Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 77
Filter
1.
Zhongguo Yi Liao Qi Xie Za Zhi ; 48(4): 392-395, 2024 Jul 30.
Article in Chinese | MEDLINE | ID: mdl-39155251

ABSTRACT

Objective: The prediction of RR intervals in hypertensive patients can help clinicians to analyze and warn patients' heart condition. Methods: Using 8 patients' data as samples, the RR intervals of patients were predicted by long short-term memory network (LSTM) and gradient lift tree (XGBoost), and the prediction results of the two models were combined by the inverse variance method to overcome the disadvantage of single model prediction. Results: Compared with the single model, the proposed combined model had a different degree of improvement in the prediction of RR intervals in 8 patients. Conclusion: LSTM-XGBoost model provides a method for predicting RR intervals in hypertensive patients, which has potential clinical feasibility.


Subject(s)
Hypertension , Humans , Neural Networks, Computer , Heart Rate , Algorithms
2.
Acta Radiol ; : 2841851241269853, 2024 Aug 14.
Article in English | MEDLINE | ID: mdl-39140845

ABSTRACT

BACKGROUND: Metal implants may affect the image quality, iodine concentration (IC), and CT Hounsfield unit (HU) quantification accuracy. PURPOSE: To investigate the quantitative accuracy of IC and HU from dual-layer spectral detector (DLCT) in the presence of metal artifacts. MATERIAL AND METHODS: An experimental cylindrical phantom containing eight iodine inserts and two metal inserts was designed. The phantom underwent scanning at three radiation dose levels and two tube voltage settings. A set of conventional images (CIs), virtual monoenergetic images (VMIs), and iodine concentration maps (ICMs) were generated and measured for all the eight iodine inserts. Quantitative indicators of mean absolute percentage error (MAPE), artifact index (AI), contrast-to-noise ratio (CNR), signal-to-noise ratio (SNR), and standard deviation (SD) on CIs and VMIs were calculated for IC and HU. Subjective score evaluation was also conducted. RESULTS: The MAPEiodine values of all regions of interest across different scanning configurations were all <5%. Almost all APEiodine values were <5%, indicating that metal artifacts had little impact on IC measurements. When the tube voltage was fixed, the SD value of attenuation decreased with the increase of the tube current; this is also true when the tube current was fixed. The middle energy reconstructions seemed to give a good balance between reducing artifacts and improving contrast. CONCLUSION: VMIs from DLCT can reduce metal artifacts, the accuracy of IC quantification is not sensitive to imaging parameters. In summary, metal implants exhibit minimal impact on image quality and IC quantification accuracy in reconstructed images from DLCT.

3.
J Phys Chem A ; 128(31): 6581-6592, 2024 Aug 08.
Article in English | MEDLINE | ID: mdl-39067011

ABSTRACT

We present here an extension of our recently developed PBE-QIDH/DH-SVPD basis set to halogen atoms, with the aim of obtaining, for weakly interacting halogenated molecules, interaction energies close to those provided by a large basis set (def2-TZVPP) coupled to empirical dispersion potential. The core of our approach is the split-valence basis set, DH-SVPD, that has been developed for F, Cl, Br, and I atoms using a self-consistent formula, containing only energy terms computed for dimers and the corresponding monomers at the same level of theory. The basis set developed considering four systems, one for each halogen atoms, has been then tested on the X40, X4 × 10 benchmarks as well as on other two, less standard, data sets. Finally, a large system (380 atoms) has been also considered as a "crash" test. Our results show that the simple and nonempirical PBE-QIDH/DH-SVPD approach is able to provide accurate results for interaction energies of all the considered systems and can thus be considered as a cheaper alternative to DH functionals paired with empirical dispersion corrections and a large basis set of triple-ζ quality.

