Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 447
Filter
1.
ACS Nano ; 2024 Jul 17.
Article in English | MEDLINE | ID: mdl-39020456

ABSTRACT

Timely blood reperfusion after myocardial infarction (MI) paradoxically triggers ischemia-reperfusion injury (I/RI), which currently has not been conquered by clinical treatments. Among innovative repair strategies for myocardial I/RI, microRNAs (miRNAs) are expected as genetic tools to rescue damaged myocardium. Our previous study identified that miR-30d can provide protection against myocardial apoptosis and fibrosis to alleviate myocardial injury. Although common methods such as liposomes and viral vectors have been used for miRNA transfection, their therapeutic efficiencies have struggled with inefficient in vivo delivery, susceptible inactivation, and immunogenicity. Here, we establish a nanoparticle-patch system for miR-30d delivery in a murine myocardial I/RI model, which contains ZIF-8 nanoparticles and a conductive microneedle patch. Loaded with miR-30d, ZIF-8 nanoparticles leveraging the proton sponge effect enable miR-30d to escape the endocytic pathway, thus avoiding premature degradation in lysosomes. Meanwhile, the conductive microneedle patch offers a distinct advantage by intramyocardial administration for localized, effective, and sustained miR-30d delivery, and it simultaneously releases Au nanoparticles to reconstruct electrical impulses within the infarcted myocardium. Consequently, the nanoparticle-patch system supports the consistent and robust expression of miR-30d in cardiomyocytes. Results from echocardiography and electrocardiogram (ECG) revealed improved heart functions and standard ECG wave patterns in myocardial I/RI mice after implantation of a nanoparticle-patch system for 3 and 6 weeks. In summary, our work incorporated conductive microneedle patch and miR-30d nanodelivery systems to synergistically transcend the limitations of common RNA transfection methods, thus mitigating myocardial I/RI.

2.
Angew Chem Int Ed Engl ; : e202410525, 2024 Jul 23.
Article in English | MEDLINE | ID: mdl-39041715

ABSTRACT

Directional electron flow in the photocatalyst enables efficient charge separation, which is essential for efficient photocatalysis of H2 production. Here, we report a novel class of tetracationic cyclophanes (7) incorporating bipyridine Pt(II) and selenoviologen. X-ray single-crystal structures reveal that 7 not only fixes the distances and spatial positions between its individual units but also exhibits a box-like rigid electron-deficient cavity. Moreover, host-guest recognition phenomena are observed between 7 and ferrocene, forming host-guest complexes with a 1:1 stoichiometry in MeCN. 7 exhibits good redox properties, narrow energy gaps, and strong absorption in the visible range (370-500 nm) due to containing two selenoviologen (SeV2+) units. Meanwhile, the femtosecond transient absorption (fs-TA) reveals that 7 has stabilized dicationic biradical, efficient charge separation, and facilitates directional electron flow to achieve efficient electron transfer due to the formation of rigid cyclophane and electronic architecture. Then, 7 is applied to visible-light-driven hydrogen evolution with high hydrogen production (132 µmol), generation rate (11 µmol/h), turnover number (221), and apparent quantum yield (1.7%), which provides a simplified and efficient photocatalytic strategy for solar energy conversion.

3.
Genes Dis ; 11(5): 101045, 2024 Sep.
Article in English | MEDLINE | ID: mdl-38988321

ABSTRACT

RNA N6-methyladenosine (m6A) methylation is the most abundant and conserved RNA modification in eukaryotes. It participates in the regulation of RNA metabolism and various pathophysiological processes. Non-coding RNAs (ncRNAs) are defined as small or long transcripts which do not encode proteins and display numerous biological regulatory functions. Similar to mRNAs, m6A deposition is observed in ncRNAs. Studying RNA m6A modifications on ncRNAs is of great importance specifically to deepen our understanding of their biological roles and clinical implications. In this review, we summarized the recent research findings regarding the mutual regulation between RNA m6A modification and ncRNAs (with a specific focus on microRNAs, long non-coding RNAs, and circular RNAs) and their functions. We also discussed the challenges of m6A-containing ncRNAs and RNA m6A as therapeutic targets in human diseases and their future perspective in translational roles.

