Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 164
1.
Mutat Res ; 829: 111867, 2024 Jun 08.
Article En | MEDLINE | ID: mdl-38878504

OBJECTIVE: This study aimed to explore the role of heat shock protein family E member 1 (HSPE1) in the metabolism of lung adenocarcinoma (LUAD) cells. METHODS: Bioinformatics analysis was applied to examine the expression of HSPE1 in LUAD and its correlation with patient survival. Single-gene Gene Set Enrichment Analysis was conducted for HSPE1. LUAD cell lines or mouse models with up-regulated/down-regulated HSPE1 were constructed. The expression level of HSPE1 was detected by qRT-PCR or immunohistochemical staining. We used CCK-8 assay to measure cell viability and flow cytometry to detect apoptosis levels. Transwell assay was performed to evaluate migration and invasion characteristics. Extracellular Flux Analyzer was employed to detect oxygen consumption rate and extracellular acidification rate. Glucose consumption, adenosine triphosphate production, and lactate levels were measured by Reagent kits. Western blot analysis was conducted to examine the expression levels of GLUT1, HK2, and LDHA. RESULTS: HSPE1 promoted proliferative, migratory, and invasive abilities, and inhibited apoptosis of LUAD cells through the aerobic glycolysis pathway. Specifically, LUAD cells with HSPE1 knockdown exhibited significantly decreased proliferation, migration, and invasion abilities, along with an increased apoptosis rate. Additionally, the expression levels of aerobic glycolysis-related proteins HK2, LADH, and GLUT1 were downregulated, while their levels were increased in LUAD cells with high HSPE1 expression. Suppression of aerobic glycolysis by 2-DG attenuated the promoting effects of HSPE1 overexpression on the proliferation, migration, and invasion of LUAD cells. HSPE1 knockdown inhibited tumor growth and decreased expression levels of HK2, LADH, and GLUT1 in vivo. CONCLUSION: HSPE1 regulated the proliferation, migration, and invasion of LUAD cells through the aerobic glycolysis pathway, thus facilitating malignant development of LUAD. The study suggested that HSPE1 could be useful as a therapeutic target for LUAD.

2.
J Cancer ; 15(11): 3381-3393, 2024.
Article En | MEDLINE | ID: mdl-38817872

The prognostic roles of apoptosis-related genes (ARGs) in lung adenocarcinoma (LUAD) have not been fully elucidated. In this study, differentially expressed genes (DEGs) associated with apoptosis and the hub genes were further identified. The prognostic values of the ARGs were evaluated using the LASSO Cox regression method. Prognostic values were determined using Kaplan-Meier (K-M) curves and receiver operating characteristic (ROC) curves in the TCGA and GEO datasets. The correlations, mutation data, and protein expression of the 10 ARGs predictive models were also analyzed. We identified 130 differentially expressed ARGs. DEGs were used to split LUAD cases into two subtypes whose overall survival (OS) were significantly different (P = 0.025). We developed a novel 10-gene signature using LASSO Cox regression. In both TCGA and GEO datasets, the results of the K-M curve and log-rank test showed significant difference in the survival rate of patients in the high-risk group and low-risk group (P < 0.0001). According to the GO and KEGG analyses, ARGs were enriched in cancer-related terms. In both cohorts, the immune status of the high-risk group was significantly lower than that of the low-risk group. Based on the differential expression of the ARGs, we established a new risk model to predict the prognosis of patients with LUAD.

3.
Comp Immunol Microbiol Infect Dis ; 109: 102179, 2024 Jun.
Article En | MEDLINE | ID: mdl-38636297

porcine reproductive and respiratory syndrome (PRRS), caused by porcine reproductive and respiratory syndrome virus (PRRSV) infection, is an important swine infectious disease that causes substantial losses worldwide each year. PRRSV is a positive-sense single-stranded RNA virus that is highly susceptible to mutation and recombination, making vaccine and drug research for the disease extremely difficult. In this study, the binding of PRRSV nsp2 to HSP71 protein was detected by using the IP/MS technique. And the inhibitory effect of HSP71 on nsp2 antagonistic activity was validated by measuring NF-kB luciferase reporter. According to stress from inhibitory effects, the amino acid variation profile of PRRSV nsp2 under HSP71 stress was further analyzed using second-generation sequencing. Surprisingly, the results indicated that HSP71 pressure limits the random mutations of PRRSV nsp2 and maintains the dominant PRRSV strain within the population. Mutant strain showed weaker antagonistic activity and replication capability in cell. These results imply the binding of HSP71 with PRRSV nsp2 may lead to maintain the stability of highly virulent strains of PRRSV.