4.
Plants (Basel) ; 13(12)2024 Jun 08.
Article in English | MEDLINE | ID: mdl-38931032

ABSTRACT

The pathogenicity of grapevine geminivirus A (GGVA), a recently identified DNA virus, to grapevine plants remains largely unclear. Here, we report a new GGVA isolate (named GGVAQN) obtained from grapevine 'Queen Nina' plants with severe disease symptoms. The infectious clone of GGVAQN (pXT-GGVAQN) was constructed to investigate its pathogenicity. Nicotiana benthamiana plants inoculated with GGVAQN by agroinfiltration displayed upward leaf curling and chlorotic mottling symptoms. A simple, quick, and efficient method for delivering DNA clones of GGVAQN into grapevine plants was developed, by which Agrobacterium tumefaciens cells carrying pXT-GGVAQN were introduced into the roots of in vitro-grown 'Red Globe' grape plantlets with a syringe. By this method, all 'Red Globe' grape plants were systemically infected with GGVAQN, and the plants exhibited chlorotic mottling symptoms on their upper leaves and downward curling, interveinal yellowing, and leaf-margin necrosis symptoms on their lower leaves. Our results provide insights into the pathogenicity of GGVA and a simple and efficient inoculation method to deliver infectious viral clones to woody perennial plants.

5.
Zhongguo Zhong Yao Za Zhi ; 49(5): 1249-1254, 2024 Mar.
Article in Chinese | MEDLINE | ID: mdl-38621971

ABSTRACT

The chemical constituents of Draconis Sanguis were preliminarily studied by macroporous resin, silica gel, dextran gel, and high-performance liquid chromatography. One retro-dihydrochalcone, four flavonoids, and one stilbene were isolated. Their chemical structures were identified as 4-hydroxy-2,6-dimethoxy-3-methyldihydrochalcone(1), 4'-hydroxy-5,7-dimethoxy-8-methylflavan(2), 7-hydroxy-4',5-dimethoxyflavan(3),(2S)-7-hydroxy-5-methoxy-6-methylflavan(4),(2S)-7-hydroxy-5-methoxyflavan(5), and pterostilbene(6) by modern spectroscopy, physicochemical properties, and literature comparison. Compound 1 was a new compound. Compounds 2 and 6 were first found in the Arecaceae family. Compound 5 had the potential to prevent and treat diabetic kidney disease.


Subject(s)
Arecaceae , Diabetes Mellitus , Diabetic Nephropathies , Drugs, Chinese Herbal , Diabetic Nephropathies/drug therapy , Diabetic Nephropathies/prevention & control , Flavonoids/analysis , Drugs, Chinese Herbal/chemistry , Chromatography, High Pressure Liquid/methods
6.
J Am Chem Soc ; 146(10): 6721-6732, 2024 Mar 13.
Article in English | MEDLINE | ID: mdl-38413362

ABSTRACT

Many organic reactions are characterized by a complex mechanism with a variety of transition states and intermediates of different chemical natures. Their correct and accurate theoretical characterization critically depends on the accuracy of the computational method used. In this work, we study a complex ambimodal cycloaddition with five transition states, two intermediates, and three products, and we ask whether density functional theory (DFT) can provide a correct description of this type of complex and multifaceted reaction. Our work fills a gap in that most systematic benchmarks of DFT for chemical reactions have considered much simpler reactions. Our results show that many density functionals not only lead to seriously large errors but also differ from one another in predicting whether the reaction is ambimodal. Only a few of the available functionals provide a balanced description of the complex and multifaceted reactions. The parameters varied in the tested functionals are the ingredients, the treatment of medium-range and nonlocal correlation energy, and the inclusion of Hartree-Fock exchange. These results show a clear need for more benchmarks on the mechanisms of large molecules in complex reactions.