4.
Med Mol Morphol ; 2024 Jul 30.
Article in English | MEDLINE | ID: mdl-39078440

ABSTRACT

Angiomatoid fibrous histiocytoma (AFH) is a soft tissue tumor of uncertain differentiation. Although its prognosis is good, its diagnosis and differential diagnosis remain a challenge, particularly for tumors with an atypical morphology. We evaluated the clinicopathological characteristics of 14 AFH cases and examined the key factors in its diagnosis or differential diagnosis. The cohort comprised 6 men and 8 women aged 9-65 years (average age: 31.2 years). Most of the tumors (11/14, 79%) were located in soft tissues, whereas 3/14 (21%) were located in the lung (1 case) and brain (2 cases). Tumor cells were spindle-shaped to epithelioid, with a visible fibrous capsule (9/14, 64%), hemorrhagic gap (9/14, 64%), lymphocyte sleeve (7/14, 50%), necrosis (3/14, 21%), and infiltrative boundary (4/14, 29%). The tumors expressed desmin (10/14, 71%) and exhibited low levels of Ki-67. 13 cases (93%) displayed ESWSR1 gene rearrangement. At follow-up, 1 case (7%) experienced local tumor recurrence. AFH is a rare intermediate tumor. Its pathological diagnosis requires a comprehensive analysis of histological, immunophenotypic, and molecular genetic features to avoid misdiagnosis. Our study has further enriched the histological features of AFH, emphasizing the importance of differential diagnosis and providing a reference for clinical practice.

5.
Polymers (Basel) ; 16(11)2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38891512

ABSTRACT

The application of hexanitrohexaazaisowurtzitane (HNIW) as an oxidizer in solid propellants aligns with the pursuit of high-energy materials. However, the phase transformation behavior and high impact sensitivity of HNIW are its limitations. Due to the strong adhesion and mild synthesis conditions, polydopamine (PDA) has been employed to modify HNIW. However, the method suffers from a slow coating process and a non-ideal coating effect under short reaction time. Herein, oxygen-accelerated dopamine in situ polymerization coating method was developed. It was found that oxygen not only reduced the coating time but also contributed to forming a dense and uniform PDA layer. HNIW@PDA coated in oxygen for 6 h exhibited the most favorable performance, with a delay of 20.8 °C in the phase transition temperature and a reduction of 145.45% in the impact sensitivity. The -OH groups on the surface of PDA enhanced the interaction between HNIW and polymer binders, resulting in a 20.36% reduction in the dewetting percentage. The lower content of PDA in HNIW@PDA (1.17%) resulted in minimal variation in the heat of explosion for HNIW@PDA-based HTPB propellant (6287 kJ/kg) in comparison to HNIW-based HTPB propellant (6297 kJ/kg). Hence, HNIW@PDA-based propellants are expected to offer an alternative with promising safety and mechanical performance compared to existing HNIW-based propellants, thus facilitating the application of HNIW in high-energy propellants. This work presents a low-cost method for efficiently inhibiting the phase transformation of polycrystalline explosives and reducing the impact sensitivity. It also offers a potential approach to enhance the interfacial interaction between nitro-containing explosives and polymer binders.

6.
Immunology ; 2024 Jun 10.
Article in English | MEDLINE | ID: mdl-38859694

ABSTRACT

SET domain-containing 2 (SETD2) is a histone methyltransferase. It regulates the activity of H3K36me3 to enhance gene transcription. Macrophages (Mϕs) are one of the cell types involved in immune response. The purpose of this study is to clarify the role of SETD2 in regulating the immune property of Mϕ. The Mφs were isolated from the bronchoalveolar lavage fluid (BALF) and analysed through flow cytometry and RNA sequencing. A mouse strain carrying Mφs deficient in SETD2 was used. A mouse model of airway allergy was established with the ovalbumin/alum protocol. Less expression of SETD2 was observed in airway Mϕs in patients with allergic asthma. SETD2 of M2 cells was associated with the asthmatic clinical response. Sensitization reduced the expression of SETD2 in mouse respiratory tract M2 cells, which is associated with the allergic reaction. Depletion of SETD2 in Mφs resulted in Th2 pattern inflammation in the lungs. SETD2 maintained the immune regulatory ability in airway M2 cells. SETD2 plays an important role in the maintenance of immune regulatory property of airway Mφs.

