Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 1.336
Filter
1.
Front Oncol ; 14: 1405380, 2024.
Article in English | MEDLINE | ID: mdl-38957319

ABSTRACT

Lung cancer persistently leads as the primary cause of morbidity and mortality among malignancies. A notable increase in the prevalence of lung adenocarcinoma has become evident in recent years. Although targeted therapies have shown in treating certain subsets of non-small cell lung cancers (NSCLC), a significant proportion of patients still face suboptimal therapeutic outcomes. Neuregulin-1 (NRG1), a critical member of the NRG gene family, initially drew interest due to its distribution within the nascent ventricular endocardium, showcasing an exclusive presence in the endocardium and myocardial microvessels. Recent research has highlighted NRG1's pivotal role in the genesis and progression across a spectrum of tumors, influencing molecular perturbations across various tumor-associated signaling pathways. This review provides a concise overview of NRG1, including its expression patterns, configuration, and fusion partners. Additionally, we explore the unique features and potential therapeutic strategies for NRG1 fusion-positive occurrences within the context of NSCLC.

2.
Front Pharmacol ; 15: 1400136, 2024.
Article in English | MEDLINE | ID: mdl-38957398

ABSTRACT

Due to the similarity and diversity among kinases, small molecule kinase inhibitors (SMKIs) often display multi-target effects or selectivity, which have a strong correlation with the efficacy and safety of these inhibitors. However, due to the limited number of well-known popular databases and their restricted data mining capabilities, along with the significant scarcity of databases focusing on the pharmacological similarity and diversity of SMIKIs, researchers find it challenging to quickly access relevant information. The KLIFS database is representative of specialized application databases in the field, focusing on kinase structure and co-crystallised kinase-ligand interactions, whereas the KLSD database in this paper emphasizes the analysis of SMKIs among all reported kinase targets. To solve the current problem of the lack of professional application databases in kinase research and to provide centralized, standardized, reliable and efficient data resources for kinase researchers, this paper proposes a research program based on the ChEMBL database. It focuses on kinase ligands activities comparisons. This scheme extracts kinase data and standardizes and normalizes them, then performs kinase target difference analysis to achieve kinase activity threshold judgement. It then constructs a specialized and personalized kinase database platform, adopts the front-end and back-end separation technology of SpringBoot architecture, constructs an extensible WEB application, handles the storage, retrieval and analysis of the data, ultimately realizing data visualization and interaction. This study aims to develop a kinase database platform to collect, organize, and provide standardized data related to kinases. By offering essential resources and tools, it supports kinase research and drug development, thereby advancing scientific research and innovation in kinase-related fields. It is freely accessible at: http://ai.njucm.edu.cn:8080.

3.
Article in English | MEDLINE | ID: mdl-38963643

ABSTRACT

BACKGROUND: The current understanding of the prognostic significance of B cells and their role in the tumor microenvironment (TME) in esophageal carcinoma (ESCA) is limited. METHODS: We conducted a screening for B-cell-related genes through the analysis of single-cell transcriptome data. Subsequently, we developed a B-cell-related gene signature (BRGrisk) using LASSO regression analysis. Patients from The Cancer Genome Atlas cohort were divided into a training cohort and a test cohort. Patients were categorized into high- and low-risk groups based on their median BRGrisk scores. The overall survival was assessed using the Kaplan-Meier method, and a nomogram based on BRGrisk was constructed. Immune infiltration profiles between the risk groups were also compared. RESULTS: The BRGrisk prognostic model indicated significantly worse outcomes for patients with high BRGrisk scores (p < 0.001). The BRGrisk-based nomogram exhibited good prognostic performance. Analysis of immune infiltration revealed that patients in the high-BRGrisk group had notably higher levels of immune cell infiltration and were more likely to be in an immunoresponsive state. Enrichment analysis showed a strong correlation between the prognostic gene signature and cancer-related pathways. IC50 results indicated that patients in the low-BRGrisk group were more responsive to common drugs compared to those in the high-BRGrisk group. CONCLUSIONS: This study presents a novel BRGrisk that can be used to stratify the prognosis of ESCA patients and may offer guidance for personalized treatment strategies aimed at improving prognosis.