Mutation , Porcine Reproductive and Respiratory Syndrome , Porcine respiratory and reproductive syndrome virus , Viral Nonstructural Proteins , Virus Replication , Porcine respiratory and reproductive syndrome virus/genetics , Animals , Swine , Porcine Reproductive and Respiratory Syndrome/virology , Viral Nonstructural Proteins/genetics , Viral Nonstructural Proteins/metabolism , Cell Line , Protein Binding , NF-kappa B/metabolism , NF-kappa B/genetics
4.
Eur J Pharmacol ; 970: 176483, 2024 May 05.
Article En | MEDLINE | ID: mdl-38479721

Stromal derived factor 1 (SDF1) has been shown to be involved in the pathogenesis of pulmonary artery hypertension (PAH). However, the detailed molecular mechanisms remain unclear. To address this, we utilized primary cultured rat pulmonary artery smooth muscle cells (PASMCs) and monocrotaline (MCT)-induced PAH rat models to investigate the mechanisms of SDF1 driving PASMCs proliferation and pulmonary arterial remodeling. SDF1 increased runt-related transcription factor 2 (Runx2) acetylation by Calmodulin (CaM)-dependent protein kinase II (CaMKII)-dependent HDAC4 cytoplasmic translocation, elevation of Runx2 acetylation conferred its resistance to proteasome-mediated degradation. The accumulation of Runx2 further upregulated osteopontin (OPN) expression, finally leading to PASMCs proliferation. Blocking SDF1, suppression of CaMKII, inhibition the nuclear export of HDAC4 or silencing Runx2 attenuated pulmonary arterial remodeling and prevented PAH development in MCT-induced PAH rat models. Our study provides novel sights for SDF1 induction of PASMCs proliferation and suggests that targeting SDF1/CaMKII/HDAC4/Runx2 axis has potential value in the management of PAH.


Pulmonary Arterial Hypertension , Rats , Animals , Pulmonary Arterial Hypertension/pathology , Calcium-Calmodulin-Dependent Protein Kinase Type 2/metabolism , Core Binding Factor Alpha 1 Subunit/metabolism , Vascular Remodeling/physiology , Cell Proliferation , Pulmonary Artery/pathology , Familial Primary Pulmonary Hypertension/pathology , Myocytes, Smooth Muscle , Monocrotaline/adverse effects , Disease Models, Animal , Histone Deacetylases/metabolism
5.
Heliyon ; 10(5): e27065, 2024 Mar 15.
Article En | MEDLINE | ID: mdl-38495138

Background: Ischemic heart disease (IHD) is the leading cause of death worldwide. High fasting plasma glucose (FPG) is an increasing risk factor for IHD. We aimed to explore the long-term trends of high FPG-attributed IHD mortality during 1990-2019. Methods: Data were obtained from the Global Burden of Disease Study 2019 database. Deaths, disability-adjusted life-years (DALYs), the age-standardized mortality rate (ASMR) and age-standardized DALY rate (ASDR) of IHD attributable to high FPG were estimated by sex, socio-demographic index (SDI), regions and age. Estimated annual percentage changes (EAPCs) were calculated to assess the trends of ASMR and ASDR of IHD attributable to high FPG. Results: IHD attributable to high FPG deaths increased from 1.04 million (0.62-1.63) in 1990 to 2.35 million (1.4-3.7) in 2019, and the corresponding DALYs rose from 19.82 million (12.68-29.4) to 43.3 million (27.8-64.2). In 2019, ASMR and ASDR of IHD burden attributable to high FPG were 30.45 (17.09-49.03) and 534.8 (340.7-792.2), respectively. The highest ASMR and ASDR of IHD attributable to high FPG occurred in low-middle SDI quintiles, with 39.28 (22.40-62.76) and 742.3 (461.5-1117.5), respectively, followed by low SDI quintiles and middle SDI quintiles. Males had higher ASMR and ASDR compared to females across the past 30 years. In addition, ASRs of DALYs and deaths were highest in those over 95 years old. Conclusion: High FPG-attributed IHD mortality and DALYs have increased dramatically and globally, particularly in low, low-middle SDI quintiles and among the elderly. High FPG remains a great concern on the global burden of IHD and effective prevention and interventions are urgently needed to curb the ranking IHD burden, especially in lower SDI regions.