7.
Phys Chem Chem Phys ; 26(10): 8094-8105, 2024 Mar 06.
Article in English | MEDLINE | ID: mdl-38384253

ABSTRACT

In Chemistry, complexity is not necessarily associated to large systems, as illustrated by the textbook example of axial-equatorial equilibrium in mono-substituted cyclohexanes. The difficulty in modelling such a simple isomerization is related to the need for reproducing the delicate balance between two forces, with opposite effects, namely the attractive London dispersion and the repulsive steric interactions. Such balance is a stimulating challenge for density-functional approximations and it is systematically explored here by considering 20 mono-substituted cyclohexanes. In comparison to highly accurate CCSD(T) reference calculations, their axial-equatorial equilibrium is studied with a large set of 48 exchange-correlation approximations, spanning from semilocal to hybrid to more recent double hybrid functionals. This dataset, called SAV20 (as Steric A-values for 20 molecules), allows to highlight the difficulties encountered by common and more original DFT approaches, including those corrected for dispersion with empirical potentials, the 6-31G*-ACP model, and our cost-effective PBE-QIDH/DH-SVPD protocol, in modeling these challenging interactions. Interestingly, the performance of the approaches considered in this contribution on the SAV20 dataset does not correlate with that obtained with other more standard datasets, such as S66, IDISP or NC15, thus indicating that SAV20 covers physicochemical features not already considered in previous noncovalent interaction benchmarks.

8.
Funct Integr Genomics ; 23(3): 261, 2023 Aug 02.
Article in English | MEDLINE | ID: mdl-37530875

ABSTRACT

As alcohol consumption increases, alcoholic liver disease (ALD) has become more popular and is threating our human life. In this study, we found mulberry fruit extract (MFE) repaired alcohol-caused liver diseases by regulating hepatic lipid biosynthesis pathway and oxidative singling in alcoholically liver injured (ALI) rats. MFE administration inhibited hepatic lipid accumulation and improved liver steatosis in ALI rats. MFE also enhanced the antioxidant capacity and alleviated the inflammatory response by increasing the activities of antioxidant enzymes and decreasing the contents of interleukin (IL)-1ß and tumor necrosis factor (TNF)-α. Additionally, MFE regulated the expression of miRNA-155 and lipid metabolism-related PPARα protein in rats. Both miR-155 and PPARα play important roles in liver function. The results indicate that MFE has hepatoprotective effects against ALI in rats.


Subject(s)
Liver Diseases, Alcoholic , MicroRNAs , Morus , Humans , Rats , Animals , PPAR alpha/genetics , PPAR alpha/metabolism , PPAR alpha/pharmacology , Antioxidants/metabolism , Antioxidants/pharmacology , Morus/metabolism , Lipid Metabolism , Fruit/metabolism , Liver/metabolism , Liver Diseases, Alcoholic/drug therapy , Liver Diseases, Alcoholic/genetics , Liver Diseases, Alcoholic/metabolism , Tumor Necrosis Factor-alpha/genetics , Tumor Necrosis Factor-alpha/metabolism , MicroRNAs/genetics , MicroRNAs/metabolism , Lipids , Oxidative Stress
9.
J Phys Chem Lett ; 14(29): 6522-6531, 2023 Jul 27.
Article in English | MEDLINE | ID: mdl-37449565

ABSTRACT

Theoretical characterization of reactions of complex molecules depends on providing consistent accuracy for the relative energies of intermediates and transition states. Here we employ the DLPNO-CCSD(T) method with core-valence correlation, large basis sets, and extrapolation to the CBS limit to provide benchmark values for Diels-Alder transition states leading to competitive strained pentacyclic adducts. We then used those benchmarks to test a diverse set of wave function and density functional methods for the absolute and relative barrier heights of these transition states. Our results show that only a few of the tested density functionals can predict the absolute barrier heights satisfactorily, although relative barrier heights are more accurate. The most accurate functionals tested are ωB97M-V, M11plus, ωB97X-V, PBE-D3(0), M11, and MN15 with MUDs from best estimates less than 3.0 kcal. These findings can guide selection of density functionals for future studies of crowded, strained transition states of large molecules.

