Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 921
Filter
1.
Biochem Pharmacol ; 229: 116479, 2024 Aug 10.
Article in English | MEDLINE | ID: mdl-39134283

ABSTRACT

Ferroptosis is a newly defined mode of cellular demise. The increasing investigation supports that ferroptosis is a crucial factor in the complex mechanisms of myocardial ischemia-reperfusion (I/R) injury. Hence, targeting ferroptosis is a novel strategy for treating myocardial injury. Although evidence suggests that trimetazidine (TMZ) is potentially efficacious against myocardial injury, the exact mechanism of this efficacy is yet to be fully elucidated. This study aimed to determine whether TMZ can act as a ferroptosis resistor and affect I/R-mediated myocardial injury. To this end, researchers have constructed in vitro and in vivo models of I/R using H9C2 cardiomyocytes, primary cardiomyocytes, and SD rats. Here, I/R mediated the onset of ferroptosis in vitro and in vivo, as reflected by excessive iron aggregation, GSH depletion, and the increase in lipid peroxidation. TMZ largely reversed this alteration and attenuated cardiomyocyte injury. Mechanistically, we found that TMZ upregulated the expression of Sirt3. Therefore, we used si-Sirt3 and 3-TYP to interfere with Sirt3 action in vitro and in vivo, respectively. Both si-Sirt3 and 3-TYP partly mitigated the inhibitory effect of TMZ on I/R-mediated ferroptosis and upregulated the expression of Nrf2 and its downstream target, GPX4-SLC7A11. These results indicate that TMZ attenuates I/R-mediated ferroptosis by activating the Sirt3-Nrf2/GPX4/SLC7A11 signaling pathway. Our study offers insights into the mechanism underlying the cardioprotective benefits of TMZ and establishes a groundwork for expanding its potential applications.

2.
ACS Sens ; 2024 Aug 13.
Article in English | MEDLINE | ID: mdl-39136380

ABSTRACT

Enantioselective recognition is a fundamental property of chiral linkers in chiral metal-organic frameworks (CMOFs). However, clarifying the efficient enantioselective discrimination tailored by achiral linkers remains challenging to explain the chiral recognition mechanism and efficiency. Here, two CMOFs ([Zn2(l-Phe)2(bpa)2]n and [Zn2(l-Phe)2(bpe)2]n) with the completely different enantioselective recognition are synthesized from different nonchiral ligands and the same chiral ligands. The enantioselective recognition of CMOF is undoubtedly related to l-Phe, which differs in the hydrogen bonding to the Trp enantiomer. However, the electrochemical signals are weak and undifferentiated. [Zn2(l-Phe)2(bpe)2]n produces a flattened coplanar conformation with the -C═C- tether in the achiral ligand. The flattened achiral bpee ligand and its surrounding chiral phenylalanine molecules interact through multiple π-π stacking and hydrogen bonding, which together create a chiral sensor that facilitates the recognition of l-Trp. However, [Zn2(l-Phe)2(bpa)2]n produces a stepped conformation due to the -C-C- tether in the achiral ligand; despite the recognition effect of bpea, the recognition is unsatisfactory. Therefore, the chiral recognition of the two CMOFs stems from the synergistic effect between chiral and achiral ligands. This work shows that nonchiral ligands are also crucial in determining enantiomeric discrimination and opens up a new avenue for designing chiral materials.

3.
iScience ; 27(8): 110448, 2024 Aug 16.
Article in English | MEDLINE | ID: mdl-39091464

ABSTRACT

Despite advances in treatment, myocardial infarction remains the leading cause of heart failure and death worldwide, and the restoration of coronary blood flow can also cause heart damage. In this study, we found that corosolic acid (CA), also known as plant insulin, significantly protects the heart from ischemia-reperfusion (I/R) injury. In addition, CA can inhibit oxidative stress and improve mitochondrial structure and function in cardiomyocytes. Subsequently, our study demonstrated that CA improved the expression of the mitophagy-related proteins Prohibitin 2 (PHB2), PTEN-induced putative kinase protein-1 (PINK1), and Parkin. Meanwhile, through molecular docking, we found an excellent binding between CA and PHB2 protein. Finally, the knockdown of PHB2 eliminated the protective effect of CA on hypoxia-reoxygenation in cardiomyocytes. Taken together, our study reveals that CA increases mitophagy in cardiomyocytes via the PHB2/PINK1/Parkin signaling pathway, inhibits oxidative stress response, and maintains mitochondrial function, thereby improving cardiac function after I/R.

