ABSTRACT
BACKGROUND AND AIMS: Therapeutic, clinical trial entry and stratification decisions for hepatocellular carcinoma (HCC) are made based on prognostic assessments, using clinical staging systems based on small numbers of empirically selected variables that insufficiently account for differences in biological characteristics of individual patients' disease. APPROACH AND RESULTS: We propose an approach for constructing risk scores from circulating biomarkers that produce a global biological characterization of individual patient's disease. Plasma samples were collected prospectively from 767 patients with HCC and 200 controls, and 317 proteins were quantified in a Clinical Laboratory Improvement Amendments-certified biomarker testing laboratory. We constructed a circulating biomarker aberration score for each patient, a score between 0 and 1 that measures the degree of aberration of his or her biomarker panel relative to normal, which we call HepatoScore. We used log-rank tests to assess its ability to substratify patients within existing staging systems/prognostic factors. To enhance clinical application, we constructed a single-sample score, HepatoScore-14, which requires only a subset of 14 representative proteins encompassing the global biological effects. Patients with HCC were split into three distinct groups (low, medium, and high HepatoScore) with vastly different prognoses (medial overall survival 38.2/18.3/7.1 months; P < 0.0001). Furthermore, HepatoScore accurately substratified patients within levels of existing prognostic factors and staging systems (P < 0.0001 for nearly all), providing substantial and sometimes dramatic refinement of expected patient outcomes with strong therapeutic implications. These results were recapitulated by HepatoScore-14, rigorously validated in repeated training/test splits, concordant across Myriad RBM (Austin, TX) and enzyme-linked immunosorbent assay kits, and established as an independent prognostic factor. CONCLUSIONS: HepatoScore-14 augments existing HCC staging systems, dramatically refining patient prognostic assessments and therapeutic decision making and enrollment in clinical trials. The underlying strategy provides a global biological characterization of disease, and can be applied broadly to other disease settings and biological media.
Subject(s)
Biomarkers, Tumor/blood , Carcinoma, Hepatocellular/blood , Liver Neoplasms/blood , Severity of Illness Index , Carcinoma, Hepatocellular/pathology , Case-Control Studies , Female , Humans , Liver Neoplasms/pathology , Male , Predictive Value of Tests , Prognosis , Proportional Hazards Models , Risk FactorsABSTRACT
Background A simple, rapid, low-cost and environmentally friendly method was developed to determine dopamine (DA) in the presence of ascorbic (AA) and uric acid (UA) based on a novel technique to prepare a graphene-chitosan (GR-CS) nanocomposite and modify it on the surface of carbon paste electrode (CPE). For our design, CS acts as a media to disperse and stabilize GR, and then GR plays a key role to selective and sensitive determination of DA. Results Under physiological conditions, the linear range for dopamine was determined from 1 × 10- 4 to 2 × 10- 7 mol/L with a good correlation coefficient of 0.9961 in the presence of 1000-fold interference of AA and UA. The detection limit was estimated to be 9.82 × 10- 8 mol/L (S/N = 3). In order to study the stability and reproducibility, GR/CS/CPE underwent successive measurements in 10 times and then tested once a d for 30 d. The result exhibited 98.25% and 91.62% activities compared with the original peak current after 10-time measurements and 30-d storage. Conclusion The GR/CS/CPE has wide linear concentration range, low detection limit, and good reproducibility and stability, which suggests that our investigations provide a promising alternative for clinic DA determination.