4.
Chem Sci ; 15(26): 10065-10072, 2024 Jul 03.
Article in English | MEDLINE | ID: mdl-38966375

ABSTRACT

The COVID-19 pandemic caused by SARS-CoV-2 resulted in a global public health crisis. In addition to vaccines, the development of effective therapy is highly desirable. Targeting a protein that plays a critical role in virus replication may allow pan-spectrum antiviral drugs to be developed. Among SARS-CoV-2 proteins, helicase (i.e., non-structural protein 13) is considered as a promising antiviral drug target due to its highly conserved sequence, unique structure and function. Herein, we demonstrate SARS-CoV-2 helicase as a target of bismuth-based antivirals in virus-infected mammalian cells by a metal-tagged antibody approach. To search for more potent bismuth-based antivirals, we further screened a panel of bismuth compounds towards inhibition of ATPase and DNA unwinding activity of nsp13 and identified a highly potent bismuth compound Bi(5-aminotropolonate)3, namely Bi(Tro-NH2)3 with an IC50 of 30 nM for ATPase. We show that bismuth-based compounds inhibited nsp13 unwinding activity via disrupting the binding of ATP and the DNA substrate to viral helicase. Binding of Bi(iii) to nsp13 also abolished the interaction between nsp12 and nsp13 as evidenced by immunofluorescence and co-immunoprecipitation assays. Finally, we validate our in vitro data in SARS-CoV-2 infected mammalian cells. Notably, Bi(6-TG)3 exhibited an EC50 of 1.18 ± 0.09 µM with a selective index of 847 in VeroE6-TMPRSS2 infected cells. This study highlights the important role of helicase for the development of more effective antiviral drugs to combat SARS-CoV-2 infection.

5.
Clin Neurol Neurosurg ; 244: 108397, 2024 Jun 23.
Article in English | MEDLINE | ID: mdl-38968813

ABSTRACT

Remote ischemic post-conditioning (RIPostC) can reduce cerebral ischemia reperfusion injury (IRI) by inducing endogenous protective effects, the distal limb ischemia post-treatment and in situ ischemia post-treatment were classified according to the site of intervention. And in the process of clinical application distal limb ischemia post-treatment is more widely used and more conducive to clinical translation. Therefore, in this paper, we review the mechanism of action and clinical application of RIPostC in cerebral ischemia, hoping to provide reference help for future experimental directions and clinical translation.

6.
Lett Appl Microbiol ; 77(7)2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38955379

ABSTRACT

This study evaluated the treatment efficiency of two selected fillers and their combination for improving the water quality of aquaculture wastewater using a packed bed biofilm reactor (PBBR) under various process conditions. The fillers used were nanosheet (NS), activated carbon (AC), and a combination of both. The results indicated that the use of combined fillers and the hydraulic retention time (HRT) of 4 h significantly enhanced water quality in the PBBR. The removal rates of chemical oxygen demand, NO2-─N, total suspended solids(TSS), and chlorophyll a were 63.55%, 74.25%, 62.75%, and 92.85%, respectively. The microbiota analysis revealed that the presence of NS increased the abundance of microbial phyla associated with nitrogen removal, such as Nitrospirae and Proteobacteria. The difference between the M1 and M2 communities was minimal. Additionally, the microbiota in different PBBR samples displayed similar preferences for carbon sources, and carbohydrates and amino acids were the most commonly utilized carbon sources by microbiota. These results indicated that the combination of NS and AC fillers in a PBBR effectively enhanced the treatment efficiency of aquaculture wastewater when operated at an HRT of 4 h. The findings provide valuable insights into optimizing the design of aquaculture wastewater treatment systems.


