Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 618
Filter
1.
Front Pediatr ; 12: 1399049, 2024.
Article in English | MEDLINE | ID: mdl-39108696

ABSTRACT

Background: The understanding of the prevalence and early predictive factors of scoliosis in children and adolescents is limited, which poses challenges to developing preventative strategies. This systematic review and meta-analysis aimed to clarify the prevalence and predictors of scoliosis among children and adolescents. Methods: We conducted a comprehensive search in PubMed, Cochrane, Embase, and Web of Science through October 2023. The quality of included studies was evaluated using the Joanna Briggs Institute scale or the Newcastle-Ottawa Scale. Subgroup analyses were performed to examine different types of scoliosis and specific demographic groups. Results: From 32 studies encompassing 55,635,351 children and adolescents, we identified 284,114 cases of scoliosis, resulting in a prevalence rate of 3.1% (95% CI: 1.5%-5.2%). This rate varied by gender, degrees of scoliosis severity, and between idiopathic vs. congenital forms. Notable predictors included gender, age, Body Mass Index (BMI), race, environmental factors, and lifestyle choices. Conclusion: Scoliosis is a significant condition affecting a minority of children and adolescents, particularly adolescent girls and individuals who are overweight. It is recommended that guardians and schools enhance educational efforts towards its prevention. Systematic Review Registration: https://www.crd.york.ac.uk/, Identifier CRD42023476498.

2.
Angew Chem Int Ed Engl ; : e202410689, 2024 Jul 27.
Article in English | MEDLINE | ID: mdl-39072910

ABSTRACT

Here, we report 2,4,6-Tris(3'-(pyridine-3-yl) biphenyl-3-yl)-1,3,5-triazine (TmPPPyTz, 3P) with strong electron-withdrawing moieties of pyridine and triazine to modulate the performance of P-QLEDs. Compared with commonly used 1,3,5-Tris(1-phenyl-1H-benzimidazol-2-yl)benzene (TPBi), the pyridine in 3P have a strong interaction with perovskites, which can effectively suppress the interface non-radiative recombination caused by the·Pb2+ defects on the surface of QDs. In addition, 3P have deep highest occupied molecular orbital (HOMO) (enhancing hole-blocking properties), matched lowest unoccupied molecular orbital (LUMO) and excellent electron mobility (enhancing electron transport properties), realizing the carrier balance and maximizing the exciton recombination. Furthermore, high thermal resistance of·3P obviously improves the stability of QDs under variable temperature, continuous UV illumination, and electric field excitation. Resultantly, the P-QLEDs using the 3P as ETM achieved an outstanding performance with a champion EQE of 30.2%·and an operational lifetime T50·of 3220 hours at an initial luminance of 100 cd m-2, which is 151% and about 11-fold improvement compared to control devices (EQE = 20%, T50 = 297 hours), respectively. These results provide a new concept for constructing the efficient and stable P-QLEDs from the perspective of selective ETM.

3.
Adv Sci (Weinh) ; : e2405962, 2024 Jul 29.
Article in English | MEDLINE | ID: mdl-39073318

ABSTRACT

Dynamic manipulation of an object's infrared radiation characteristics is a burgeoning technology with significant implications for energy and information fields. However, exploring efficient stimulus-spectral response mechanism and realizing simple device structures remains a formidable challenge. Here, a novel dynamic infrared emissivity regulation mechanism is proposed by controlling the localized surface plasmon resonance absorption of aluminum-doped zinc oxide (AZO) nanocrystals through ultraviolet photocharging/oxidative discharging. A straightforward device architecture that integrates an AZO nanocrystal film with an infrared reflective layer and a substrate, functioning as a photo-induced dynamic infrared emissivity modulator, which can be triggered by weak ultraviolet light in sunlight, is engineered. The modulator exhibits emissivity regulation amount of 0.72 and 0.61 in the 3-5 and 8-13 µm ranges, respectively. Furthermore, the modulator demonstrates efficient light triggering characteristic, broad spectral range, angular-independent emissivity, and long cyclic lifespan. The modulator allows for self-adaptive daytime radiative cooling and nighttime heating depending on the ultraviolet light in sunlight and O2 in air, thereby achieving smart thermal management for buildings with zero-energy expenditure. Moreover, the potential applications of this modulator can extend to rewritable infrared displays and deceptive infrared camouflage.

