Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters











Database
Language
Publication year range
1.
Acta Orthop Traumatol Turc ; 58(2): 89-94, 2024 Apr 26.
Article in English | MEDLINE | ID: mdl-39115800

ABSTRACT

This study aimed to compare the biomechanical performance of an intramedullary nail combined with a reconstruction plate and a single intramedullary nail in the treatment of unstable intertrochanteric femoral fractures with a fracture of the lateral femoral wall (LFW). A three-dimensional finite element (FE) femur model was established from computed tomography images of a healthy male volunteer. A major reverse obliquity fracture line, associated with a lesser trochanteric fragment defect and a free bone fragment of the LFW, was developed to create an AO/OTA type 31-A3.3 unstable intertrochanteric fracture mode. Two fixation styles were simulated: a long InterTAN nail (ITN) with or without a reconstruction plate (RP). A vertical load of 2100 N was applied to the femoral head to simulate normal walking. The construct stiffness, von Mises stress, and model displacement were assessed. The ITN with RP fixation (ITN/RP) provided higher axial stiffness (804 N/mm) than the ITN construct (621 N/mm). The construct stiffness of ITN/RP fixation was 29% higher than that of ITN fixation. The peak von Mises stress of the implants in the ITN/RP and ITN models was 994.46 MPa and 1235.24 MPa, respectively. The peak stress of the implants in the ITN/RP model decreased by 24% compared to that of the ITN model. The peak von Mises stress of the femur in the ITN/RP model was 269.06 MPa, which was lower than that of the ITN model (331.37 MPa). The peak stress of the femur in the ITN/RP model was 23% lower than that of the ITN model. The maximum displacements of the ITN/RP and ITN models were 12.12 mm and 13.53 mm, respectively. The maximum displacement of the ITN/RP model decreased by 12% compared with that of the ITN model. The study suggested that an additional plate fixation could increase the construct stiffness, reduce the stresses in the implant and femur, and decrease displacement after intramedullary nailing. Therefore, the intramedullary nail and reconstruction plate combination may provide biomechanical advantages over the single intramedullary nail in unstable intertrochanteric fractures with a fractured LFW.


Subject(s)
Bone Nails , Bone Plates , Finite Element Analysis , Fracture Fixation, Intramedullary , Hip Fractures , Humans , Fracture Fixation, Intramedullary/methods , Fracture Fixation, Intramedullary/instrumentation , Male , Biomechanical Phenomena , Hip Fractures/surgery , Femoral Fractures/surgery , Tomography, X-Ray Computed/methods , Femur/surgery
2.
Acta Orthop Traumatol Turc ; 55(1): 9-15, 2021 Jan.
Article in English | MEDLINE | ID: mdl-33650504

ABSTRACT

OBJECTIVE: The aim of this study was to evaluate the strength of the locking plate and lag screw construct that is applied in two different working lengths on the simple distal femur fracture model with a finite element analysis (FEA) method. METHODS: From the computerized tomography scan data of a 60-year-old healthy male, the AO/OTA 33A1-type fracture model was simulated; the fracture gap was stabilized with the models of locking plate construct with (groups C and D) or without an interfragmentary lag screw (groups A and B). Furthermore, 102-mm plate (groups A and C) and 82-mm plate working lengths (groups B and D) were tested using FEA. Two loading conditions (axial compression and torsion) were applied at the center of the femoral head. Construct stiffness, interfragmentary micromotion, and the peak von Mises stress (VMS) on the plate were assessed. RESULTS: Group D provided the highest axial stiffness (1347 N/mm), and group A was the weakest (439 N/mm). With the lag screw, shear micromotion remained generally low compared with that without the screw for all axial and torsional load levels and for both plate working lengths, i.e., 0.23 mm with lag screw versus 0.43 mm without lag screw (102 mm working length, 700 N). The percentage decreases of shear micromotion under axial (350/700/1400 N) and torsional loads for the 102-mm working length were >22% and 73%, respectively; while those for the 82-mm working length were >28% and 33%, respectively. The reduction of axial micromotion was observed with the lag screw for all axial load levels as well as for both plate working lengths, i.e., 0.33 mm with lag screw versus 0.87 mm without lag screw (102-mm working length, 700 N). The percentage decreases of axial micromotion under axial loading (350/700/1400 N) for 102 mm and 82 mm working lengths were >42% and 50%, respectively. The peak VMS on the plate stayed generally low with lag screw compared with without lag screw throughout all tested load levels, as well as for both plate working lengths, i.e., 124.26 MPa versus 244.39 MPa (102 mm working length, 700 N). The percentage decreases of the peak VMS under axial (350/700/1400 N) and torsional loads for the 102-mm working length were >40% and 69%, respectively, while those for the 82-mm working length were >47% and 61%, respectively. CONCLUSION: The current FEA concludes that in a simple distal femur fracture, adding a lag screw to a locking plate construct provides better torsional stability with a 102-mm plate working length and better axial stability with a 82-mm plate working length. Additionally, the strength of the materials is increased and implant failure can be minimized by using this technique.