Subject(s)
Aquaculture , Biofilms , Bioreactors , Wastewater , Water Purification , Biofilms/growth & development , Bioreactors/microbiology , Water Purification/methods , Wastewater/microbiology , Wastewater/chemistry , Nitrogen/metabolism , Charcoal/chemistry , Bacteria/genetics , Bacteria/isolation & purification , Bacteria/metabolism , Bacteria/growth & development , Biological Oxygen Demand Analysis , Microbiota , Waste Disposal, Fluid/methods , Water Quality
7.
NPJ Parkinsons Dis ; 10(1): 129, 2024 Jul 04.
Article in English | MEDLINE | ID: mdl-38961119

ABSTRACT

The seeding amplification assay (SAA) has recently emerged as a valuable tool for detecting α-synuclein (αSyn) aggregates in various clinically accessible biospecimens. Despite its efficiency and specificity, optimal tissue-specific conditions for distinguishing Parkinson's disease (PD) from non-PD outside the brain remain underexplored. This study systematically evaluated 150 reaction conditions to identify the one with the highest discriminatory potential between PD and non-synucleinopathy controls using skin samples, resulting in a modified SAA. The streamlined SAA achieved an overall sensitivity of 92.46% and specificity of 93.33% on biopsy skin samples from 332 PD patients and 285 controls within 24 h. Inter-laboratory reproducibility demonstrated a Cohen's kappa value of 0.87 (95% CI 0.69-1.00), indicating nearly perfect agreement. Additionally, αSyn seeds in the skin were stable at -80 °C but were vulnerable to short-term exposure to non-ultra-low temperatures and grinding. This study thoroughly investigated procedures for sample preprocessing, seed amplification, and storage, introducing a well-structured experimental framework for PD diagnosis using skin samples.

8.
J Inflamm Res ; 17: 4187-4197, 2024.
Article in English | MEDLINE | ID: mdl-38973995

ABSTRACT

Purpose: Diffuse large B-cell lymphoma (DLBCL) is a prevalent malignant condition with a dismal prognosis. LncRNA PGM5 antisense RNA 1 (PGM5-AS1) appears to be intricately involved in the progression of DLBCL, yet the modulatory mechanism remains unclear. The purpose of this study was to explore the expression of lncRNA PGM5-AS1 in DLBCL and its effect on the disease progression of DLBCL, as well as to explore its mechanisms. Patients and Methods: A total of 35 patients were included in the study. The expression levels of PGM5-AS1 and miR-503-5p in DLBCL tumor tissues and cell lines were detected by RT-qPCR. Cell proliferation was assessed using CCK8. Apoptosis rate was determined by flow cytometry. Cell invasion was examined by transwell assays. The specific interaction between PGM5-AS1 and miR-503-5p was verified through dual luciferase reporter gene assays. The immune related factors were detected by ELASA kits. The CD8+ T cells cytotoxicity was evaluated by LDH cytotoxicity kit. Results: In DLBCL tumor tissues and cells, upregulated PGM5-AS1 expression, downregulated miR-503-5p expression, and elevated PD-L1 expression were observed. PGM5-AS1 functioned as a regulator in controlling DLBCL cell proliferation, apoptosis, and invasion by downregulating miR-503-5p expression. When CD8+ T cells were co-cultured with cells transfected with si-PGM5-AS1, the secretion of immunoregulatory factors increased, and the cytotoxicity of CD8+ T cells increased. These effects were mitigated by miR-503-5p inhibitors. Conclusion: PGM5-AS1 accelerated DLBCL development and facilitated tumor immune escape through the miR-503-5p. Our discoveries offered an insight into lncRNA PGM5-AS1 serving as a prospective therapeutic target for DLBCL.

9.
Int Med Case Rep J ; 17: 647-650, 2024.
Article in English | MEDLINE | ID: mdl-38974881

ABSTRACT

Neurosyphilis is a central nervous system infection caused by Treponema pallidum that imitates various neurological and mental disorders. Therefore, patients with this disease are prone to misdiagnoses. Here, we report a case of neurosyphilis with a psychotic disorder as the main manifestation. A young girl exhibited mental and behavioural abnormalities after a heartbreak, which manifested as alternating low mood, emotional irritability, and a lack of interest in social relations, followed by memory loss. The cerebrospinal fluid protein - Treponema pallidum particle agglutination test was positive, the toluidine red unheated serum test titre was 1:4, the white blood cell count was 5 × 10^6/L, the cerebrospinal fluid protein level was 0.97 g/L, and the brain CT was abnormal. After admission, the possibility of neurosyphilis was considered and the patient received intravenous penicillin G treatment. The patient's clinical symptom ms improved. This case emphasises that doctors should maintain clinical suspicion of Treponema pallidum infection in adolescent patients with mental abnormalities.