10.
Plant Physiol ; 189(3): 1848-1865, 2022 06 27.
Article in English | MEDLINE | ID: mdl-35485966

ABSTRACT

Grapevine leafroll-associated virus 2 (GLRaV-2) is a prevalent virus associated with grapevine leafroll disease, but the molecular mechanism underlying GLRaV-2 infection is largely unclear. Here, we report that 24-kDa protein (p24), an RNA-silencing suppressor (RSS) encoded by GLRaV-2, promotes GLRaV-2 accumulation via interaction with the B3 DNA-binding domain of grapevine (Vitis vinifera) RELATED TO ABSCISIC ACID INSENSITIVE3/VIVIPAROUS1 (VvRAV1), a transcription factor belonging to the APETALA2/ETHYLENE RESPONSE FACTOR (AP2/ERF) superfamily. Salicylic acid-inducible VvRAV1 positively regulates the grapevine pathogenesis-related protein 1 (VvPR1) gene by directly binding its promoter, indicating that VvRAV1 may function in the regulation of host basal defense responses. p24 hijacks VvRAV1 to the cytoplasm and employs the protein to sequester 21-nt double-stranded siRNA together, thereby enhancing its own RSS activity. Moreover, p24 enters the nucleus via interaction with VvRAV1 and weakens the latter's binding affinity to the VvPR1 promoter, leading to decreased expression of VvPR1. Our results provide a mechanism by which a viral RSS interferes with both the antiviral RNA silencing and the AP2/ERF-mediated defense responses via the targeting of one specific host factor.


Subject(s)
Closterovirus , Viral Proteins/metabolism , Vitis , Closterovirus/genetics , Closterovirus/metabolism , Plant Diseases/genetics , RNA Interference , Transcription Factors/genetics , Transcription Factors/metabolism , Vitis/genetics , Vitis/metabolism
11.
J Chem Phys ; 156(16): 161101, 2022 Apr 28.
Article in English | MEDLINE | ID: mdl-35490016

ABSTRACT

In this Communication, we assess a panel of 18 double-hybrid density functionals for the modeling of the thermochemical and kinetic properties of an extended dataset of 449 organic chemistry reactions belonging to the BH9 database. We show that most of DHs provide a statistically robust performance to model barrier height and reaction energies in reaching the "chemical accuracy." In particular, we show that nonempirical DHs, such as PBE0-DH and PBE-QIDH, or minimally parameterized alternatives, such as ωB2PLYP and B2K-PLYP, succeed to accurately model both properties in a balanced fashion. We demonstrate, however, that parameterized approaches, such as ωB97X-2 or DSD-like DHs, are more biased to only one of both properties.

12.
J Phys Chem A ; 126(16): 2590-2599, 2022 Apr 28.
Article in English | MEDLINE | ID: mdl-35438491

ABSTRACT

The accurate evaluation of weak noncovalent interactions in large, that is those containing up to thousand atoms, molecular systems represents a difficult challenge for any quantum chemical method. Indeed, some approximations are often introduced to render affordable these calculations. Here, we consider the PBE-QIDH/DH-SVPD protocol, combining a nonempirical double hybrid functional (PBE-QIDH) with a small basis set (DH-SVPD) tailored for noncovalent interactions with a double aim: (i) explore the robustness and accuracy of this protocol with respect to other Density Functional Approximations; (ii) illustrate how its performances are affected by the computational parameters underlying the calculation of the exact exchange and the Coulomb contribution, as well as the perturbative term. To this end, we consider three data sets, namely S66, L7, and CiM13, incorporating molecules of increasing size. On the bright side, our results suggest that the PBE-QIDH/DH-SVPD protocol is particularly accurate for large systems such as those contained in the CiM13 set (up to more than 1000 atoms and 14 000 basis functions), for which the DLPNO approximation leads to a significant speed-up for the evaluation of the perturbative correlation term. However, our analysis also points out the limit of this statistical exercise, when the quality of the reference data cannot be easily assessed, due to the size of the molecular complexes involved, and when the number of molecules is limited.