Subject(s)
Femoral Fractures/surgery , Fracture Fixation, Internal , Biomechanical Phenomena , Bone Plates , Bone Screws , Computer Simulation , Finite Element Analysis , Fracture Fixation, Internal/instrumentation , Fracture Fixation, Internal/methods , Humans , Male , Middle Aged , Models, Anatomic
3.
Toxicol Appl Pharmacol ; 305: 143-152, 2016 08 15.
Article in English | MEDLINE | ID: mdl-27282297

ABSTRACT

Chronic exposure to cadmium compounds (Cd(2+)) is one of the major public health problems facing humans in the 21st century. Cd(2+) in the human body accumulates primarily in the kidneys which leads to renal dysfunction and other adverse health effects. Efforts to find a safe and effective drug for removing Cd(2+) from the kidneys have largely failed. We developed and synthesized a new chemical, sodium (S)-2-(dithiocarboxylato((2S,3R,4R,5R)-2,3,4,5,6 pentahydroxyhexyl)amino)-4-(methylthio) butanoate (GMDTC). Here we report that GMDTC has a very low toxicity with an acute lethal dose (LD50) of more than 10,000mg/kg or 5000mg/kg body weight, respectively, via oral or intraperitoneal injection in mice and rats. In in vivo settings, up to 94% of Cd(2+) deposited in the kidneys of Cd(2+)-laden rabbits was removed and excreted via urine following a safe dose of GMDTC treatment for four weeks, and renal Cd(2+) level was reduced from 12.9µg/g to 1.3µg/g kidney weight. We observed similar results in the mouse and rat studies. Further, we demonstrated both in in vitro and in animal studies that the mechanism of transporting GMDTC and GMDTC-Cd complex into and out of renal tubular cells is likely assisted by two glucose transporters, sodium glucose cotransporter 2 (SGLT2) and glucose transporter 2 (GLUT2). Collectively, our study reports that GMDTC is safe and highly efficient in removing deposited Cd(2+) from kidneys assisted by renal glucose reabsorption system, suggesting that GMDTC may be the long-pursued agent used for preventive and therapeutic purposes for both acute and chronic Cd(2+) exposure.


Subject(s)
Cadmium/metabolism , Chelating Agents/pharmacology , Glucosamine/analogs & derivatives , Kidney/metabolism , Methionine/analogs & derivatives , Animals , Cadmium/blood , Cadmium/urine , Cell Line , Chelating Agents/toxicity , Female , Glucosamine/pharmacology , Glucosamine/toxicity , Glucose/metabolism , Glucose Transporter Type 2/metabolism , Humans , Male , Methionine/pharmacology , Methionine/toxicity , Rabbits , Rats, Sprague-Dawley , Sodium-Glucose Transporter 2/metabolism , Toxicity Tests, Acute , Toxicity Tests, Subchronic
4.
J Chromatogr A ; 979(1-2): 307-14, 2002 Dec 06.
Article in English | MEDLINE | ID: mdl-12498262

ABSTRACT

We are interested in the detection of DNA adducts and other trace analytes by labeling them with a fluorescent tag followed by use of capillary electrophoresis with laser-induced fluorescence detection (CE-LIF) for high resolution and sensitivity. Towards this goal, here we report the following: (1) synthesis and handling properties of a near-IR, carboxyl-substituted heptamethine cyanine dye; (2) modification of an existing ball lens LIF detector to provide near-LIF detection with excitation at 785 nm for CE; and (3) corresponding handling and detection of as little as 0.8 amol of the dye by enrich-injection of 4.7 microl of 1 x 10(-13) mol/l dye in methanol from an 8-microl volume into a corresponding CE-LIF system. The electrolyte for the separation was methanol-40 mmol/l aqueous sodium borate (98:2, v/v). This finding encourages further exploration of the dye by functionalization of its carboxyl group for chemical labeling purposes.


Subject(s)
Carbocyanines/analysis , Coloring Agents/analysis , Electrophoresis, Capillary/methods , Spectrometry, Fluorescence/methods , Lasers , Magnetic Resonance Spectroscopy , Spectroscopy, Near-Infrared
SELECTION OF CITATIONS
SEARCH DETAIL