7.
Front Cell Infect Microbiol ; 14: 1385562, 2024.
Article in English | MEDLINE | ID: mdl-38846353

ABSTRACT

Background: Lower respiratory tract infections represent prevalent ailments. Nonetheless, current comprehension of the microbial ecosystems within the lower respiratory tract remains incomplete and necessitates further comprehensive assessment. Leveraging the advancements in metagenomic next-generation sequencing (mNGS) technology alongside the emergence of machine learning, it is now viable to compare the attributes of lower respiratory tract microbial communities among patients across diverse age groups, diseases, and infection types. Method: We collected bronchoalveolar lavage fluid samples from 138 patients diagnosed with lower respiratory tract infections and conducted mNGS to characterize the lung microbiota. Employing various machine learning algorithms, we investigated the correlation of key bacteria in patients with concurrent bronchiectasis and developed a predictive model for hospitalization duration based on these identified key bacteria. Result: We observed variations in microbial communities across different age groups, diseases, and infection types. In the elderly group, Pseudomonas aeruginosa exhibited the highest relative abundance, followed by Corynebacterium striatum and Acinetobacter baumannii. Methylobacterium and Prevotella emerged as the dominant genera at the genus level in the younger group, while Mycobacterium tuberculosis and Haemophilus influenzae were prevalent species. Within the bronchiectasis group, dominant bacteria included Pseudomonas aeruginosa, Haemophilus influenzae, and Klebsiella pneumoniae. Significant differences in the presence of Pseudomonas phage JBD93 were noted between the bronchiectasis group and the control group. In the group with concomitant fungal infections, the most abundant genera were Acinetobacter and Pseudomonas, with Acinetobacter baumannii and Pseudomonas aeruginosa as the predominant species. Notable differences were observed in the presence of Human gammaherpesvirus 4, Human betaherpesvirus 5, Candida albicans, Aspergillus oryzae, and Aspergillus fumigatus between the group with concomitant fungal infections and the bacterial group. Machine learning algorithms were utilized to select bacteria and clinical indicators associated with hospitalization duration, confirming the excellent performance of bacteria in predicting hospitalization time. Conclusion: Our study provided a comprehensive description of the microbial characteristics among patients with lower respiratory tract infections, offering insights from various perspectives. Additionally, we investigated the advanced predictive capability of microbial community features in determining the hospitalization duration of these patients.


Subject(s)
Bacteria , Bronchoalveolar Lavage Fluid , High-Throughput Nucleotide Sequencing , Machine Learning , Metagenomics , Microbiota , Respiratory Tract Infections , Humans , Metagenomics/methods , Middle Aged , Respiratory Tract Infections/microbiology , Respiratory Tract Infections/virology , Aged , Male , Female , Adult , Bacteria/classification , Bacteria/genetics , Bacteria/isolation & purification , Bronchoalveolar Lavage Fluid/microbiology , Microbiota/genetics , Young Adult , Bronchiectasis/microbiology , Aged, 80 and over , Metagenome , Adolescent , Lung/microbiology , Lung/virology , Hospitalization
8.
Adv Sci (Weinh) ; : e2401940, 2024 Jun 17.
Article in English | MEDLINE | ID: mdl-38881508

ABSTRACT

Droplet transmission is the primary infection route for respiratory diseases like COVID-19 and influenza, but small and low-cost wearable droplet detection devices are a significant challenge. Herein, a respiratory droplet micro-sensor based on graphene oxide quantum dots (GOQDs) assembled onto SiO2 microspheres by the nebulized natural deposition is presented. Benefiting from the energy dissipation of the microsphere to droplets, the sensor can detect droplets as far as 2 m from coughing. With this sensor, droplet signal variations caused by some factors like distance, speech, angles, and wind directions are explored, and the effectiveness of different protective measures in preventing droplet transmission is evaluated. This droplet detection technology is expected to be utilized for the development of personal detection and protection devices against infectious respiratory diseases.

9.
Exp Cell Res ; 440(1): 114117, 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38848952

ABSTRACT

PURPOSE: Membrane associated ubiquitin ligase MARCH2 majorly involves in inflammation response and protein trafficking. However, its comprehensive role in hepatocellular carcinoma (HCC) is largely unknown. METHODS: Firstly, multiple bioinformatic analyses were applied to determine MARCH2 mRNA level, its expression comparison in diverse molecular and immune subtypes, and diagnostic value in HCC. Subsequently, RNA-seq, real-time quantitative PCR, immunohistochemistry and cell proliferation assay are used to explore the epithelial-mesenchymal transition (EMT) and proliferation by gene-silencing or overexpressing in cultured HCC cells or in vivo xenograft. Moreover, dual luciferase reporter assay and immunoblotting are delved into verify the transcription factor that activating MARCH2 promoter. RESULTS: Multiple bioinformatic analyses demonstrate that MARCH2 is upregulated in multiple cancer types and exhibits startling diagnostic value as well as distinct molecular and immune subtypes in HCC. RNA-seq analysis reveals MARCH2 may promote EMT, cell proliferation and migration in HepG2 cells. Furthermore, overexpression of MARCH2 triggers EMT and significantly enhances HCC cell migration, proliferation and colony formation in a ligase activity-dependent manner. Additionally, above observations are validated in the HepG2 mice xenografts. For up-stream mechanism, transcription factor KLF15 is highly expressed in HCC and activates MARCH2 expression. CONCLUSION: KLF15 activated MARCH2 triggers EMT and serves as a fascinating biomarker for precise diagnosis of HCC. Consequently, MARCH2 emerges as a promising candidate for target therapy in cancer management.