4.
J Biotechnol ; 2024 Jul 25.
Article in English | MEDLINE | ID: mdl-39067578

ABSTRACT

Cyclic nucleic acids are biologically stable against nucleic acid exonucleases due to the absence of 5' and 3' termini. Studies of cyclic nucleic acids mainly focus on cyclic single-stranded nucleic acids. Single-stranded nucleic acids are further divided into circular RNA (circRNA) and circular single-stranded DNA (cssDNA). The synthesis methods of circRNA include lasso-driven cyclization, intron-paired cyclization, intron cyclization, intron complementary pairing-driven cyclization, RNA-binding protein-driven cyclization, and artificial synthesis depending on the source. Its main role is to participate in gene expression and the treatment of some diseases. Circular single-stranded DNA is mainly synthesized by chemical ligation, template-directed enzyme ligation, and new techniques for the efficient preparation of DNA single loops and topologies based on CircLigase. It is mainly used in rolling circle amplification (RCA) technology and in the bioprotection of circular aptamers and second messengers. This review focuses on the types, synthesis methods, and applications of cyclic single-stranded nucleic acids, providing a reference for further research on cyclic single-stranded nucleic acids.

5.
J Chromatogr A ; 1731: 465175, 2024 Jul 19.
Article in English | MEDLINE | ID: mdl-39032217

ABSTRACT

In recent years, miniaturized analytical instruments have been developing to meet the needs of portable and rapid analysis. The key of miniaturized analytical equipment is the miniaturization and integration of functional modules. This paper aims to develop a miniaturized photometric detector and separation microfluidic chip for a liquid chromatography (LC) system. The detector uses a light-emitting diode to emit ultraviolet light, which is collimated by an internal double lens. A Z-shaped flow cell with a long optical path is designed and fabricated in the separation microfluidic chip with a three-layer structure, which provides a tubing-free connection between the separation and detection unit. Detector performance is evaluated using hemoglobin (Hb) samples, with an upper limit of detection linearity (95 %) of 0.345 AU and stray light level as low as 0.08 %. Additionally, the microchip channel can be filled with cation exchange resin and C18 particles. Finally, an ion LC system and a reversed-phase LC system were constructed based on the miniaturized photometric detector and two microchips with different packed columns, respectively, and were successfully used in the separation and detection of two metabolic markers (glycated hemoglobin or bilirubin). The results of this study are expected to facilitate the development of a portable LC system and their application in community health services and family health management of chronic diseases.

6.
Sci Rep ; 14(1): 17218, 2024 07 26.
Article in English | MEDLINE | ID: mdl-39060387

ABSTRACT

The primary aim of this investigation was to leverage radiomics features derived from contrast-enhanced abdominal computed tomography (CT) scans to devise a predictive model to discern the benign and malignant nature of intraductal papillary mucinous neoplasms (IPMNs). Radiomic signatures were meticulously crafted to delineate benign from malignant IPMNs by extracting pertinent features from contrast-enhanced CT images within a designated training cohort (n = 84). Subsequent validation was conducted with data from an independent test cohort (n = 37). The discriminative ability of the model was quantitatively evaluated through receiver operating characteristic (ROC) curve analysis, with the integration of carefully selected clinical features to improve the comparative analysis. Arterial-phase images were utilized to construct a model comprising 8 features for distinguishing between benign and malignant cases. The model achieved an accuracy of 0.891 [95% confidence interval (95% CI), 0.816-0.996] in the cross-validation set and 0.553 (95% CI 0.360-0.745) in the test set. Conversely, employing 9 features from the venous-phase resulted in a model with a cross-validation accuracy of 0.862 (95%CI 0.777-0.946) and a test set accuracy of 0.801 (95% CI 0.653-0.950).Integrating the identified clinical features with imaging features yielded a model with a cross-validation accuracy of 0.934 (95% CI 0.879-0.990) and a test set accuracy of 0.904 (95% CI 0.808-0.999), thereby further improving its discriminatory ability. Our findings distinctly illustrate that venous-phase radiomics features eclipse arterial-phase radiomic features in terms of predictive accuracy regarding the nature of IPMNs. Furthermore, the synthesis and meticulous screening of clinical features with radiomic data significantly increased the diagnostic efficacy of our model, underscoring the pivotal importance of a comprehensive and integrated approach for accurate risk stratification in IPMN management.