10.
J Colloid Interface Sci ; 674: 634-642, 2024 Jun 27.
Article in English | MEDLINE | ID: mdl-38945030

ABSTRACT

Bismuth-based materials have attracted interest in potassium-ion batteries (PIBs). However, the large volume expansion prevents further use of bismuth-based materials for potassium storage. This work employs a two-step synthesis method to innovatively synthesize of Bi/Bi2O3 nanoparticles assembled on N-doped porous carbon sheets (Bi/Bi2O3@CN). The layered structures with uniformly shaped and N-doped porous carbon skeleton buffer the expansion of Bi and the Bi/Bi2O3 particles increase the capacity of potassium storage. In brief, the Bi/Bi2O3@CN served as anode in half-cell of PIBs have a good rate capacity of more than 234.7 mAh/g at 20 A/g. The specific capacity retention was 73 % compared with 322.16 mAh/g at 1 A/g, demonstrating good holding capacity for diverse current densities. The cycle also displays 163 mAh/g after 1500 cycles at 2 A/g in the KPF6 metal salt solution, showing its potential as one of the anode materials in PIBs.

11.
J Food Sci ; 89(7): 4178-4191, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38847763

ABSTRACT

An accurate method for qualitative and quantitative analysis of lipid-bound (LB), protein-bound (PB), oligosaccharides-bound, and free sialic acids in milk was developed by using high-performance liquid chromatography -triple quadrupole-tandem mass spectrometer. The profile of free and bound sialic acids in milk (human, bovine, goat, and sheep) and infant formula (IF) was examined in the present study. Human milk contains only N-acetylneuraminic acid (Neu5Ac) and was mainly present in the form of oligosaccharide-bound. The content of total Neu5Ac (T-Neu5Ac), free and bound Neu5Ac in human milk decreased with the prolongation of lactation. The most intriguing finding was the increase in the proportion of PB and LB sialic acids. The sialic acids in bovine and sheep milk were mainly PB and oligosaccharides-bound Neu5Ac. T-Neu5Ac in goat milk (GM) was 67.44-89.72 µg/mL and was mainly PB Neu5Ac, but total N-glycolylneuraminic acid (T-Neu5Gc) content of GM can be as high as 100.01 µg/mL. The concentration of T-Neu5Gc in sheep and GM was significantly higher than that of bovine milk (BM). T-Neu5Gc content of GM -based IF was 264.86 µg/g, whereas T-Neu5Gc content of BM -based IF was less (2.26-17.01 µg/g). Additionally, our results found that there were also sialic acids in IF ingredients, which were mainly bound with protein and oligosaccharides, primarily derived from desalted whey powder and whey protein concentrate.


Subject(s)
Goats , Infant Formula , Milk, Human , Milk , Sialic Acids , Tandem Mass Spectrometry , Animals , Cattle , Chromatography, High Pressure Liquid/methods , Milk/chemistry , Tandem Mass Spectrometry/methods , Infant Formula/chemistry , Humans , Sheep , Milk, Human/chemistry , Sialic Acids/analysis , N-Acetylneuraminic Acid/analysis , Oligosaccharides/analysis , Infant , Neuraminic Acids/analysis , Female
12.
Int J Mol Sci ; 25(11)2024 May 28.
Article in English | MEDLINE | ID: mdl-38892048