6.
Eur J Clin Microbiol Infect Dis ; 43(4): 747-765, 2024 Apr.
Article En | MEDLINE | ID: mdl-38367094

PURPOSE: High fasting plasma glucose (HFPG) has been identified as a risk factor for drug-resistant tuberculosis incidence and mortality. However, the epidemic characteristics of HFPG-attributable multidrug-resistant tuberculosis (MDR-TB) and extensively drug-resistant tuberculosis (XDR-TB) remain unclear. We aimed to analyze the global spatial patterns and temporal trends of HFPG-attributable MDR-TB and XDR-TB from 1990 to 2019. METHODS: Utilizing data from the Global Burden of Disease 2019 project, annual deaths and disability-adjusted life years (DALYs) of HFPG-attributable MDR-TB and XDR-TB were conducted from 1990 to 2019. Joinpoint regression was employed to quantify trends over time. RESULTS: From 1990 to 2019, the deaths and DALYs due to HFPG-attributable MDR-TB and XDR-TB globally showed an overall increasing trend, with a significant increase until 2003 to 2004, followed by a gradual decline or stability thereafter. The low sociodemographic index (SDI) region experienced the most significant increase over the past 30 years. Regionally, Sub-Saharan Africa, Central Asia and Oceania remained the highest burden. Furthermore, there was a sex and age disparity in the burden of HFPG-attributable MDR-TB and XDR-TB, with young males in the 25-34 age group experiencing higher mortality, DALYs burden and a faster increasing trend than females. Interestingly, an increasing trend followed by a stable or decreasing pattern was observed in the ASMR and ASDR of HFPG-attributable MDR-TB and XDR-TB with SDI increasing. CONCLUSION: The burden of HFPG-attributable MDR-TB and XDR-TB rose worldwide from 1990 to 2019. These findings emphasize the importance of routine bi-directional screening and integrated management for drug-resistant TB and diabetes.


Extensively Drug-Resistant Tuberculosis , Tuberculosis, Multidrug-Resistant , Male , Female , Humans , Blood Glucose , Retrospective Studies , Global Burden of Disease , Tuberculosis, Multidrug-Resistant/epidemiology , Tuberculosis, Multidrug-Resistant/diagnosis , Fasting
7.
Int Immunopharmacol ; 129: 111513, 2024 Mar 10.
Article En | MEDLINE | ID: mdl-38301411

Interleukin-36 (IL-36) cytokine family members play an immunomodulatory function to immune cells through IL-36 receptor signaling pathway. However, the regulatory role of IL-36 exerted on T cells is not completely elucidated in patients with ventilator-associated pneumonia (VAP). For this purpose, this study enrolled 51 VAP patients and 27 controls. IL-36 levels were measured by ELISA. The mRNA levels of IL-36 receptor subunits were determined by real-time PCR. CD4+ and CD8+ T cells were enriched, and stimulated with recombinant IL-36 receptor antagonist (IL-36RA). The influence of IL-36RA on transcription factors and cytokine secretions by CD4+ T cells was investigated. The modulatory function of IL-36RA on CD8+ T cells was assessed by measuring target cell death and cytokine secretions. There were no significant differences in serum IL-36 levels between VAP patients and controls. Only IL-36RA, but not IL-36α, IL-36ß, or IL-36γ, in bronchoalveolar lavage fluid was elevated in infection site of VAP patients. IL-36 receptor subunits in CD4+ and CD8+ T cells were comparable between VAP patients and controls. 10 ng/mL of IL-36RA stimulation dampened peripheral effector CD4+ T cell response isolated from both VAP patients and controls. Target cell death mediated by CD8+ T cells isolated from BAFL of VAP patients was suppressed by 100 ng/mL of IL-36RA stimulation in vitro. The down-regulations of perforin, granzyme B, interferon-γ, tumor necrosis factor-α, and Fas ligand following IL-36RA stimulation in vitro were responsible for reduced CD8+ T cell-mediated cytotoxicity. IL-36RA revealed an immunosuppressive property for T cell response in vitro, and may be involved in the protective mechanism in VAP patients.


Pneumonia, Ventilator-Associated , Humans , Pneumonia, Ventilator-Associated/drug therapy , CD8-Positive T-Lymphocytes/metabolism , Interleukins/metabolism , Cytokines , Lung/metabolism
8.
Thorac Cancer ; 15(7): 582-597, 2024 Mar.
Article En | MEDLINE | ID: mdl-38337087

Cone-beam computed tomography (CBCT) system can provide real-time 3D images and fluoroscopy images of the region of interest during the operation. Some systems can even offer augmented fluoroscopy and puncture guidance. The use of CBCT for interventional pulmonary procedures has grown significantly in recent years, and numerous clinical studies have confirmed the technology's efficacy and safety in the diagnosis, localization, and treatment of pulmonary nodules. In order to optimize and standardize the technical specifications of CBCT and guide its application in clinical practice, the consensus statement has been organized and written in a collaborative effort by the Professional Committee on Interventional Pulmonology of China Association for Promotion of Health Science and Technology.


Lung Neoplasms , Multiple Pulmonary Nodules , Humans , Lung Neoplasms/diagnostic imaging , Lung Neoplasms/surgery , Retrospective Studies , Multiple Pulmonary Nodules/surgery , Cone-Beam Computed Tomography/methods , Lung
9.
Eur J Pharmacol ; 961: 176151, 2023 Dec 15.
Article En | MEDLINE | ID: mdl-37914064