4.
Biosens Bioelectron ; 263: 116622, 2024 Jul 31.
Article in English | MEDLINE | ID: mdl-39096762

ABSTRACT

Accurate on-site detection of nitrite in complex matrices remains a significant challenge. Herin, we construct a self-ratio optical bimodal portable kit via co-assembling NaErF4:0.5%Tm@NaYF4@NaYbF4:0.5%Tm@NaYF4 (Er:Tm@Yb:Tm) and nitrogen-doped carbon platinum nanomaterials (Pt/CN) in sodium alginate (SA) hydrogel. Pt/CN nanomaterials are synthesized by high-temperature sintering using a zinc-based zeolite imidazolium framework as a sacrificial template. The Pt/CN nanozyme possesses excellent oxidase-like activity to produce the oxidation state 3,3',5,5'-tetramethylbenzidine (oxTMB). Nitrite mediates diazotization of oxTMB to trigger the change of absorption signals, accompanying the ratio fluorescence response of the Er:Tm@Yb:Tm. Crucially, Er:Tm@Yb:Tm and Pt/CN are embedded in SA hydrogel to fabricate a portable kit with efficient and sensitive performance. An image processing algorithm is used to analyze the nitrite-induced signal change of the portable hydrogel kit, resulting in detection limits of 0.63 µM. This method has great potential for point-of-care applications due to its reliability, long-term stability, accuracy, sensitivity, and portability.

5.
Cell Prolif ; : e13725, 2024 Aug 01.
Article in English | MEDLINE | ID: mdl-39087342

ABSTRACT

Ischemic heart disease (IHD) is a prevalent cardiovascular condition that remains the primary cause of death due to its adverse ventricular remodelling and pathological changes in end-stage heart failure. As a complex pathologic condition, it involves intricate regulatory processes at the cellular and molecular levels. The immune system and cardiovascular system are closely interconnected, with immune cells playing a crucial role in maintaining cardiac health and influencing disease progression. Consequently, alterations in the cardiac microenvironment are influenced and controlled by various immune cells, such as macrophages, neutrophils, dendritic cells, eosinophils, and T-lymphocytes, along with the cytokines they produce. Furthermore, studies have revealed that Gata6+ pericardial cavity macrophages play a key role in regulating immune cell migration and subsequent myocardial tissue repair post IHD onset. This review outlines the role of immune cells in orchestrating inflammatory responses and facilitating myocardial repair following IHD, considering both macro and micro views. It also discusses innovative immune cell-based therapeutic strategies, offering new insights for further research on the pathophysiology of ischemic heart disease and immune cell-targeted therapy for IHD.

6.
J Environ Sci (China) ; 146: 304-317, 2024 Dec.
Article in English | MEDLINE | ID: mdl-38969460

ABSTRACT

A biochar-assisted anaerobic membrane bioreactor (BC-AnMBR) was conducted to evaluate the performance in treating swine wastewater with different organic loading rates (OLR) ranging from 0.38 to 1.13 kg-COD/(m3.d). Results indicated that adding spent coffee grounds biochar (SCG-BC) improved the organic removal efficiency compared to the conventional AnMBR, with an overall COD removal rate of > 95.01%. Meanwhile, methane production of up to 0.22 LCH4/gCOD with an improvement of 45.45% was achieved under a high OLR of 1.13 kg-COD/(m3.d). Furthermore, the transmembrane pressure (TMP) in the BC-AnMBR system was stable at 4.5 kPa, and no irreversible membrane fouling occurred within 125 days. Microbial community analysis revealed that the addition of SCG-BC increased the relative abundance of autotrophic methanogenic archaea, particularly Methanosarcina (from 0.11% to 11.16%) and Methanothrix (from 16.34% to 24.05%). More importantly, Desulfobacterota and Firmicutes phylum with direct interspecific electron transfer (DIET) capabilities were also enriched with autotrophic methanogens. Analysis of the electron transfer pathway showed that the concentration of c-type cytochromes increased by 38.60% in the presence of SCG-BC, and thus facilitated the establishment of DIET and maintained high activity of the electron transfer system even at high OLR. In short, the BC-AnMBR system performs well under various OLR conditions and is stable in the recovery energy system for swine wastewater.