ABSTRACT

The Roquin family is a recognized RNA-binding protein family that plays vital roles in regulating the expression of pro-inflammatory target gene mRNA during the immune process in mammals. However, the evolutionary status of the Roquin family across metazoans remains elusive, and limited studies are found in fish species. In this study, we discovered that the RC3H genes underwent a single round of gene duplication from a primitive ancestor during evolution from invertebrates to vertebrates. Furthermore, there were instances of species-specific gene loss events or teleost lineage-specific gene duplications throughout evolution. Domain/motif organization and selective pressure analysis revealed that Roquins exhibit high homology both within members of the family within the same species and across species. The three rc3h genes in zebrafish displayed similar expression patterns in early embryos and adult tissues, with rc3h1b showing the most prominent expression among them. Additionally, the promoter regions of the zebrafish rc3h genes contained numerous transcription factor binding sites similar to those of mammalian homologs. Moreover, the interaction protein network of Roquin and the potential binding motif in the 3'-UTR of putative target genes analysis both indicated that Roquins have the potential to degrade target mRNA through mechanisms similar to those of mammalian homologs. These findings shed light on the evolutionary history of Roquin among metazoans and hypothesized their role in the immune systems of zebrafish.


Subject(s)
Computational Biology , Evolution, Molecular , Phylogeny , Zebrafish , Animals , Zebrafish/genetics , Computational Biology/methods , Humans , RNA-Binding Proteins/genetics , RNA-Binding Proteins/metabolism , Immune System/metabolism , Zebrafish Proteins/genetics , Zebrafish Proteins/metabolism , Gene Duplication , Multigene Family , Promoter Regions, Genetic , Ubiquitin-Protein Ligases
13.
J Integr Neurosci ; 23(6): 123, 2024 Jun 24.
Article in English | MEDLINE | ID: mdl-38940081

ABSTRACT

OBJECTIVE: Perioperative neurocognitive disorders (PND) are a group of prevalent neurological complications that often occur in elderly individuals following major or emergency surgical procedures. The etiologies are not fully understood. This study endeavored to investigate novel targets and prediction methods for the occurrence of PND. METHODS: A total of 229 elderly patients diagnosed with prostatic hyperplasia who underwent transurethral resection of the prostate (TURP) combined with spinal cord and epidural analgesia were included in this study. The patients were divided into two groups, the PND group and non-PND group, based on the Z-score method. According to the principle of maintaining consistency between preoperative and intraoperative conditions, three patients from each group were randomly chosen for serum sample collection. isobaric tags for relative and absolute quantification (iTRAQ) proteomics technology was employed to analyze and identify the proteins that exhibited differential expression in the serum samples from the two groups. Bioinformatics analysis was performed on the proteins that exhibited differential expression. RESULTS: Among the 1101 serum proteins analyzed in the PND and non-PND groups, eight differentially expressed proteins were identified in PND patients. Of these, six proteins showed up-regulation, while two proteins showed down-regulation. Further bioinformatics analysis of the proteins that exhibited differential expression revealed their predominant involvement in cellular biological processes, cellular component formation, as well as endocytosis and phagocytosis Additionally, these proteins were found to possess the RING domain of E3 ubiquitin ligase. CONCLUSION: The iTRAQ proteomics technique was employed to analyze the variation in protein expression in serum samples from patients with PND and those without PND. This study successfully identified eight proteins that exhibited differential expression levels between the two groups. Bioinformatics analysis indicates that proteins exhibiting differential expression are primarily implicated in the biological processes associated with microtubules. Investigating the microtubule formation process as it relates to neuroplasticity and synaptic formation may offer valuable insights for enhancing our comprehension and potential prevention of PND. CLINICAL TRIAL REGISTRATION: Registered (ChiCTR2000028836). Date (20190306).