Subject(s)
Carcinoma, Hepatocellular , Cell Movement , Cell Proliferation , Epithelial-Mesenchymal Transition , Gene Expression Regulation, Neoplastic , Kruppel-Like Transcription Factors , Liver Neoplasms , Ubiquitin-Protein Ligases , Animals , Female , Humans , Male , Mice , Biomarkers, Tumor/genetics , Biomarkers, Tumor/metabolism , Carcinoma, Hepatocellular/pathology , Carcinoma, Hepatocellular/genetics , Carcinoma, Hepatocellular/diagnosis , Carcinoma, Hepatocellular/metabolism , Cell Movement/genetics , Cell Proliferation/genetics , Epithelial-Mesenchymal Transition/genetics , Hep G2 Cells , Kruppel-Like Transcription Factors/genetics , Kruppel-Like Transcription Factors/metabolism , Liver Neoplasms/pathology , Liver Neoplasms/genetics , Liver Neoplasms/metabolism , Liver Neoplasms/diagnosis , Mice, Inbred BALB C , Mice, Nude , Ubiquitin-Protein Ligases/genetics , Ubiquitin-Protein Ligases/metabolism
10.
Cell Immunol ; 401-402: 104829, 2024.
Article in English | MEDLINE | ID: mdl-38754338

ABSTRACT

Eosinophils account for a significant portion of immune cells in the body. It is well known that eosinophils play a role in the pathogenesis of many diseases. In which the interaction between eosinophils and other immune cells is incompletely understood. The aim of this study is to characterize the immune suppressive functions of eosinophils. In this study, an irway allergy mouse model was established. Eosinophils were isolated from the airway tissues using flow cytometry cell sorting. The RAW264.7 cell line was used to test the immune suppressive functions of eosinophils. We observed that eosinophils had immune suppressive functions manifesting inhibiting immune cell proliferation and cytokine release from other immune cells. The eosinophil's immune suppressive functions were mediated by eosinophil-derived molecules, such as eosinophil peroxidase (EPX) and major basic protein (MBP). The expression of Ras-like protein in the brain 27a (Rab27a) was detected in eosinophils, which controlled the release of MBP and EPX by eosinophils. Eosinophil mediators had two contrast effects on inducing inflammatory responses or rendering immune suppressive effects, depending on the released amounts. Administration of an inhibitor of Rab27a at proper dosage could alleviate experimental airway allergy. To sum up, eosinophils have immune suppressive functions and are also inflammation inducers. Rab27a governs the release of EPX and MBP from eosinophils, which leads to immune suppression or inflammation. Modulation of Rab27a can alleviate airway allergy responses by modulating eosinophil's immune suppressive functions, which has the translational potential for the management of eosinophil-related diseases.


Subject(s)
Eosinophil Peroxidase , Eosinophils , Animals , Eosinophils/immunology , Eosinophils/metabolism , Mice , RAW 264.7 Cells , Eosinophil Peroxidase/metabolism , Mice, Inbred BALB C , Cytokines/metabolism , Cytokines/immunology , Disease Models, Animal , Eosinophil Major Basic Protein/metabolism , Eosinophil Major Basic Protein/immunology , Female , Hypersensitivity/immunology , Cell Proliferation , Inflammation/immunology
11.
Circulation ; 2024 May 06.
Article in English | MEDLINE | ID: mdl-38708602