Subject(s)
Bioreactors , Charcoal , Waste Disposal, Fluid , Wastewater , Animals , Wastewater/chemistry , Charcoal/chemistry , Swine , Waste Disposal, Fluid/methods , Anaerobiosis , Membranes, Artificial , Methane/metabolism
7.
Small ; : e2404554, 2024 Jul 05.
Article in English | MEDLINE | ID: mdl-38966908

ABSTRACT

Chiral inversions of enantiomers have significantly different biological activities, so it is important to develop simple and effective methods to efficiently identify optically pure compounds. Inspired by enzyme catalysis, the construction of chiral microenvironments resembling enzyme pockets in the pore space structure of metal-organic frameworks (MOFs) to achieve asymmetric enantioselective recognition and catalysis has become a new research hotspot. Here, a super-stable porphyrin-containing material PCN-224 is constructed by solvothermal method and a chiral microenvironment around the existing catalytic site of the material is created by post-synthesis modifications of the histidine (His) enantiomers. Experimental and theoretical calculations results show that the modulation of chiral ligands around Zr oxide clusters produces different spatial site resistances, which can greatly affect the adsorption and catalytic level of the enantiomeric molecules of tryptophan guests, resulting in a good enantioselective property of the material. It provides new ideas and possibilities for future chiral recognition and asymmetric catalysis.

8.
Int J Biol Sci ; 20(9): 3302-3316, 2024.
Article in English | MEDLINE | ID: mdl-38993558

ABSTRACT

Background: Parkinson's disease (PD) is marked by the loss of dopaminergic neurons in the substantia nigra pars compacta, leading to motor and cognitive dysfunctions. The molecular mechanisms underlying synaptic alterations in PD remain elusive, with a focus on the role of Itga5 in synaptic integrity and motor coordination and TAT-Itga5 was designed to suppress PTEN activity in this investigation. Methods: This study utilized MPTP-induced PD animal models to investigate the expression and role of Itga5 in the striatum. Techniques included quantitative PCR, Western blotting, immunostaining, CRISPR-CasRx-mediated knockdown, electrophysiological assays, behavioral tests, and mass spectrometry. Results: Itga5 expression was significantly reduced in MPTP-induced PD models. In these models, a marked decrease in dendritic spine density and a shift towards thinner spines in striatal GABA neurons were observed, suggesting impaired synaptic integration. Knockdown of Itga5 resulted in reduced dendritic branching, decreased mushroom spines, and increased thin spines, altering synaptic architecture. Electrophysiological analyses revealed changes in action potential and spontaneous excitatory postsynaptic currents, indicating altered synaptic transmission. Motor behavior assessments showed that Itga5 deficiency led to impairments in fine motor control and coordination. Furthermore, Itga5 was found to interact with PTEN, affecting AKT signaling crucial for synaptic development and motor coordination. Conclusion: The study demonstrates that Itga5 plays a critical role in maintaining synaptic integrity and motor coordination in PD. The Itga5-PTEN-AKT pathway represents a potential therapeutic target for addressing synaptic and motor dysfunctions in PD.