Subject(s)
Transurethral Resection of Prostate , Humans , Male , Aged , Transurethral Resection of Prostate/adverse effects , Proteomics , Prostatic Hyperplasia/surgery , Prostatic Hyperplasia/blood , Neurocognitive Disorders/etiology , Neurocognitive Disorders/blood , Neurocognitive Disorders/metabolism , Postoperative Cognitive Complications/etiology , Postoperative Cognitive Complications/blood , Perioperative Period , Aged, 80 and over , Blood Proteins/metabolism , Blood Proteins/analysis , Computational Biology
14.
Front Nutr ; 11: 1273874, 2024.
Article in English | MEDLINE | ID: mdl-38840699

ABSTRACT

Background: The intricate interplay between dietary habits and the development of Parkinson's Disease (PD) has long been a subject of scientific inquiry. Mendelian Randomization (MR) emerges as a potent tool, harnessing genetic variants to infer causality in observational data. While evidence links diet to Parkinson's Disease (PD) etiology, a thorough MR exploration of dietary impacts on PD, particularly involving gut microbiota, is still emerging. Methods: This research leverages the IEU Open GWAS project's vast GWAS database to address the knowledge gap in understanding diet's influence on PD, employing a diverse range of dietary variables. Our holistic dataset includes various foods like processed fava beans, bap, red wine, to cheese, reflecting a commitment to untangling dietary complexities in PD etiology. Advancing from initial dietary-PD associations, we innovatively explore the gut microbiota, focusing on Parabacteroides goldsteinii, in relation to bap intake and PD, employing MR. Utilizing weighted median, MR-Egger, and inverse variance weighting methods, we ensure rigorous causality assessments, meticulously mitigating pleiotropy and heterogeneity biases to uphold finding validity. Results: Our findings indicate red wine (OR: 1.031; 95% CI 1.001-1.062; p = 0.044) and dried fruit consumption (OR: 2.019; 95% CI 1.052-3.875; p = 0.035) correlate with increased PD risk, whereas broad beans (OR: 0.967; 95% CI 0.939-0.996; p = 0.024) and bap intake (OR: 0.922; 95% CI 0.860-0.989; p = 0.023) show protective effects against PD. Employing MR, specifically the IVW method, revealed a significant inverse association between bap intake and gut microbiota, marked by an 8.010-fold decrease in Parabacteroides goldsteinii per standard deviation increase in bap intake (95% CI 1.005-63.818, p = 0.049). Furthermore, a connection between PD and Parabacteroides goldsteinii was observed (OR: 0.810; 95% CI 0.768-0.999; p = 0.049), suggesting a potential microbiota-mediated pathway in PD etiology. Conclusion: Our study links dietary habits to PD risk, showing higher PD risk with red wine and dried fruit consumption, and a protective effect from broad beans and bap. Using MR, we found bap intake inversely correlates with Parabacteroides goldsteinii in the gut, suggesting bap influences microbiota. Further, higher Parabacteroides goldsteinii levels correlate with lower PD risk, highlighting a complex interplay of diet, gut microbiome, and neurological health. These insights shed light on potential dietary interventions for PD.

15.
Small ; : e2403065, 2024 Jun 06.
Article in English | MEDLINE | ID: mdl-38845029

ABSTRACT

In the research report of cathode of potassium ion battery, Mn-based layered structural oxides have attracted the researcher's attention because of its good energy density and high specific rate capacity. However, the Jahn-Teller effect is the main limiting factor for their development. It leads to the expansion and deactivation of Mn-based layered metal oxides during cycling for a long time. Therefore, mitigation of the Jahn-Teller effect is considered a useful measure to enhance the electrochemical capability of Mn-based layered oxide. In this paper, an R3m-type K0.4Mn0.7Co0.25Zn0.05O2 cathode material is designed through a Zn doping strategy. X-ray diffraction techniques and electrochemical tests verified that the Jahn-Teller effect is effectively mitigated. High performance is achieved in the rate capacity test with 113 mAh g-1 at 50 mA g-1. Comparison with similar materials in recent years has demonstrated its superiority, leading rate performance among Mn-based metal oxides reported in recent years. The practical feasibility is verified in the assembled full cell with soft carbon in anode materials and K0.4Mn0.7Co0.25Zn0.05O2 as cathode. In the full cell rate test, 104.8 mAh g-1 discharging capacity is achieved at 50 mA g-1 current density.