Subject(s)
Contrast Media , Pancreatic Intraductal Neoplasms , Pancreatic Neoplasms , Tomography, X-Ray Computed , Humans , Female , Tomography, X-Ray Computed/methods , Male , Middle Aged , Aged , Pancreatic Intraductal Neoplasms/diagnostic imaging , Pancreatic Intraductal Neoplasms/pathology , Pancreatic Neoplasms/diagnostic imaging , Pancreatic Neoplasms/pathology , Diagnosis, Differential , ROC Curve , Carcinoma, Pancreatic Ductal/diagnostic imaging , Carcinoma, Pancreatic Ductal/pathology , Adenocarcinoma, Mucinous/diagnostic imaging , Adenocarcinoma, Mucinous/pathology , Retrospective Studies , Radiomics
7.
Front Public Health ; 12: 1418851, 2024.
Article in English | MEDLINE | ID: mdl-38903583

ABSTRACT

Introduction: Travel satisfaction as experienced by rural residents is closely related to personal physical and mental health, as well as rural economic conditions. An improved rural road environment can be expected to enhance villagers' satisfaction with regards to visits to markets, but to date this has not been established empirically. Methods: In this study, a questionnaire was designed to obtain local residents' evaluations of road environment characteristics for periodic market travel. And we use an Oprobit regression model and Importance-Performance Map Analysis (IPMA) to explore the heterogeneity of the 14 key elements of the "home-to-market" road environment impact on villagers' satisfaction under different modes of travel. Results: The results of the study reveal that villagers expressed dissatisfaction with the current lack of sidewalks and non-motorized paths, and except for road traffic disturbances and road deterioration, which did not significantly affect mode of travel, other factors proved significant. Significantly, bus services are associated with a significant positive effect on walking, non-motorized and bus travel satisfaction, while distance travel also affects walking, non-motorized and motorized travel satisfaction. It is worth noting that greening and service facilities negatively affect motorized travel satisfaction. In summary, road width, sidewalks, bus service, and road deterioration, are among the elements most in need of urgent improvement for all modes of travel. Discussion: The characteristics of the road environment that influence satisfaction with travel to the periodic market vary by travel mode, and this study is hoped to provide data support and optimization recommendations for the improvement of the rural road environment in China and other countries.


Subject(s)
Personal Satisfaction , Rural Population , Travel , Humans , Rural Population/statistics & numerical data , Surveys and Questionnaires , Travel/statistics & numerical data , Female , Male , Adult , Middle Aged , Environment Design , Walking/statistics & numerical data , Transportation , China
8.
Sci Rep ; 14(1): 14922, 2024 06 28.
Article in English | MEDLINE | ID: mdl-38942788

ABSTRACT

Studying the relationships between vegetation cover and geography in the Mongolian region of the Yellow River Basin will help to optimize local vegetation recovery strategies and achieve harmonious human relations. Based on MOD13Q1 data, the spatial and temporal variations in fractional vegetation cover (FVC) in the Mongolian Yellow River Basin during 2000-2020 were investigated via trend and correlative analysis. The results are as follows: (1) From 2000 to 2020, the vegetation cover in the Mongolian section of the Yellow River Basin recovered well, the mean increase in the FVC was 0.001/a, the distribution of vegetation showed high coverage in the southeast and low coverage in the northwest, and 31.19% of the total area showed an extremely significant and significant increase in vegetation cover. (2) The explanatory power of each geographic factor significantly differed. Precipitation, soil type, air temperature, land use type and slope were the main driving factors influencing the spatial distribution of the vegetation cover, and for each factor, the explanatory power of its interaction with other factors was greater than that of the single factor. (3) The correlation coefficients between FVC and temperature and precipitation are mainly positive. The mean value of the FVC and its variation trend are characterized by differences in terrain and soil characteristics, population density and land use. Land use conversion can reflect the characteristics of human activities, and positive effects, such as returning farmland to forest and grassland and afforestation of unused land, promote the significant improvement of regional vegetation, while negative effects, such as urban expansion, inhibit the growth of vegetation.