Nicotinamide phosphoribosyltransferase (NAMPT), a pleiotropic protein, promotes the proliferation and migration of pulmonary artery smooth muscle cells (PASMCs), which is associated with the genesis and progression of pulmonary arterial hypertension (PAH). NAMPT is highly increased in PAH patient's plasma and highly relevant to PAH severity. The mRNA and protein levels of NAMPT are elevated in PAH animal models. However, the underlying molecular mechanisms how NAMPT mediated platelet-derived growth factor (PDGF)-induced PASMCs proliferation are still unclear. The present study aimed to address these issues. Primary cultured PASMCs were attained from male Sprague-Dawley (SD) rats. Western blotting, RT-PCR, ELISA, cell transfection, Cell Counting Kit-8 (CCK-8) and EdU incorporation assays were used in the experiments. We showed that PDGF upregulated NAMPT expression through the activation of signal transducers and activators of transcription 5 (STAT5), and elevated extracellular NAMPT further promoted the activation of NF-κB through Toll-like receptor 4 (TLR4), which ultimately upregulated polo-like kinase 4 (PLK4) expression leading to PASMCs proliferation. Knockdown of STAT5, NAMPT or PLK4, and inhibition of TLR4 or NF-κB suppressed PDGF-induced PASMCs proliferation. Our study suggests that NAMPT plays an essential role in PDGF-induced PASMCs proliferation via TLR4/NF-κB/PLK4 pathway, suggesting that targeting NAMPT might be valuable in ameliorating pulmonary arterial hypertension.


Hypertension, Pulmonary , Pulmonary Arterial Hypertension , Humans , Rats , Animals , Male , Platelet-Derived Growth Factor/metabolism , Pulmonary Artery/metabolism , Pulmonary Arterial Hypertension/metabolism , NF-kappa B/metabolism , Rats, Sprague-Dawley , Cell Proliferation , Nicotinamide Phosphoribosyltransferase/genetics , Nicotinamide Phosphoribosyltransferase/metabolism , STAT5 Transcription Factor/adverse effects , STAT5 Transcription Factor/metabolism , Toll-Like Receptor 4/genetics , Toll-Like Receptor 4/metabolism , Signal Transduction , Myocytes, Smooth Muscle/metabolism , Cells, Cultured
10.
Respir Res ; 24(1): 216, 2023 Sep 06.
Article En | MEDLINE | ID: mdl-37674165

BACKGROUND: Macrophage migration inhibitory factor (MIF) and GTPase dynamin-related protein 1 (Drp1)-dependent aberrant mitochondrial fission are closely linked to the pathogenesis of asthma. However, it is unclear whether Drp1-mediated mitochondrial fission and its downstream targets mediate MIF-induced proliferation of airway smooth muscle cells (ASMCs) in vitro and airway remodeling in chronic asthma models. The present study aims to clarify these issues. METHODS: In this study, primary cultured ASMCs and ovalbumin (OVA)-induced asthmatic rats were applied. Cell proliferation was detected by CCK-8 and EdU assays. Western blotting was used to detect extracellular signal-regulated kinase (ERK) 1/2, Drp1, autophagy-related markers and E-cadherin protein phosphorylation and expression. Inflammatory cytokines production, airway reactivity test, histological staining and immunohistochemical staining were conducted to evaluate the development of asthma. Transmission electron microscopy was used to observe the mitochondrial ultrastructure. RESULTS: In primary cultured ASMCs, MIF increased the phosphorylation level of Drp1 at the Ser616 site through activation of the ERK1/2 signaling pathway, which further activated autophagy and reduced E-cadherin expression, ultimately leading to ASMCs proliferation. In OVA-induced asthmatic rats, MIF inhibitor 4-iodo-6-phenylpyrimidine (4-IPP) treatment, suppression of mitochondrial fission by Mdivi-1 or inhibiting autophagy with chloroquine phosphate (CQ) all attenuated the development of airway remodeling. CONCLUSIONS: The present study provides novel insights that MIF promotes airway remodeling in asthma by activating autophagy and degradation of E-cadherin via ERK/Drp1 signaling pathway, suggesting that targeting MIF/ERK/Drp1 might have potential therapeutic value for the prevention and treatment of asthma.


Asthma , Macrophage Migration-Inhibitory Factors , Animals , Rats , Airway Remodeling , Dynamins , Asthma/chemically induced , Autophagy , Cadherins
11.
PeerJ ; 11: e15847, 2023.
Article En | MEDLINE | ID: mdl-37663302

