP and Transmembrane Protein 37 (TMEM37) were two outstanding independent DFS prognostic genes in CC. CONCLUSIONS: ULBP2 might be a potential novel OS prognostic biomarker in CC, while GRP and TMEM37 could be served as the independent DFS prognostic genes in CC. Furthermore, functions including extracellular matrix and digestion, as well as pathways including Wnt signaling and drug metabolism might play important roles in the process of CC.
Subject(s)
Humans , Animals , Colonic Neoplasms/diagnosis , Colonic Neoplasms/genetics , Gene Expression Profiling/methods , RNA, Messenger/genetics , RNA, Messenger/metabolism , Biomarkers, Tumor/genetics , Biomarkers, Tumor/metabolism , Genetic Markers , Down-Regulation/genetics , Gene Expression Regulation, Neoplastic , Up-Regulation/genetics , Risk Factors , Colonic Neoplasms/metabolism , Disease-Free Survival , Gastrin-Releasing Peptide/genetics , Gastrin-Releasing Peptide/metabolism , Intercellular Signaling Peptides and Proteins/genetics , Intercellular Signaling Peptides and Proteins/metabolism , Pulmonary Surfactant-Associated Protein A/genetics , Pulmonary Surfactant-Associated Protein A/metabolism , Microarray Analysis , Murinae , Kaplan-Meier Estimate , GPI-Linked Proteins/genetics , GPI-Linked Proteins/metabolismABSTRACT
PURPOSE:: To investigate the effect of intravascular cooling on renal function after resuscitation. METHODS:: Twenty four pigs were randomized into three groups (n=8 in each group): therapeutic hypothermia group (TH group), normothermia group (NH group) and sham operation group (SHAM group). After 6 minutes of untreated VF, CPR was performed. Upon ROSC, the TH group received the intravascular cooling. The NH and SHAM group did not undergo therapeutic hypothermia. Haemodynamic parameters were recorded. The bloods were analyzed for serum creatinine (sCr), CysC and NGAL. The kidney was surgically removed observe pathologic changes under a light microscope. RESULTS:: The sCr increased in both TH and NH groups after ROSC, compared to baseline. Between two groups, the sCr and creatinine clearance (Cc) showed lower level in the TH group. The urine volume per hour in the TH group were higher during cooling. After resuscitation, NGAL and CysC in the NH group were higher than in the TH group. Under the light microscope, compared with the TH group, the renal injury was prominent in the NH group. CONCLUSION:: Mild hypothermia had a protection to renal ischemia reperfusion injury after resuscitation.
Subject(s)
Cardiopulmonary Resuscitation/adverse effects , Hypothermia, Induced/methods , Kidney/physiopathology , Reperfusion Injury/therapy , Animals , Disease Models, Animal , Male , Random Allocation , Reperfusion Injury/etiology , Reperfusion Injury/physiopathology , SwineABSTRACT
Purpose: To investigate the effect of intravascular cooling on renal function after resuscitation. Methods: Twenty four pigs were randomized into three groups (n=8 in each group): therapeutic hypothermia group (TH group), normothermia group (NH group) and sham operation group (SHAM group). After 6 minutes of untreated VF, CPR was performed. Upon ROSC, the TH group received the intravascular cooling. The NH and SHAM group did not undergo therapeutic hypothermia. Haemodynamic parameters were recorded. The bloods were analyzed for serum creatinine (sCr), CysC and NGAL. The kidney was surgically removed observe pathologic changes under a light microscope. Results: The sCr increased in both TH and NH groups after ROSC, compared to baseline. Between two groups, the sCr and creatinine clearance (Cc) showed lower level in the TH group. The urine volume per hour in the TH group were higher during cooling. After resuscitation, NGAL and CysC in the NH group were higher than in the TH group. Under the light microscope, compared with the TH group, the renal injury was prominent in the NH group. Conclusion: Mild hypothermia had a protection to renal ischemia reperfusion injury after resuscitation.(AU)
Subject(s)
Animals , Hypothermia/complications , Ischemia , Reperfusion , Cardiopulmonary Resuscitation/trends , Swine/abnormalitiesABSTRACT
Abstract Purpose: To investigate the effect of intravascular cooling on renal function after resuscitation. Methods: Twenty four pigs were randomized into three groups (n=8 in each group): therapeutic hypothermia group (TH group), normothermia group (NH group) and sham operation group (SHAM group). After 6 minutes of untreated VF, CPR was performed. Upon ROSC, the TH group received the intravascular cooling. The NH and SHAM group did not undergo therapeutic hypothermia. Haemodynamic parameters were recorded. The bloods were analyzed for serum creatinine (sCr), CysC and NGAL. The kidney was surgically removed observe pathologic changes under a light microscope. Results: The sCr increased in both TH and NH groups after ROSC, compared to baseline. Between two groups, the sCr and creatinine clearance (Cc) showed lower level in the TH group. The urine volume per hour in the TH group were higher during cooling. After resuscitation, NGAL and CysC in the NH group were higher than in the TH group. Under the light microscope, compared with the TH group, the renal injury was prominent in the NH group. Conclusion: Mild hypothermia had a protection to renal ischemia reperfusion injury after resuscitation.