ABSTRACT

BACKGROUND: Exercise-induced physiological cardiac growth regulators may protect the heart from ischemia/reperfusion (I/R) injury. Homeobox-containing 1 (Hmbox1), a homeobox family member, has been identified as a putative transcriptional repressor and is downregulated in the exercised heart. However, its roles in exercise-induced physiological cardiac growth and its potential protective effects against cardiac I/R injury remain largely unexplored. METHODS: We studied the function of Hmbox1 in exercise-induced physiological cardiac growth in mice after 4 weeks of swimming exercise. Hmbox1 expression was then evaluated in human heart samples from deceased patients with myocardial infarction and in the animal cardiac I/R injury model. Its role in cardiac I/R injury was examined in mice with adeno-associated virus 9 (AAV9) vector-mediated Hmbox1 knockdown and in those with cardiac myocyte-specific Hmbox1 ablation. We performed RNA sequencing, promoter prediction, and binding assays and identified glucokinase (Gck) as a downstream effector of Hmbox1. The effects of Hmbox1 together with Gck were examined in cardiomyocytes to evaluate their cell size, proliferation, apoptosis, mitochondrial respiration, and glycolysis. The function of upstream regulator of Hmbox1, ETS1, was investigated through ETS1 overexpression in cardiac I/R mice in vivo. RESULTS: We demonstrated that Hmbox1 downregulation was required for exercise-induced physiological cardiac growth. Inhibition of Hmbox1 increased cardiomyocyte size in isolated neonatal rat cardiomyocytes and human embryonic stem cell-derived cardiomyocytes but did not affect cardiomyocyte proliferation. Under pathological conditions, Hmbox1 was upregulated in both human and animal postinfarct cardiac tissues. Furthermore, both cardiac myocyte-specific Hmbox1 knockout and AAV9-mediated Hmbox1 knockdown protected against cardiac I/R injury and heart failure. Therapeutic effects were observed when sh-Hmbox1 AAV9 was administered after I/R injury. Inhibition of Hmbox1 activated the Akt/mTOR/P70S6K pathway and transcriptionally upregulated Gck, leading to reduced apoptosis and improved mitochondrial respiration and glycolysis in cardiomyocytes. ETS1 functioned as an upstream negative regulator of Hmbox1 transcription, and its overexpression was protective against cardiac I/R injury. CONCLUSIONS: Our studies unravel a new role for the transcriptional repressor Hmbox1 in exercise-induced physiological cardiac growth. They also highlight the therapeutic potential of targeting Hmbox1 to improve myocardial survival and glucose metabolism after I/R injury.

12.
Sports Med Health Sci ; 6(2): 200-203, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38708321

ABSTRACT

Exercise prescriptions play a vital role in the prevention and treatment of chronic diseases. A consensus regarding exercise prescription is important for physical health. The "Consensus statement of Chinese experts on exercise prescription" (hereinafter referred to as "Expert Consensus") divides exercise prescription into two categories: fitness exercise prescription and medical exercise prescription. Traditional Chinese fitness exercises, exercise risk, exercise prescription, and basic precautions for exercise prescription are explained.

13.
Mol Aspects Med ; 97: 101274, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38653129

ABSTRACT

Physical exercise has been widely acknowledged as a beneficial lifestyle alteration and a potent non-pharmacological treatment for heart disease. Extensive investigations have revealed the beneficial effects of exercise on the heart and the underlying mechanisms involved. Exercise is considered one of the key factors that can lead to epigenetic alterations. The increasing number of identified molecules in the exercised heart has led to many studies in recent years that have explored the cellular function of ncRNAs and RNA modifications in the heart. Investigating the regulatory role of RNA-mediated epigenetic regulation in exercised hearts will contribute to the development of therapeutic strategies for the management of heart diseases. This review aims to summarize the positive impact of exercise on cardiac health. We will first provide an overview of the mechanisms through which exercise offers protection to the heart. Subsequently, we will delve into the current understanding of ncRNAs, specifically miRNAs, lncRNAs, and circRNAs, as well as RNA modification, focusing on RNA m6A and RNA A-to-I editing, and how they contribute to exercise-induced benefits for the heart. Lastly, we will explore the emerging therapeutic strategies that utilize exercise-mediated RNA epigenetic regulation in the treatment of heart diseases, while also addressing the challenges faced in this field.