Background: Staphylococcus aureus is one of the most important foodborne pathogens in the world and the main cause of dairy cow mastitis. Few studies have investigated the epidemic pedigree of S. aureus of bovine origin in Hunan, China. Therefore, we aimed to analyze the capsular polysaccharides (CP), molecular typing, and antibiotic resistance characteristics of S. aureus isolated from raw milk of dairy farms in Hunan Province. Methods: Between 2018 and 2022, 681 raw milk samples were collected from dairy cows from farms in Changsha, Changde, Shaoyang, Yongzhou, and Chenzhou in Hunan Province. S. aureus was isolated from these samples, and the isolates were subjected to molecular typing, CP typing, and determination of antibiotic resistance through broth dilution and polymerase chain reaction (PCR). Results: From 681 raw milk samples, 76 strains of S. aureus were isolated. The pathogenicity of 76 isolates was determined preliminarily by detecting cp5 and cp8 CP genes. Eighteen types of antimicrobial resistance phenotypes of 76 S. aureus strains were detected by the broth dilution method, and 11 kinds of related resistance genes were amplified by PCR. The S. aureus isolates had CP5 (42.10%) and CP8 (57.89%). S. aureus had a multiple antimicrobial resistance rate of 26.75%. The isolated strains had the highest resistance rate to penicillin (82.89%) and showed varying degrees of resistance to other drugs, but no isolate showed resistance to doxycycline. The 76 isolates all carried two or more antibiotic resistance genes, with a maximum of eight antibiotics resistance genes. FemB was detected in all isolates, but none of isolates carried vanA, ermA, or glrA. The 76 isolates were divided into 22 sequence types (ST) and 20 spa types by MLST and spa typing, and the number of t796-ST7 (n = 15) isolates was the highest, which may be the major epidemic strain of multidrug-resistant S. aureus. Conclusion: The present findings indicate the need to increase production of the CP8 S. aureus vaccine in Hunan Province and strengthen resistance monitoring of t796-ST7 isolates with the prevalent molecular type of multi-drug resistant strains. The use of ß-lactam, macrolides, and lincosamides should be reduced; doxycycline, sulfonamides, and glycopeptides could be appropriately added to veterinary antibiotics to treat infectious diseases in dairy cows.


Methicillin-Resistant Staphylococcus aureus , Staphylococcal Infections , Female , Animals , Cattle , Anti-Bacterial Agents/pharmacology , Doxycycline , Staphylococcus aureus/genetics , Milk , Multilocus Sequence Typing , Drug Resistance, Bacterial/genetics , Staphylococcal Infections/drug therapy
12.
BMJ Open ; 13(9): e074134, 2023 09 28.
Article En | MEDLINE | ID: mdl-37770275

OBJECTIVE: This study aimed to analyse the burden and temporal trends of tuberculosis (TB) incidence and mortality globally, as well as the association between mortality-to-incidence ratio (MIR) and Socio-Demographic Index (SDI). DESIGN: A retrospective analysis of TB data from 1990 to 2019 was conducted using the Global Burden of Disease Study database. RESULTS: Between 1990 and 2019, there was a declining trend in the global incidence and mortality of TB. High SDI regions experienced a higher declining rate than in low SDI regions during the same period. Nearly half of the new patients occurred in South Asia. In addition, there is a sex-age imbalance in the overall burden of TB, with young males having higher incidence and mortality than females. In terms of the three subtypes of TB, drug-sensitive (DS)-TB accounted for more than 90% of the incidents and deaths and experienced a decline over the past 30 years. However, drug-resistant TB (multidrug-resistant (MDR)-TB and extensively drug-resistant (XDR)-TB) showed an overall increasing trend in age-standardised incidence rates and age-standardised mortality rates, with an inflection point after the year 2000. At the regional level, South Asia and Eastern Europe remained a high burden of drug-resistant TB incidence and mortality. Interestingly, a negative correlation was found between the MIR and SDI for TB, including DS-TB, MDR-TB and XDR-TB. Notably, central sub-Saharan Africa had the highest MIR, which indicated a higher-than-expected burden given its level of sociodemographic development. CONCLUSION: This study provides comprehensive insights into the global burden and temporal trends of TB incidence and mortality, as well as the relationship between MIR and SDI. These findings contribute to our understanding of TB epidemiology and can inform public health strategies for prevention and management.


HIV Infections , Tuberculosis, Multidrug-Resistant , Tuberculosis , Male , Female , Humans , Global Burden of Disease , Retrospective Studies , Tuberculosis/epidemiology , Incidence , Global Health , HIV Infections/epidemiology
13.
Signal Transduct Target Ther ; 8(1): 301, 2023 08 14.
Article En | MEDLINE | ID: mdl-37574511

Anaplastic lymphoma kinase (ALK) rearrangements are present in about 5-6% of non-small cell lung cancer (NSCLC) cases and associated with increased risks of central nervous system (CNS) involvement. Envonalkib, a novel ALK inhibitor, demonstrated promising anti-tumor activity and safety in advanced ALK-positive NSCLC in the first-in-human phase I study. This phase III trial (ClinicalTrials.gov NCT04009317) investigated the efficacy and safety of first-line envonalkib in advanced ALK-positive NSCLC cases. Totally 264 participants were randomized 1:1 to receive envonalkib (n = 131) or crizotinib (n = 133). Median independent review committee (IRC)-assessed progression-free survival (PFS) times were 24.87 (95% confidence interval [CI]: 15.64-30.36) and 11.60 (95% CI: 8.28-13.73) months in the envonalkib and crizotinib groups, respectively (hazard ratio [HR] = 0.47, 95% CI: 0.34-0.64, p < 0.0001). IRC-assessed confirmed objective response rate (ORR) was higher (81.68% vs. 70.68%, p = 0.056) and duration of response was longer (median, 25.79 [95% CI, 16.53-29.47] vs. 11.14 [95% CI, 9.23-16.59] months, p = 0.0003) in the envonalkib group compared with the crizotinib group. In participants with baseline brain target lesions, IRC-assessed CNS-ORR was improved with envonalkib compared with crizotinib (78.95% vs. 23.81%). Overall survival (OS) data were immature, and median OS was not reached in either group (HR = 0.84, 95% CI: 0.48-1.47, p = 0.5741). The 12-month OS rates were 90.6% (95% CI, 84.0%-94.5%) and 89.4% (95% CI, 82.8%-93.6%) in the envonalkib and crizotinib groups, respectively. Grade ≥3 treatment-related adverse events were observed in 55.73% and 42.86% of participants in the envonalkib and crizotinib groups, respectively. Envonalkib significantly improved PFS and delayed brain metastasis progression in advanced ALK-positive NSCLC.