16.
J Chromatogr A ; 1730: 465085, 2024 Jun 13.
Article in English | MEDLINE | ID: mdl-38879978

ABSTRACT

Teether is a special toy used for infants oral contact. In this paper, a residual and migration detection method was developed using gas chromatography-tandem mass spectrometry for 20 screened hazardous substances in teethers. Fifteen substances were detected in 59 samples, with residual amounts and detection rates ranging from 0.01 mg⋅kg-1 to 106.15 mg⋅kg-1 and from 3.39 % to 84.7 % respectively. Then, 12 substances were detected in simulated saliva at migration levels ranging from 0.0143 mg⋅kg-1 to 20.03 mg⋅kg-1, with detection rates ranging from 1.69 % to 76.3 %. Statistically, the average migration rate of each substance ranged from 8.18 % to 53.28 % depending on the properties of the substance and the sample. The exposure risk of infants to teethers was evaluated separately for two age groups. The hazard quotient (HQ) and hazard index (HI) values for the analytes were higher in the 3-12-month age group than in the 12-24-month age group. The HQ values of triphenylphosphine oxide, benzocaine, and N-methylformanilide were relatively high, with averages of 1.2 × 10-2, 2.5 × 10-3, and 1.6 × 10-3, respectively, and the max HI of the 12 substances was 0.04. The HI and HQ values of the analytes were all below 1, indicating that the non-carcinogenic risks of analytes in teethers are at an acceptable level.

17.
Front Endocrinol (Lausanne) ; 15: 1386142, 2024.
Article in English | MEDLINE | ID: mdl-38883598

ABSTRACT

Background: Limited studies have investigated the relationship between systemic oxidative stress and inflammatory bowel disease (IBD). The purpose of this study was to explore the relationship between oxidative balance score (OBS) and IBD. Methods: We included 175,808 participants from the UK Biobank database from 2006 to 2010. OBS scores were calculated based on 22 lifestyle and dietary factors. Multiple variable Cox proportional regression models, as well as gender stratification and subgroup analysis, were utilized to investigate the relationship between OBS and IBD. Results: There is a significant negative correlation between OBS and the occurrence of IBD, ulcerative colitis (UC), and Crohn's disease (CD). Additionally, OBS is significantly negatively correlated with intestinal obstruction in CD patients. Gender stratified analysis suggest a significant correlation between OBS and CD in female patients, particularly pronounced in those under 60 years old. Sensitivity analysis indicates a significant negative correlation between lifestyle-related OBS and diet-related OBS with the occurrence of CD in females, diet-related OBS is negatively correlated with CD in males. Conclusion: OBS showed a significant negative correlation with IBD, especially in female CD patients. This study underscores the importance of antioxidant diet and lifestyle, which may provide a greater advantage for female CD patients.


Subject(s)
Antioxidants , Inflammatory Bowel Diseases , Oxidative Stress , Humans , Female , Male , Middle Aged , Antioxidants/metabolism , Adult , Inflammatory Bowel Diseases/metabolism , Aged , Life Style , Crohn Disease/metabolism , Colitis, Ulcerative/metabolism , Diet
18.
Molecules ; 29(11)2024 May 21.
Article in English | MEDLINE | ID: mdl-38893304

ABSTRACT

m6A methylation, a ubiquitous modification on circRNAs, exerts a profound influence on RNA function, intracellular behavior, and diverse biological processes, including disease development. While prediction algorithms exist for mRNA m6A modifications, a critical gap remains in the prediction of circRNA m6A modifications. Therefore, accurate identification and prediction of m6A sites are imperative for understanding RNA function and regulation. This study presents a novel hybrid model combining a convolutional neural network (CNN) and a bidirectional long short-term memory network (BiLSTM) for precise m6A methylation site prediction in circular RNAs (circRNAs) based on data from HEK293 cells. This model exploits the synergy between CNN's ability to extract intricate sequence features and BiLSTM's strength in capturing long-range dependencies. Furthermore, the integrated attention mechanism empowers the model to pinpoint critical biological information for studying circRNA m6A methylation. Our model, exhibiting over 78% prediction accuracy on independent datasets, offers not only a valuable tool for scientific research but also a strong foundation for future biomedical applications. This work not only furthers our understanding of gene expression regulation but also opens new avenues for the exploration of circRNA methylation in biological research.