Subject(s)
Epigenesis, Genetic , Exercise , Humans , Animals , MicroRNAs/genetics , MicroRNAs/metabolism , RNA, Untranslated/genetics , RNA, Untranslated/metabolism , RNA, Circular/genetics , RNA, Circular/metabolism , Heart Diseases/genetics , Heart Diseases/therapy , Heart Diseases/metabolism , RNA/genetics , RNA/metabolism , Myocardium/metabolism
14.
Ecotoxicol Environ Saf ; 277: 116314, 2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38642409

ABSTRACT

Fine particulate matter (PM2.5) has been extensively implicated in the pathogenesis of neurodevelopmental disorders, but the underlying mechanism remains unclear. Recent studies have revealed that PM2.5 plays a role in regulating iron metabolism and redox homeostasis in the brain, which is closely associated with ferroptosis. In this study, the role and underlying mechanism of ferroptosis in PM2.5-induced neurotoxicity were investigated in mice, primary hippocampal neurons, and HT22 cells. Our findings demonstrated that exposure to PM2.5 could induce abnormal behaviors, neuroinflammation, and neuronal loss in the hippocampus of mice. These effects may be attributed to ferroptosis induced by PM2.5 exposure in hippocampal neurons. RNA-seq analysis revealed that the upregulation of iron metabolism-related protein Heme Oxygenase 1 (HO-1) and the activation of mitophagy might play key roles in PM2.5-induced ferroptosis in HT22 cells. Subsequent in vitro experiments showed that PM2.5 exposure significantly upregulated HO-1 in primary hippocampal neurons and HT22 cells. Moreover, PM2.5 exposure activated mitophagy in HT22 cells, leading to the loss of mitochondrial membrane potential, alterations in the expression of autophagy-related proteins LC3, P62, and mTOR, as well as an increase in mitophagy-related protein PINK1 and PARKIN. As a heme-degradation enzyme, the upregulation of HO-1 promotes the release of excess iron, genetically inhibiting the upregulation of HO-1 in HT22 cells could prevent both PM2.5-induced mitophagy and ferroptosis. Furthermore, pharmacological inhibition of mitophagy in HT22 cells reduced levels of ferrous ions and lipid peroxides, thereby preventing ferroptosis. Collectively, this study demonstrates that HO-1 mediates PM2.5-induced mitophagy-dependent ferroptosis in hippocampal neurons, and inhibiting mitophagy or ferroptosis may be a key therapeutic target to ameliorate neurotoxicity following PM2.5 exposure.


Subject(s)
Ferroptosis , Heme Oxygenase-1 , Hippocampus , Mitophagy , Neurons , Particulate Matter , Up-Regulation , Animals , Particulate Matter/toxicity , Ferroptosis/drug effects , Mitophagy/drug effects , Hippocampus/drug effects , Hippocampus/pathology , Neurons/drug effects , Neurons/pathology , Mice , Heme Oxygenase-1/metabolism , Heme Oxygenase-1/genetics , Up-Regulation/drug effects , Male , Mice, Inbred C57BL , Air Pollutants/toxicity , Membrane Proteins
15.
PeerJ ; 12: e17039, 2024.
Article in English | MEDLINE | ID: mdl-38590700

ABSTRACT

Background: Acute pulmonary embolism (APE) is classified as a subset of diseases that are characterized by lung obstruction due to various types of emboli. Current clinical APE treatment using anticoagulants is frequently accompanied by high risk of bleeding complications. Recombinant hirudin (R-hirudin) has been found to have antithrombotic properties. However, the specific impact of R-hirudin on APE remains unknown. Methods: Sprague-Dawley (SD) rats were randomly assigned to five groups, with thrombi injections to establish APE models. Control and APE group rats were subcutaneously injected with equal amounts of dimethyl sulfoxide (DMSO). The APE+R-hirudin low-dose, middle-dose, and high-dose groups received subcutaneous injections of hirudin at doses of 0.25 mg/kg, 0.5 mg/kg, and 1.0 mg/kg, respectively. Each group was subdivided into time points of 2 h, 6 h, 1 d, and 4 d, with five animals per point. Subsequently, all rats were euthanized, and serum and lung tissues were collected. Following the assessment of right ventricular pressure (RVP) and mean pulmonary artery pressure (mPAP), blood gas analysis, enzyme-linked immunosorbnent assay (ELISA), pulmonary artery vascular testing, hematoxylin-eosin (HE) staining, Terminal deoxynucleotidyl transferase-mediated dUTP-biotin nick end labeling (TUNEL) staining, immunohistochemistry, and Western blot experiments were conducted. Results: R-hirudin treatment caused a significant reduction of mPAP, RVP, and Malondialdehyde (MDA) content, as well as H2O2 and myeloperoxidase (MPO) activity, while increasing pressure of oxygen (PaO2) and Superoxide Dismutase (SOD) activity. R-hirudin also decreased wall area ratio and wall thickness to diameter ratio in APE rat pulmonary arteries. Serum levels of endothelin-1 (ET-1) and thromboxaneB2 (TXB2) decreased, while prostaglandin (6-K-PGF1α) and NO levels increased. Moreover, R-hirudin ameliorated histopathological injuries and reduced apoptotic cells and Matrix metalloproteinase-9 (MMP9), vascular cell adhesion molecule-1 (VCAM-1), p-Extracellular signal-regulated kinase (ERK)1/2/ERK1/2, and p-P65/P65 expression in lung tissues. Conclusion: R-hirudin attenuated pulmonary hypertension and thrombosis in APE rats, suggesting its potential as a novel treatment strategy for APE.