Carcinoma, Non-Small-Cell Lung , Lung Neoplasms , Humans , Brain Neoplasms/drug therapy , Brain Neoplasms/genetics , Carcinoma, Non-Small-Cell Lung/drug therapy , Carcinoma, Non-Small-Cell Lung/genetics , Crizotinib/pharmacology , Crizotinib/therapeutic use , Lung Neoplasms/drug therapy , Lung Neoplasms/genetics , Protein Kinase Inhibitors/therapeutic use , Anaplastic Lymphoma Kinase
14.
Eur J Pharmacol ; 956: 175968, 2023 Oct 05.
Article En | MEDLINE | ID: mdl-37549728

To address the molecular mechanisms underlying macrophage migration inhibitory factor (MIF) induced pulmonary artery smooth muscle cells (PASMCs) proliferation, migration and vascular remodeling in pulmonary hypertension (PH), primary cultured rat PASMCs and monocrotaline (MCT)-induced rats with PH were applied in the present study. The results showed that MIF increased signal transducer and activator of transcription 3 (STAT3) phosphorylation, and then stimulated activating transcription factor 6 (ATF6) activation, subsequently triggered autophagy activation, which further led to programmed cell death factor 4 (PDCD4) lysosomal degradation, and eventually promoted PASMCs proliferation/migration. In lung tissues of MCT rats, MIF protein expression was elevated, phosphorylation of STAT3 and activation of ATF6 were increased, activation of autophagy was evident, and reduction of PDCD4 was observed. Intervention with MIF inhibitor 4-Iodo-6-phenylpyrimidine (4-IPP), ATF6 blocker melatonin or autophagy inhibitor chloroquine, confirmed the in vitro interaction among MIF, STAT3, ATF6, autophagy and PDCD4 in MCT induced rats with PH. Targeting MIF/STAT3/ATF6/autophagy/PDCD4 axis effectively prevented the development of PH by suppressing PASMCs proliferation and vascular remodeling. In conclusions, we demonstrate that MIF activates the STAT3/ATF6/autophagy cascade and then degrades PDCD4 leading to PASMCs proliferation/migration and pulmonary vascular remodeling, suggesting that intervention this axis might have potential value in management of PH.


Apoptosis Regulatory Proteins , Hypertension, Pulmonary , Macrophage Migration-Inhibitory Factors , Animals , Rats , Activating Transcription Factor 6/metabolism , Autophagy/physiology , Cell Proliferation , Cells, Cultured , Down-Regulation , Myocytes, Smooth Muscle/metabolism , Pulmonary Artery/metabolism , STAT3 Transcription Factor/metabolism , Vascular Remodeling , Apoptosis Regulatory Proteins/genetics
15.
Respir Res ; 24(1): 149, 2023 Jun 02.
Article En | MEDLINE | ID: mdl-37268944

BACKGROUND: HMGB1 and ER stress have been considered to participate in the progression of pulmonary artery hypertension (PAH). However, the molecular mechanism underlying HMGB1 and ER stress in PAH remains unclear. This study aims to explore whether HMGB1 induces pulmonary artery smooth muscle cells (PASMCs) functions and pulmonary artery remodeling through ER stress activation. METHODS: Primary cultured PASMCs and monocrotaline (MCT)-induced PAH rats were applied in this study. Cell proliferation and migration were determined by CCK-8, EdU and transwell assay. Western blotting was conducted to detect the protein levels of protein kinase RNA-like endoplasmic reticulum kinase (PERK), activating transcription factor-4 (ATF4), seven in absentia homolog 2 (SIAH2) and homeodomain interacting protein kinase 2 (HIPK2). Hemodynamic measurements, immunohistochemistry staining, hematoxylin and eosin staining were used to evaluate the development of PAH. The ultrastructure of ER was observed by transmission electron microscopy. RESULTS: In primary cultured PASMCs, HMGB1 reduced HIPK2 expression through upregulation of ER stress-related proteins (PERK and ATF4) and subsequently increased SIAH2 expression, which ultimately led to PASMC proliferation and migration. In MCT-induced PAH rats, interfering with HMGB1 by glycyrrhizin, suppression of ER stress by 4-phenylbutyric acid or targeting SIAH2 by vitamin K3 attenuated the development of PAH. Additionally, tetramethylpyrazine (TMP), as a component of traditional Chinese herbal medicine, reversed hemodynamic deterioration and vascular remodeling by targeting PERK/ATF4/SIAH2/HIPK2 axis. CONCLUSIONS: The present study provides a novel insight to understand the pathogenesis of PAH and suggests that targeting HMGB1/PERK/ATF4/SIAH2/HIPK2 cascade might have potential therapeutic value for the prevention and treatment of PAH.