Subject(s)
Quantum Theory
14.
Talanta ; 235: 122722, 2021 Dec 01.
Article in English | MEDLINE | ID: mdl-34517590

ABSTRACT

In-vehicle air pollution has become a major concern to public health in recent years. The traditional analytical methods for detection of volatile organic compounds (VOCs) pollutants in air are based on gas chromatography - mass spectrometry (GC-MS) or high-performance liquid chromatography (HPLC), including complicated pretreatment and separation procedures, which are not only time-consuming and labor-intensive, but also incapable of simultaneously measuring both aldehydes and benzenes. In this work, a new photoionization-induced NO+ chemical ionization time-of-flight mass spectrometry (PNCI-TOFMS) was developed for real-time and continuous measurement of aldehydes and benzenes in vehicles. High-intensity NO+ reactant ions could be generated by photoionization of NO reagent gas, and efficient chemical ionization between NO+ reactant ions and analyte molecules occurred to produce adduct ions M·NO+ at an elevated ion source pressure of 800 Pa. Consequently, the achieved LODs for aldehydes and benzenes were down to sub-ppbv within 60 s. The analytical capacity of this system was demonstrated by continuous and online monitoring of in-vehicle VOCs in a used car, exhibiting broad potential applications of the PNCI-TOFMS in air pollutants monitoring and in-vehicle air quality analysis.


Subject(s)
Air Pollutants , Volatile Organic Compounds , Air Pollutants/analysis , Aldehydes , Benzene , Gas Chromatography-Mass Spectrometry , Volatile Organic Compounds/analysis
15.
Org Lett ; 23(12): 4759-4763, 2021 Jun 18.
Article in English | MEDLINE | ID: mdl-34080417

ABSTRACT

We here disclose two triarylborane-based [7]helicenes, which contain a dimesitylboryl or a 2-(dimesitylboryl)phenyl at position 9 of the [7]helicene skeleton. The change in the peripheral substituent from dimesitylboryl to 2-(dimesitylboryl)phenyl induced doubling of |glum| and sign inversion of the circularly polarized luminescence (CPL). The substituent dependence of the CPL sign is reasonably explained by the propeller configuration flipping of boron, which has a significant influence on the chiroptical properties.

16.
J Org Chem ; 86(8): 5538-5545, 2021 Apr 16.
Article in English | MEDLINE | ID: mdl-33822605

ABSTRACT

The so-called protobranching phenomenon, that is the greater stability of branched alkanes with respect to their linear isomers, represents an interesting challenge for approaches based on density functional theory (DFT), since it requires a balanced description of several electronic effects, including (intramolecular) dispersion forces. Here, we investigate this problem using a protocol recently developed based on double-hybrid functionals and a small basis set, DH-SVPD, suited for noncovalent interactions. The energies of bond separation reactions (BSR), defined on the basis of an isodesmic principle, are taken as reference properties for the evaluation of 15 DFT approaches. The obtained results show that error lower than the so-called "chemical accuracy" (<1.0 kcal/mol) can be obtained by the proposed protocol on both relative reaction energies and enthalpies. These results are then verified on the standard BSR36 data set and support the proposition of our computational protocol, named DHthermo, where any DH functional, such as PBE-QIDH or B2PLYP, provides accurate results when coupled to an empirical dispersion correction and the DH-SVPD basis set. This protocol not only gives subchemical accuracy on the thermochemistry of alkanes but it is extremely easy to use with common quantum-chemistry codes.