Subject(s)
PTEN Phosphohydrolase , Parkinson Disease , Signal Transduction , Animals , PTEN Phosphohydrolase/metabolism , PTEN Phosphohydrolase/genetics , Parkinson Disease/metabolism , Parkinson Disease/genetics , Male , Mice , Corpus Striatum/metabolism , Mice, Inbred C57BL , Integrin alpha5/metabolism , Integrin alpha5/genetics , Synapses/metabolism , Disease Models, Animal
9.
J Transl Med ; 22(1): 635, 2024 Jul 08.
Article in English | MEDLINE | ID: mdl-38978048

ABSTRACT

BACKGROUND: Circadian rhythm (CR) disturbance is intricately associated with Parkinson's disease (PD). However, the involvement of CR-related mechanisms in the pathogenesis and progression of PD remains elusive. METHODS: A total of 141 PD patients and 113 healthy participants completed CR-related clinical examinations in this study. To further investigate the CR-related mechanisms in PD, we obtained datasets (GSE7621, GSE20141, GSE20292) from the Gene Expression Omnibus database to identify differentially expressed genes between PD patients and healthy controls and further selected CR-related genes (CRRGs). Subsequently, the least absolute shrinkage and selection operator (LASSO) followed by logistic algorithms were employed to identify the hub genes and construct a diagnostic model. The predictive performance was evaluated by area under the curve (AUC), calibration curve, and decision curve analyses in the training set and external validation sets. Finally, RT‒qPCR and Western blotting were conducted to verify the expression of these hub genes in blood samples. In addition, Pearson correlation analysis was utilized to validate the association between expression of hub genes and circadian rhythm function. RESULTS: Our clinical observational study revealed that even early-stage PD patients exhibited a higher likelihood of experiencing sleep disturbances, nocturnal hypertension, reverse-dipper blood pressure, and reduced heart rate variability compared to healthy controls. Furthermore, 4 CR-related hub genes (AGTR1, CALR, BRM14, and XPA) were identified and subsequently incorporated as candidate biomarkers to construct a diagnostic model. The model showed satisfactory diagnostic performance in the training set (AUC = 0.941), an external validation set GSE20295 (AUC = 0.842), and our clinical centre set (AUC = 0.805). Additionally, the up-regulation of CALR, BRM14 and the down-regulation of AGTR1, XPA were associated with circadian rhythm disruption. CONCLUSION: CR disturbance seems to occur in the early stage of PD. The diagnostic model based on CR-related genes demonstrated robust diagnostic efficacy, offering novel insights for future clinical diagnosis of PD and providing a foundation for further exploration into the role of CR-related mechanisms in the progression of PD.


Subject(s)
Circadian Rhythm , Parkinson Disease , Humans , Parkinson Disease/genetics , Parkinson Disease/diagnosis , Parkinson Disease/physiopathology , Circadian Rhythm/genetics , Male , Female , Middle Aged , Case-Control Studies , Aged , ROC Curve , Gene Expression Regulation , Gene Expression Profiling , Models, Biological , Databases, Genetic
10.
Food Chem ; 460(Pt 1): 140405, 2024 Jul 14.
Article in English | MEDLINE | ID: mdl-39053272

ABSTRACT

Stimuli-responsive hydrogel possesses a strong loading capacity to embed luminescent indicators for constructing food safety sensors, which are suitable for field application. In this work, a fluorescent hydrogel sensor was fabricated by incorporating Ag+-modified carbon dots (CDs-Ag+) into a sodium alginate (SA) hydrogel for in-situ detection of thiram. The fluorescence of CDs was quenched due to the combined effects of electrostatic adsorption and electron transfer between Ag+ and CDs. The formation of an AgS bond between thiram and Ag+ facilitates the release of CDs, causing subsequently fluorescence recovery. Combined with smartphone and analysis software, the fluorescence color change of the hydrogel sensor was converted into data information for quantitative detection of thiram. Such a sample-to-result step is completed within 10 min. Notably, the in-situ detection experiment of thiram in fruit and vegetable samples confirmed the practical application of the hydrogel sensor. Therefore, the hydrogel sensor provides a new research direction for the in-situ detection of pesticide residues in the monitoring of food safety.