HMGB1 Protein , Hypertension, Pulmonary , Pulmonary Arterial Hypertension , Rats , Animals , Pulmonary Artery/metabolism , Rats, Sprague-Dawley , HMGB1 Protein/metabolism , Pulmonary Arterial Hypertension/metabolism , Hypertension, Pulmonary/pathology , Cell Proliferation , Myocytes, Smooth Muscle/metabolism , Cells, Cultured , Monocrotaline , Protein Serine-Threonine Kinases
16.
Heliyon ; 9(3): e14173, 2023 Mar.
Article En | MEDLINE | ID: mdl-36938425

Background: It has been demonstrated that elevated telomerase reverse transcriptase (TERT) expression or activity is implicated in pulmonary hypertension (PH). In addition, activation of peroxisome-proliferator-activated receptor γ (PPAR-γ) has been found to prevent PH progression. However, the molecular mechanism responsible for the protective effect of PPAR-γ activation on TERT expression in the pathogenesis of PH remains unknown. This study was performed to address these issues. Methods: Intraperitoneal injection of monocrotaline (MCT) was used to establish PH. BIBR1532 was applied to inhibit the activity of telomerase. The right ventricular systolic pressure (RVSP) and histological analysis were used to detect the development of PH. The protein levels of p-Akt, t-Akt, c-Myc and TERT were determined by western blotting. Pharmacological inhibition of TERT by BIBR1532 effectively suppressed RVSP, RVHI and the WT% in MCT-induced PH rats. Results: Pharmacological inhibition of Akt/c-Myc pathway by LY294002 diminished TERT upregulation, RVSP, RVHI and WT% in MCT-PH rats. Activation of PPAR-γ by pioglitazone inhibited p-Akt and c-Myc expressions and further downregulated TERT, thus to reduced RVSP, RVHI and WT% in MCT-treated PH rats. Conclusions: In conclusion, TERT upregulation contributes to PH development in MCT-treated rats. Activation of PPAR-γ prevents pulmonary arterial remodeling through Akt/c-Myc/TERT axis suppression.

17.
Int J Chron Obstruct Pulmon Dis ; 17: 2093-2106, 2022.
Article En | MEDLINE | ID: mdl-36092968

Purpose: There is an unmet clinical need for an accurate and objective diagnostic tool for early detection of acute exacerbation of chronic obstructive pulmonary disease (AECOPD). DETECT (NCT03556475) was a multicenter, observational, cross-sectional study aiming to develop and validate multivariable prediction models for AECOPD occurrence and severity in patients with chronic obstructive pulmonary disease (COPD) in China. Patients and Methods: Patients aged ≥40 years with moderate/severe COPD, AECOPD, or no COPD were consecutively enrolled between April 22, 2020, and January 18, 2021, across seven study sites in China. Multivariable prediction models were constructed to identify AECOPD occurrence (primary outcome) and AECOPD severity (secondary outcome). Candidate variables were selected using a stepwise procedure, and the bootstrap method was used for internal model validation. Results: Among 299 patients enrolled, 246 were included in the final analysis, of whom 30.1%, 40.7%, and 29.3% had COPD, AECOPD, or no COPD, respectively. Mean age was 64.1 years. Variables significantly associated with AECOPD occurrence (P<0.05) and severity (P<0.05) in the final models included COPD disease-related characteristics, as well as signs and symptoms. Based on cut-off values of 0.374 and 0.405 for primary and secondary models, respectively, the performance of the primary model constructed to identify AECOPD occurrence (AUC: 0.86; sensitivity: 0.84; specificity: 0.77), and of the secondary model for AECOPD severity (AUC: 0.81; sensitivity: 0.90; specificity: 0.73) indicated high diagnostic accuracy and clinical applicability. Conclusion: By leveraging easy-to-collect patient and disease data, we developed identification tools that can be used for timely detection of AECOPD and its severity. These tools may help physicians diagnose AECOPD in a timely manner, before further disease progression and possible hospitalizations.