Subject(s)
Neural Networks, Computer , RNA, Circular , RNA, Circular/genetics , Humans , Methylation , HEK293 Cells , Computational Biology/methods , Algorithms , Adenosine/metabolism , Adenosine/genetics , Adenosine/analogs & derivatives
19.
PeerJ ; 12: e17520, 2024.
Article in English | MEDLINE | ID: mdl-38887619

ABSTRACT

Habitual dietary changes have the potential to induce alterations in the host's gut microbiota. Mandarin fish (Siniperca chuatsi), an aquatic vertebrate species with distinct feeding habits, were fed with natural feeds (NF) and artificial feeds (AF) to simulate the effects of natural and processed food consumption on host gut microbiota assemblages. The results showed that the alpha diversity index was reduced in the AF diet treatment, as lower abundance and diversity of the gut microbiota were observed, which could be attributed to the colonized microorganisms of the diet itself and the incorporation of plant-derived proteins or carbohydrates. The ß-diversity analysis indicated that the two dietary treatments were associated with distinct bacterial communities. The AF diet had a significantly higher abundance of Bacteroidota and a lower abundance of Actinomycetota, Acidobacteriota, and Chloroflexota compared to the NF group. In addition, Bacteroidota was the biomarker in the gut of mandarin fish from the AF treatment, while Acidobacteriota was distinguished in the NF treatments. Additionally, the increased abundance of Bacteroidota in the AF diet group contributed to the improved fermentation and nutrient assimilation, as supported by the metabolic functional prediction and transcriptome verification. Overall, the present work used the mandarin fish as a vertebrate model to uncover the effects of habitual dietary changes on the evolution of the host microbiota, which may provide potential insights for the substitution of natural foods by processed foods in mammals.


Subject(s)
Animal Feed , Gastrointestinal Microbiome , Gastrointestinal Microbiome/drug effects , Gastrointestinal Microbiome/physiology , Animals , Animal Feed/analysis , Diet/veterinary , Fishes/microbiology , Food, Processed
20.
Int J Mol Sci ; 25(11)2024 May 21.
Article in English | MEDLINE | ID: mdl-38891786

ABSTRACT

Inflammatory bowel disease (IBD) is a nonspecific chronic inflammatory disease resulting from an immune disorder in the intestine that is prone to relapse and incurable. The understanding of the pathogenesis of IBD remains unclear. In this study, we found that ace (angiotensin-converting enzyme), expressed abundantly in the intestine, plays an important role in IBD. The deletion of ace in zebrafish caused intestinal inflammation with increased expression of the inflammatory marker genes interleukin 1 beta (il1b), matrix metallopeptidase 9 (mmp9), myeloid-specific peroxidase (mpx), leukocyte cell-derived chemotaxin-2-like (lect2l), and chemokine (C-X-C motif) ligand 8b (cxcl8b). Moreover, the secretion of mucus in the ace-/- mutants was significantly higher than that in the wild-type zebrafish, validating the phenotype of intestinal inflammation. This was further confirmed by the IBD model constructed using dextran sodium sulfate (DSS), in which the mutant zebrafish had a higher susceptibility to enteritis. Our study reveals the role of ace in intestinal homeostasis, providing a new target for potential therapeutic interventions.


Subject(s)
Peptidyl-Dipeptidase A , Zebrafish , Animals , Zebrafish/genetics , Peptidyl-Dipeptidase A/genetics , Peptidyl-Dipeptidase A/metabolism , Disease Models, Animal , Dextran Sulfate , Inflammation/genetics , Inflammation/metabolism , Inflammation/pathology , Zebrafish Proteins/genetics , Zebrafish Proteins/metabolism , Intestines/pathology , Inflammatory Bowel Diseases/metabolism , Inflammatory Bowel Diseases/genetics , Inflammatory Bowel Diseases/pathology , Interleukin-1beta/metabolism , Interleukin-1beta/genetics , Intestinal Mucosa/metabolism , Intestinal Mucosa/pathology
SELECTION OF CITATIONS
SEARCH DETAIL
...