Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters











Database
Language
Publication year range
1.
Angew Chem Int Ed Engl ; 61(37): e202209121, 2022 Sep 12.
Article in English | MEDLINE | ID: mdl-35852031

ABSTRACT

Separation of CO2 /C2 H2 to obtain pure C2 H2 presents a challenge for the chemical industry. CO2 -selective adsorbents are favored because of the convenient separation process. However, there are only a few CO2 -selective adsorbents that can effectively isolate CO2 from CO2 /C2 H2 , and there is almost no research on CO2 /C2 H2 separation under harsh conditions, such as with high temperatures and humidities. Herein, a zeolitic octahedral metal oxide based on ϵ-Keggin polyoxometalates is utilized for separations of CO2 /C2 H2 at high temperatures and humidities. Single gas adsorption measurements show that the material only adsorbs CO2 with almost no C2 H2 taken up. Dynamic competitive adsorption experiments show that the material efficiently separates CO2 /C2 H2 , and highly pure C2 H2 is obtained directly. The robust material maintains a high separation performance at 333 K with 18.12 % water. The high stability of the material enables reuse without loss of separation performance.

2.
Chemistry ; 28(41): e202200618, 2022 Jul 20.
Article in English | MEDLINE | ID: mdl-35581526

ABSTRACT

Zeolitic octahedral metal oxides are inorganic crystalline microporous materials with adsorption and redox properties. New ϵ-Keggin nickel molybdate-based zeolitic octahedral metal oxides have been synthesized. 31 P NMR spectroscopy shows that reduction of MoVI -based molybdates forms an ϵ-Keggin polyoxometalate that immediately transfers to the solid phase. Investigation of the formation process indicates that a low Ni concentration, insoluble reducing agent, and long synthesis time are the critical factors for obtaining the zeolite octahedral metal oxides rather than the ϵ-Keggin polyoxometalate molecule. The synthesized zeolitic nickel molybdate with Na+ is used as the adsorbent, which effectively separates C2 hydrocarbon mixtures.

SELECTION OF CITATIONS
SEARCH DETAIL