Pulmonary Disease, Chronic Obstructive , China/epidemiology , Cross-Sectional Studies , Disease Progression , Health Services , Humans , Middle Aged , Pulmonary Disease, Chronic Obstructive/diagnosis , Pulmonary Disease, Chronic Obstructive/epidemiology , Pulmonary Disease, Chronic Obstructive/therapy
18.
Int J Chron Obstruct Pulmon Dis ; 17: 1797-1809, 2022.
Article En | MEDLINE | ID: mdl-35975033

Purpose: High levels of red blood cell distribution width (RDW) and hypoalbuminemia are markers of poor prognosis in chronic obstructive pulmonary disease (COPD) patients. However, few studies have shown that the red blood cell distribution width-albumin ratio (RAR) is related to the mortality of COPD. This study aimed to explore the relationship between RAR and hospital mortality in COPD patients admitted to the intensive care unit (ICU). Patients and Methods: Patients were retrospectively incorporated from the Medical Information Mart for Intensive Care IV (MIMIC-IV) database and divided into two groups by a cutoff value of RAR. Propensity score matching (PSM) was performed to adjust for the imbalance of covariates. Logistic regression models and subgroup analyses were carried out to investigate the relationship between RAR and hospital mortality. The receiver operating characteristic (ROC) curve was used to evaluate the predictive performance of RAR and decision curve analysis (DCA) to assess the clinical utility. Results: In total, 1174 patients were finally identified from the MIMIC-IV database. The cutoff value for RAR was 5.315%/g/dL. After PSM at a 1:1 ratio, 638 patients were included in the matched cohort. In the original and matched cohorts, the high RAR group had higher hospital mortality and longer hospital stays. Logistic regression analysis suggested that RAR was an independent risk factor for hospital mortality. The areas under the ROC curve in the original and matched cohorts were 0.706 and 0.611, respectively, which were larger than applying RDW alone (the original cohort: 0.600, the matched cohort: 0.514). The DCA indicated that RAR had a clinical utility. Conclusion: A higher RAR (>5.315%/g/dL) was associated with hospital mortality in COPD patients admitted to ICU. As an easily available peripheral blood marker, RAR can predict hospital mortality in critically ill patients with COPD independently.


Erythrocyte Indices , Hospital Mortality , Pulmonary Disease, Chronic Obstructive , Albumins , Biomarkers , Humans , Intensive Care Units , Prognosis , Pulmonary Disease, Chronic Obstructive/diagnosis , Pulmonary Disease, Chronic Obstructive/mortality , ROC Curve , Retrospective Studies
19.
Ann Allergy Asthma Immunol ; 129(6): 720-730.e8, 2022 12.
Article En | MEDLINE | ID: mdl-36002091

BACKGROUND: High body mass index (BMI) plays a key role in the progression of asthma and asthma related to high BMI resulted in a high burden of disease globally. OBJECTIVE: To explore the geographic and temporal trends in the global burden of asthma associated with high BMI from 1990 to 2019. METHODS: This is a retrospective analysis with data based on the Global Burden of Disease Study 2019 database. Deaths, disability-adjusted life-years (DALYs), age-standardized mortality rate (ASMR), and age-standardized DALY rate (ASDR) were estimated according to sex, age, and sociodemographic index levels. The estimated annual percentage change was used to evaluate the variation trends of ASMR and ASDR from 1990 to 2019. RESULTS: In 2019, the number of global asthma deaths and DALYs related to high BMI increased by 69.69% and 63.91%, respectively, compared with 1990, among which more deaths and DALYs occurred in women. The corresponding ASMR and ASDR exhibited a slightly decreasing tendency globally. South Asia accounted for the highest number of deaths and DALYs, with India ranking first worldwide in 2019. The number of deaths and DALYs were mainly seen in individuals 60 to 79 years old and 55 to 69 years old, respectively, from 1990 to 2019. The heaviest burden existed in the low-middle sociodemographic index region. CONCLUSION: The global asthma burden associated with obesity increased in absolute value but the standardized burden decreased slightly. Large variations existed in the high BMI-related asthma burdens among sexes, ages, and regions.


Asthma , Global Burden of Disease , Humans , Female , Middle Aged , Aged , Body Mass Index , Quality-Adjusted Life Years , Retrospective Studies , Global Health , Asthma/epidemiology
20.
Allergy Asthma Clin Immunol ; 18(1): 73, 2022 Aug 08.
Article En | MEDLINE | ID: mdl-35941693

BACKGROUND: Constipation has been hypothesized to be associated with the increased risk of wheezing or asthma. However, the relation remains a subject of debate. We conducted this meta-analysis to assess whether constipation influences the risk of wheezing/asthma. METHODS: PubMed, Embase, and Web of Science were systematically searched for studies published between 1955 and January 2022. Two reviewers independently extracted data and assessed the quality of each study. Results were pooled using fixed-effects models or random-effects models as appropriate. RESULTS: In total, 3 original articles with 178,661 participants, which met the criteria, were included in this meta-analysis. Constipation was associated with an increased risk of wheezing/asthma in later life (RR = 2.02, 95% CI = 1.24-3.29, P < 0.01). CONCLUSIONS: The meta-analysis suggests an association between constipation and the subsequent development of wheezing/asthma. Well-designed and highly standardized prospective studies that adequately address concerns for potential confounding factors are required to validate the risk identified in our current meta-analysis.

...