17.
RSC Adv ; 11(42): 26073-26082, 2021 Jul 27.
Article in English | MEDLINE | ID: mdl-35479441

ABSTRACT

A collection of five challenging datasets, including noncovalent interactions, reaction barriers and electronic rearrangements of medium-sized hydrocarbons, has been selected to verify the robustness of double-hybrid functionals used in conjunction with the small DH-SVPD basis set, especially developed for noncovalent interactions. The analysis is completed by other, more standard functionals, for a total of 17 models, including also empirical corrections for dispersion. The obtained results show that the chemical accuracy threshold, that is an error lower than 1.0 kcal mol-1, can be obtained by pairing the nonempirical PBE-QIDH functional with the DH-SVPD basis set, as well as by other semi-empirical functionals, such as DSD-PBEP86, using larger basis sets and empirical corrections. More in general, a significant improvement can be obtained using the DH-SVPD basis set with DHs, without resorting to any empirical corrections. This choice leads to a fast computational protocol that, avoiding any empirical potential, remains on a fully quantum ground.

18.
Nat Prod Res ; 35(17): 2887-2894, 2021 Sep.
Article in English | MEDLINE | ID: mdl-31674834

ABSTRACT

Investigation into the chemical diversity of Artemisia argyi led to the discovery of two new (1, 4) and four known (2-3, 5-6) sesquiterpenoids. The new structures were determined via extensive spectroscopic data, including IR, UV, MS, and NMR, and the absolute configurations of these compounds were elucidated by calculated ECD method. All isolates were tested for their inhibitory activity against NO production in RAW 264.7 macrophages, and the isolated sesquiterpenoids exhibited NO production inhibitory activity with IC50 values ranging from 1.91 to 36.52 µM.


Subject(s)
Artemisia , Macrophages/drug effects , Sesquiterpenes , Animals , Artemisia/chemistry , Mice , Molecular Structure , Nitric Oxide , Phytochemicals/isolation & purification , Phytochemicals/pharmacology , RAW 264.7 Cells , Sesquiterpenes/isolation & purification , Sesquiterpenes/pharmacology
19.
Mini Rev Med Chem ; 21(3): 336-361, 2021.
Article in English | MEDLINE | ID: mdl-32912124

ABSTRACT

Many plants in the genus Zanthoxylum, belonging to the Rutaceae family, are used as folk medicines for the treatment of various diseases, which have gained much attention for their phytochemical and pharmacological activity investigations. Alkaloids are the largest secondary metabolites with structurally diverse types found in this genus and they demonstrate a wide range of biological activities. The aim of this review is to provide a summary on the isolation, classification, and biological properties of alkaloids from Zanthoxylum species, which also will bring more attention to other researchers for further biological study on alkaloids for the new drug development.


Subject(s)
Alkaloids/chemistry , Alkaloids/pharmacology , Zanthoxylum/chemistry , Alkaloids/isolation & purification , Alkaloids/metabolism , Humans
20.
J Asian Nat Prod Res ; 23(9): 877-883, 2021 Sep.
Article in English | MEDLINE | ID: mdl-32603195

ABSTRACT

ABSTACTA chemical investigation of the whole plant of traditional Chinese medicine, Chrysanthemum indicum L., led to the discovery of six guaianolide-type sesquiterpenoids 1-6 with a 1,10-splited skeleton. The structure of the new compound 1 was established by extensive analysis of UV, IR, MS, NMR and ECD data. Compounds 3-6 are mutually stereoisomers with four chiral centers and their absolute configurations were determined by comparison of ECD spectra. The anti-inflammatory effects of these isolates on lipopolysaccharide (LPS)-induced nitric oxide (NO) were investigated in RAW 264.7 cells. Results showed that most of the compounds displayed NO production inhibitory activities with IC50 values ranged from 3.54 to 8.17 µM.


Subject(s)
Chrysanthemum , Sesquiterpenes , Animals , Lipopolysaccharides/pharmacology , Mice , Molecular Structure , Nitric Oxide , RAW 264.7 Cells , Sesquiterpenes/pharmacology
SELECTION OF CITATIONS
SEARCH DETAIL