11.
J Cancer ; 15(13): 4175-4196, 2024.
Article in English | MEDLINE | ID: mdl-38947396

ABSTRACT

Background: Metabolic reprogramming plays a crucial role in the development of colorectal cancer (CRC), influencing tumor heterogeneity, the tumor microenvironment, and metastasis. While the interaction between metabolism and CRC is critical for developing personalized treatments, gaps remain in understanding how tumor cell metabolism affects prognosis. Our study introduces novel insights by integrating single-cell and bulk transcriptome analyses to explore the metabolic landscape within CRC cells and its mechanisms influencing disease progression. This approach allows us to uncover metabolic heterogeneity and identify specific metabolic genes impacting metastasis, which have not been thoroughly examined in previous studies. Methods: We sourced microarray and single-cell RNA sequencing datasets from the Gene Expression Omnibus (GEO) and bulk sequencing data for CRC from The Cancer Genome Atlas (TCGA). We employed Gene Set Variation Analysis (GSVA) to assess metabolic pathway activity, consensus clustering to identify CRC-specific transcriptome subtypes in bulkseq, and rigorous quality controls, including the exclusion of cells with high mitochondrial gene expression in scRNA seq. Advanced analyses such as AUCcell, infercnvCNV, Non-negative Matrix Factorization (NMF), and CytoTRACE were utilized to dissect the cellular landscape and evaluate pathway activities and tumor cell stemness. The hdWGCNA algorithm helped identify prognosis-related hub genes, integrating these findings using a random forest machine learning model. Results: Kaplan-Meier survival curves identified 21 significant metabolic pathways linked to prognosis, with consensus clustering defining three CRC subtypes (C3, C2, C1) based on metabolic activity, which correlated with distinct clinical outcomes. The metabolic activity of the 13 cell subpopulations, particularly the epithelial cell subpopulation with active metabolic levels, was evaluated using AUCcell in scRNA seq. To further analyze tumor cells using infercnv, NMF disaggregated these cells into 10 cellular subpopulations. Among these, the C2 subpopulation exhibited higher stemness and tended to have a poorer prognosis compared to C6 and C0. Conversely, the C8, C3, and C1 subpopulations demonstrated a higher level of the five metabolic pathways, and the C3 and C8 subpopulations tended to have a more favorable prognosis. hdWGCNA identified 20 modules, from which we selected modules primarily expressed in high metabolic tumor subgroups and highly correlated with clinical information, including blue and cyan. By applying variable downscaling of RF to a total of 50 hub genes, seven gene signatures were obtained. Furthermore, molecules that were validated to be protective in GEO were screened alongside related molecules, resulting in the identification of prognostically relevant molecules such as UQCRFS1 and GRSF1. Additionally, the expression of GRSF1 was examined in colon cancer cell lines using qPCR and phenotypically verified by in vitro experiments. Conclusion: Our findings emphasize that high activity in specific metabolic pathways, including pyruvate metabolism and the tricarboxylic acid cycle, correlates with improved colon cancer outcomes, presenting new avenues for metabolic-based therapies. The identification of hub genes like GRSF1 and UQCRFS1 and their link to favorable metabolic profiles offers novel insights into tumor neovascularization and metastasis, with significant clinical implications for targeting metabolic pathways in CRC therapy.

12.
ACS Omega ; 9(27): 29491-29498, 2024 Jul 09.
Article in English | MEDLINE | ID: mdl-39005797

ABSTRACT

As a photostabilizing agent for cyanine dye, methyl-ß-cyclodextrin (MßCD) was investigated as a possible antifading agent for cyanine dye-labeled proteins. Cyanine-3 (Cy3)-labeled streptavidin (SA-Cy3) solutions containing MßCD exhibited improved resistance against photobleaching. Further research revealed that MßCD can be used as a coating material on the surface of gene chips. Chips loaded with cyanine dye (Cy3 and Cyanine-5 (Cy5))-conjugated model microbeads exhibited resistance against photobleaching with MßCD coatings. MßCD coatings improved the imaging quality of model chips and resulted in higher discrimination ratios (DR) of single base recognition by a set of control beads (NP68). In a whole genome genotyping assay for human samples, the MßCD-coated samples were found to have a better clustering performance than the noncoated ones for a group of randomly picked single nucleotide polymorphisms (SNPs).