Subject(s)
Hominidae , Hypertension, Pulmonary , Pulmonary Embolism , Thrombosis , Rats , Animals , Hypertension, Pulmonary/drug therapy , Rats, Sprague-Dawley , Hirudins/pharmacology , Hydrogen Peroxide/therapeutic use , Pulmonary Embolism/complications , Thrombosis/drug therapy
16.
Proc Natl Acad Sci U S A ; 121(18): e2317646121, 2024 Apr 30.
Article in English | MEDLINE | ID: mdl-38648486

ABSTRACT

Long-distance migrations of insects contribute to ecosystem functioning but also have important economic impacts when the migrants are pests or provide ecosystem services. We combined radar monitoring, aerial sampling, and searchlight trapping, to quantify the annual pattern of nocturnal insect migration above the densely populated agricultural lands of East China. A total of ~9.3 trillion nocturnal insect migrants (15,000 t of biomass), predominantly Lepidoptera, Hemiptera, and Diptera, including many crop pests and disease vectors, fly at heights up to 1 km above this 600 km-wide region every year. Larger migrants (>10 mg) exhibited seasonal reversal of movement directions, comprising northward expansion during spring and summer, followed by southward movements during fall. This north-south transfer was not balanced, however, with southward movement in fall 0.66× that of northward movement in spring and summer. Spring and summer migrations were strongest when the wind had a northward component, while in fall, stronger movements occurred on winds that allowed movement with a southward component; heading directions of larger insects were generally close to the track direction. These findings indicate adaptations leading to movement in seasonally favorable directions. We compare our results from China with similar studies in Europe and North America and conclude that ecological patterns and behavioral adaptations are similar across the Northern Hemisphere. The predominance of pests among these nocturnal migrants has severe implications for food security and grower prosperity throughout this heavily populated region, and knowledge of their migrations is potentially valuable for forecasting pest impacts and planning timely management actions.


Subject(s)
Altitude , Animal Migration , Seasons , Animals , China , Animal Migration/physiology , Agriculture/methods , Ecosystem , Insecta/physiology , Wind , Flight, Animal/physiology
17.
EClinicalMedicine ; 71: 102582, 2024 May.
Article in English | MEDLINE | ID: mdl-38618202

ABSTRACT

Background: GST-HG171 is a potent, broad-spectrum, orally bioavailable small-molecule 3C like protease inhibitor that has demonstrated greater potency and efficacy compared to Nirmatrelvir in pre-clinical studies. We aimed to evaluate the efficacy and safety of orally administered GST-HG171 plus Ritonavir in patients with coronavirus disease 2019 (COVID-19) infected with emerging XBB and non-XBB variants. Methods: This randomised, double-blind, placebo-controlled phase 2/3 trial was conducted in 47 sites in China among adult patients with mild-to-moderate COVID-19 with symptoms onset ≤72 h. Eligible patients were randomised 1:1 to receive GST-HG171 (150 mg) plus Ritonavir (100 mg) or corresponding placebo tablets twice daily for 5 days, with stratification factors including the risk level of disease progression and vaccination status. The primary efficacy endpoint was time to sustained recovery of clinical symptoms within 28 days, defined as a score of 0 for 11 COVID-19-related target symptoms for 2 consecutive days, assessed in the modified intention-to-treat (mITT) population. This trial was registered at ClinicalTrials.gov (NCT05656443) and Chinese Clinical Trial Registry (ChiCTR2200067088). Findings: Between Dec 19, 2022, and May 4, 2023, 1525 patients were screened. Among 1246 patients who underwent randomisation, most completed basic (21.2%) or booster (74.9%) COVID-19 immunization, and most had a low risk of disease progression at baseline. 610 of 617 who received GST-HG171 plus Ritonavir and 603 of 610 who received placebo were included in the mITT population. Patients who received GST-HG171 plus Ritonavir showed shortened median time to sustained recovery of clinical symptoms compared to the placebo group (13.0 days [95.45% confidence interval 12.0-15.0] vs. 15.0 days [14.0-15.0], P = 0.031). Consistent results were observed in both SARS-CoV-2 XBB (45.7%, 481/1053 of mITT population) and non-XBB variants (54.3%, 572/1053 of mITT population) subgroups. Incidence of adverse events was similar in the GST-HG171 plus Ritonavir (320/617, 51.9%) and placebo group (298/610, 48.9%). The most common adverse events in both placebo and treatment groups were hypertriglyceridaemia (10.0% vs. 14.7%). No deaths occurred. Interpretation: Treatment with GST-HG171 plus Ritonavir has demonstrated benefits in symptom recovery and viral clearance among low-risk vaccinated adult patients with COVID-19, without apparent safety concerns. As most patients were treated within 2 days after symptom onset in our study, confirming the potential benefits of symptom recovery for patients with a longer duration between symptom onset and treatment initiation will require real-world studies. Funding: Fujian Akeylink Biotechnology Co., Ltd.