13.
J Hazard Mater ; 476: 135023, 2024 Sep 05.
Article in English | MEDLINE | ID: mdl-38986406

ABSTRACT

This study investigates the effects of varying Cu/Ce doping ratios on the NH3-SCR denitrification efficiency using Cu-HPW/CePO4 catalysts, where CePO4 serves as the support and copper-doped phosphotungstic acid (HPW) acts as the active phase. The NH3-SCR reaction mechanism was studied by In-situ Diffuse Reflectance Infrared Fourier Transform Spectroscopy (In-situ DRIFTs) and Density Functional Theory (DFT). In-situ DRIFTs were employed to delve into the intricacies of adsorption and transformation dynamics at the surface sites of catalysts. This approach furnished a robust theoretical foundation aimed at augmenting the efficacy of low-temperature denitrification catalysts. DFT calculations were used to systematically investigate the reaction pathways, intermediates, transition states, and energy barriers over the HPW structure model to complete the NH3-SCR reaction. Empirical evidence suggests that modifying the catalysts with copper substantially enhances their denitrification efficacy and extends their operational temperature spectrum. A notable initial increase in denitrification efficiency was observed with increasing levels of copper modification, followed by a decline. Within the HPW-O15H site, the NH3-SCR reaction advances through both the E-R and L-H mechanisms, encompassing processes such as NH3 adsorption, intermediate formation and transformation, and product release.

14.
Brain Res Bull ; 215: 111027, 2024 Sep.
Article in English | MEDLINE | ID: mdl-38971477

ABSTRACT

BACKGROUND: The limited understanding of the physiology and psychology of polar expedition explorers has prompted concern over the potential cognitive impairments caused by exposure to extreme environmental conditions. Prior research has demonstrated that such stressors can negatively impact cognitive function, sleep quality, and behavioral outcomes. Nevertheless, the impact of the polar environment on neuronal activity remains largely unknown. METHODS: In this study, we aimed to investigate spatiotemporal alterations in brain oscillations of 13 individuals (age range: 22-48 years) who participated in an Arctic expedition. We utilized electroencephalography (EEG) to record cortical activity before and during the Arctic journey, and employed standardized low resolution brain electromagnetic tomography to localize changes in alpha, beta, theta, and gamma activity. RESULTS: Our results reveal a significant increase in the power of theta oscillations in specific regions of the Arctic, which differed significantly from pre-expedition measurements. Furthermore, microstate analysis demonstrated a significant reduction in the duration of microstates (MS) D and alterations in the local synchrony of the frontoparietal network. CONCLUSION: Overall, these findings provide novel insights into the neural mechanisms underlying adaptation to extreme environments. These findings have implications for understanding the cognitive consequences of polar exploration and may inform strategies to mitigate potential neurological risks associated with such endeavors. Further research is warranted to elucidate the long-term effects of Arctic exposure on brain function.


Subject(s)
Brain Waves , Brain , Electroencephalography , Humans , Adult , Arctic Regions , Male , Female , Middle Aged , Electroencephalography/methods , Young Adult , Brain/physiology , Brain Waves/physiology
15.
Mikrochim Acta ; 191(8): 458, 2024 Jul 10.
Article in English | MEDLINE | ID: mdl-38985164

ABSTRACT

Chirality has an important impact on chemical and biological research, as most active substances are chiral. In recent decades, metal-organic frameworks (MOFs), which are assembled from metal ions or clusters and organic linkers via metal-ligand bonding, have attracted considerable scientific interest due to their high crystallinity, exceptional porosity and tunable pore sizes, high modularity, and diverse functionalities. Since the discovery of the first functional chiral metal-organic frameworks (CMOFs), CMOFs have been involved in a variety of disciplines such as chemistry, physics, optics, medicine, and pharmacology. The introduction of defect engineering theory into CMOFs allows the construction of a class of defective CMOFs with high hydrothermal stability and multi-stage pore structure. The introduction of defects not only increases the active sites but also enlarges the pore sizes of the materials, which improves chiral recognition, separation, and catalytic reactions, and has been widely investigated in various fields. This review describes the design and synthesis of various defective CMOFs, their characterization, and applications. Finally, the development of the materials is summarized, and an outlook is given. This review should provide researchers with an insight into the design and study of complex defective CMOFs.

16.
Eur J Radiol ; 178: 111655, 2024 Jul 27.
Article in English | MEDLINE | ID: mdl-39079324

ABSTRACT

PURPOSE: To investigate the feasibility of deep learning (DL) based on conventional MRI to differentiate tuberculous spondylitis (TS) from brucellar spondylitis (BS). METHODS: A total of 383 patients with TS (n = 182) or BS (n = 201) were enrolled from April 2013 to May 2023 and randomly divided into training (n = 307) and validation (n = 76) sets. Sagittal T1WI, T2WI, and fat-suppressed (FS) T2WI images were used to construct single-sequence DL models and combined models based on VGG19, VGG16, ResNet18, and DenseNet121 network. The area under the receiver operating characteristic curve (AUC) was used to assess the classification performance. The AUC of DL models was compared with that of two radiologists with different levels of experience. RESULTS: The AUCs based on VGG19, ResNet18, VGG16, and DenseNet121 ranged from 0.885 to 0.973, 0.873 to 0.944, 0.882 to 0.929, and 0.801 to 0.933, respectively, and VGG19 models performed better. The diagnostic efficiency of combined models outperformed single-sequence DL models. The combined model of T1WI, T2WI, and FS T2WI based on VGG19 achieved optimal performance, with an AUC of 0.973. In addition, the performance of all combined models based on T1WI, T2WI, and FS T2WI was better than that of two radiologists (P<0.05). CONCLUSION: The DL models have potential guiding value in the diagnosis of TS and BS based on conventional MRI and provide a certain reference for clinical work.

17.
Biosens Bioelectron ; 263: 116613, 2024 Jul 28.
Article in English | MEDLINE | ID: mdl-39084044

ABSTRACT

The biomimetic enzyme cascade system plays a key role in biosensing as a sophisticated signal transduction and amplification strategy. However, constructing a regulated enzyme cascade sensing system remains challenging due to the mismatch of multiple enzyme activities and poor stability. Herein, we design an efficient dual-enhanced enzyme cascade hybrid system (UFD-DEC) containing DNA-controlled nanozymes (Fe-cdDNA) and enzyme (urease) via combining the electrostatic contact effect with the hydrogel-directed confinement effect. Precise modulation of Fe-cdDNA nanozyme by DNA offers a means to control its catalytic efficiency. This regulated UFD-DEC system accelerates the reaction rate and provides remarkable stability compared with the free enzyme system. Benefiting from the plasticity properties of hydrogels, a "lab-in-a-tube" platform was constructed by encapsulating UFD-DEC in a microcentrifuge tube. Such a UFD-DEC-based hydrogel tube exhibits sufficient adaptability to profile urea when used in conjunction with a smartphone-assisted image processing algorithm, which on-site delivers urea information with a detection limit of 0.12 mmol L-1. This customizable and inexpensive miniaturized biosensor platform for monitoring urea may facilitate point-of-care testing applications.

18.
Biosens Bioelectron ; 263: 116594, 2024 Jul 20.
Article in English | MEDLINE | ID: mdl-39084043

ABSTRACT

Adsorption of DNA fluorescent probes on GO-Fe3O4 is a promising strategy for establishing fluorescent bioassays, often using magnetic separation or fluorescence quenching to generate signals. However, there is a lack of systematic understanding of ssDNA-regulated changes in the enzyme-mimetic activity of GO-Fe3O4, and the accuracy of the results of single-mode fluorescence analysis is susceptible to environmental interference. These limit the rational design and scope of application of the methods. Herein, the force and the catalytic mechanism of ssDNA/GO-Fe3O4 interactions were explored in detail. On this basis, a ratiometric fluorescence/colorimetric dual-modal analysis platform was constructed based on the superparamagnetism and DNA controllable peroxidase-like activity of GO-Fe3O4. The ratiometric fluorescent signal was generated by combining 7-amino-4-methyl-3-coumarinylacetic acid (AMCA) labeled aptamer (AMCA-aptamer) with AT hairpin-synthesized copper nanoparticles, which has built-in correction and resistance to environmental interference. The aptamer-modulated peroxidase-like activity of GO-Fe3O4 generated the colorimetric signal. Two signals correct each other to further enhance the reliability of the results. The analytical platform performed satisfactorily for AFB1 detection in the range of 0.1-150 µg/L, and was successfully applied to real samples (peanut, milk powder, and wheat flour). With the support of ImageJ software, quantitative detection was achieved by RGB channel analysis for real-color images, which provides a potential pathway for the rapid detection of food safety.