19.
PeerJ ; 12: e17123, 2024.
Article in English | MEDLINE | ID: mdl-38560469

ABSTRACT

Background: The purpose of the present study was to investigate the effect of erythropoietin (EPO) on lung ischemia-reperfusion injury (LIRI). Methods: Sprague Dawley rats and BEAS-2B cells were employed to construct an ischemia-reperfusion (I/R)-induced model in vivo and in vitro, respectively. Afterward, I/R rats and tert-butyl hydroperoxide (TBHP)-induced cells were treated with different concentrations of EPO. Furthermore, 40 patients with LIRI and healthy controls were enrolled in the study. Results: It was observed that lung tissue damage, cell apoptosis and the expression of BAX and caspase-3 were higher in the LIRI model in vivo and in vitro than in the control group, nevertheless, the Bcl-2, FGF23 and FGFR4 expression level was lower than in the control group. EPO administration significantly reduced lung tissue damage and cell apoptosis while also up-regulating the expression of FGF23 and FGFR4. Rescue experiments indicated that EPO exerted a protective role associated with the FGF23/FGFR4/p-ERK1/2 signal pathway. Notably, the expression of serum EPO, FGF23, FGFR4 and Bcl-2 was decreased in patients with LIRI, while the expression of caspase-3 and BAX was higher. Conclusion: EPO could effectively improve LIRI, which might be related to the activation of the FGF23/FGFR4/p-ERK1/2 signaling pathway.


Subject(s)
Erythropoietin , Reperfusion Injury , Animals , Humans , Rats , bcl-2-Associated X Protein/metabolism , Caspase 3/genetics , Epoetin Alfa/metabolism , Erythropoietin/pharmacology , Ischemia , Lung/metabolism , MAP Kinase Signaling System , Proto-Oncogene Proteins c-bcl-2/metabolism , Rats, Sprague-Dawley , Receptor, Fibroblast Growth Factor, Type 4/genetics , Reperfusion Injury/drug therapy , Signal Transduction
20.
Basic Res Cardiol ; 2024 Apr 02.
Article in English | MEDLINE | ID: mdl-38563985

ABSTRACT

Exercise improves cardiac function and metabolism. Although long-term exercise leads to circulating and micro-environmental metabolic changes, the effect of exercise on protein post-translational lactylation modifications as well as its functional relevance is unclear. Here, we report that lactate can regulate cardiomyocyte changes by improving protein lactylation levels and elevating intracellular N6-methyladenosine RNA-binding protein YTHDF2. The intrinsic disorder region of YTHDF2 but not the RNA m6A-binding activity is indispensable for its regulatory function in influencing cardiomyocyte cell size changes and oxygen glucose deprivation/re-oxygenation (OGD/R)-stimulated apoptosis via upregulating Ras GTPase-activating protein-binding protein 1 (G3BP1). Downregulation of YTHDF2 is required for exercise-induced physiological cardiac hypertrophy. Moreover, myocardial YTHDF2 inhibition alleviated ischemia/reperfusion-induced acute injury and pathological remodeling. Our results here link lactate and lactylation modifications with RNA m6A reader YTHDF2 and highlight the physiological importance of this innovative post-transcriptional intrinsic regulation mechanism of cardiomyocyte responses to exercise. Decreasing lactylation or inhibiting YTHDF2/G3BP1 might represent a promising therapeutic strategy for cardiac diseases.

SELECTION OF CITATIONS
SEARCH DETAIL