19.
ACS Appl Mater Interfaces ; 16(27): 34923-34935, 2024 Jul 10.
Article in English | MEDLINE | ID: mdl-38935390

ABSTRACT

While aqueous Zn-ion batteries (AZIBs) are widely considered as a promising energy storage system due to their merits of low cost, high specific capacity, and safety, the practical implementation has been hindered by the Zn dendrite growth and undesirable parasitic reactions. To address these issues, a unique hydrophobic-ion-conducting cetyltrimethylammonium bromide-intercalated Mg-Al-layered double-hydroxide protective layer was constructed on the Zn anode (OMALDH-Zn) to modulate the nucleation behavior and desolvation process. The hydrophobic cetyl group long chain can inhibit the hydrogen evolution reaction and Zn corrosion by repelling water molecules from the anode surface and reducing the desolvation activation energy. Meanwhile, the Mg-Al LDH with abundant zincophilic active sites can modulate the Zn2+ ion flux, enabling the dendrite-free Zn deposition. Benefiting from this interfacial synergy, a long cycle life (>2300 h) with low and stable overpotential (<18 mV at 1 mA cm-2) and excellent Coulombic efficiency (99.4%) for symmetrical and asymmetrical batteries were achieved. More impressively, excellent rate performance and long cyclic stability have been realized by OMALDH-Zn//MnO2 batteries in both coin-type and pouch-type devices. This low-cost, simple, and high-efficiency coordinated modulation method provides a reliable strategy for the practical application of AZIBs.

20.
Cell Death Discov ; 10(1): 280, 2024 Jun 11.
Article in English | MEDLINE | ID: mdl-38862478

ABSTRACT

Heat exposure is an environmental stressor that has been associated with cognitive impairment. However, the neural mechanisms that underlie this phenomenon have yet to be extensively investigated. The Morris water maze test was utilized to assess cognitive performance. RNA sequencing was employed to discover the primary regulators and pathological pathways involved in cognitive impairment caused by heat. Before heat exposure in vivo and in vitro, activation of the sarco/endoplasmic reticulum (SR/ER) calcium (Ca2+)-ATPase (SERCA) was achieved by CDN1163. Hematoxylin-Eosin, Nissl staining, calcium imaging, transmission electron microscopy, western blot, and immunofluorescence were utilized to visualize histological changes, intracellular calcium levels, endoplasmic reticulum stress (ERS) markers, apoptosis, and synaptic proteins alterations. Heat stress (HS) significantly induced cognitive decline and neuronal damage in mice. By the transcriptome sequencing between control (n = 5) and heat stress (n = 5) mice in hippocampal tissues, we identified a reduction in the expression of the atp2a gene encoding SERCA, accompanied by a corresponding decrease in its protein level. Consequently, this dysregulation resulted in an excessive accumulation of intracellular calcium ions. Furthermore, HS exposure also activated ERS and apoptosis, as evidenced by the upregulation of p-PERK, p-eIF2α, CHOP, and caspase-3. Consistently, a reduction in postsynaptic density protein 95 (PSD95) and synaptophysin (SYN) expressions indicated modifications in synaptic function. Notably, the impacts on neurons caused by HS were found to be mitigated by CDN1163 treatment both in vivo and in vitro. Additionally, SERCA-mediated ERS-induced apoptosis was attenuated by GSK2606414 treatment via inhibiting PERK-eIF2α-CHOP axis that not only curtailed the level of caspase-3 but also elevated the levels of PSD95 and SYN. These findings highlight the significant impact of heat stress on cognitive impairment, and further elucidate the underlying mechanism involving SERCA/PERK/eIF2α pathway.

SELECTION OF CITATIONS
SEARCH DETAIL