Subject(s)
Conservation of Natural Resources , Rivers , China , Conservation of Natural Resources/methods , Humans , Ecosystem , Geography , Environmental Monitoring/methods , Soil , Plants , Mongolia
10.
BMC Cancer ; 24(1): 773, 2024 Jun 27.
Article in English | MEDLINE | ID: mdl-38937694

ABSTRACT

OBJECTIVE: Ubiquitin-specific peptidase 10 (USP10), a typical de-ubiquitinase, has been found to play a double-edged role in human cancers. Previously, we reported that the expression of USP10 was negatively correlated with the depth of gastric wall invasion, lymph node metastasis, and prognosis in gastric cancer (GC) patients. However, it remains unclear whether USP10 can regulate the metastasis of GC cells through its de-ubiquitination function. METHODS: In this study, proteome, ubiquitinome, and transcriptome analyses were conducted to comprehensively identify novel de-ubiquitination targets for USP10 in GC cells. Subsequently, a series of validation experiments, including in vitro cell culture studies, in vivo metastatic tumor models, and clinical sample analyses, were performed to elucidate the regulatory mechanism of USP10 and its de-ubiquitination targets in GC metastasis. RESULTS: After overexpression of USP10 in GC cells, 146 proteins, 489 ubiquitin sites, and 61 mRNAs exhibited differential expression. By integrating the results of multi-omics, we ultimately screened 9 potential substrates of USP10, including TNFRSF10B, SLC2A3, CD44, CSTF2, RPS27, TPD52, GPS1, RNF185, and MED16. Among them, TNFRSF10B was further verified as a direct de-ubiquitination target for USP10 by Co-IP and protein stabilization assays. The dysregulation of USP10 or TNFRSF10B affected the migration and invasion of GC cells in vitro and in vivo models. Molecular mechanism studies showed that USP10 inhibited the epithelial-mesenchymal transition (EMT) process by increasing the stability of TNFRSF10B protein, thereby regulating the migration and invasion of GC cells. Finally, the retrospective clinical sample studies demonstrated that the downregulation of TNFRSF10B expression was associated with poor survival among 4 of 7 GC cohorts, and the expression of TNFRSF10B protein was significantly negatively correlated with the incidence of distant metastasis, diffuse type, and poorly cohesive carcinoma. CONCLUSIONS: Our study established a high-throughput strategy for screening de-ubiquitination targets for USP10 and further confirmed that inhibiting the ubiquitination of TNFRSF10B might be a promising therapeutic strategy for GC metastasis.


Subject(s)
Stomach Neoplasms , Ubiquitin Thiolesterase , Ubiquitination , Stomach Neoplasms/pathology , Stomach Neoplasms/genetics , Stomach Neoplasms/metabolism , Humans , Ubiquitin Thiolesterase/metabolism , Ubiquitin Thiolesterase/genetics , Mice , Animals , Cell Line, Tumor , Cell Movement/genetics , Gene Expression Regulation, Neoplastic , Female , Male , Neoplasm Metastasis , Gene Expression Profiling , Epithelial-Mesenchymal Transition/genetics , Prognosis , Multiomics
11.
J Colloid Interface Sci ; 673: 444-452, 2024 Nov.
Article in English | MEDLINE | ID: mdl-38878378

ABSTRACT

Electrocatalytic water splitting (EWS) for hydrogen production is considered an ideal strategy for utilizing renewable energy, reducing fossil fuel consumption, and addressing environmental pollution issues. Traditional noble metal electrocatalysts have excellent performance, but their cost is high. Developing efficient, stable, and relatively inexpensive dual functional electrocatalysts is crucial for promoting large-scale EWS hydrogen production processes. Herein, a simple one-step electrodeposition method was used to grow nickel-iron phosphorus-sulfides (NiFePS) on the surface of hydrophilic treated carbon cloth (CC). The resultant NiFePS/CC with a phosphorus to sulfur ratio of 1:4 exhibited the best electrocatalytic performance, requiring only -91 mV and 216 mV overpotentials to generate the current densities of 10 mA·cm-2 in hydrogen evolution reaction (HER) and oxygen evolution reaction (OER), respectively. When it was used as a bifunctional electrocatalyst to overall water splitting (OWS), a voltage of 1.536 V can generate a current density of 10 mA·cm-2. The excellent electrocatalytic performance can be ascribed to two factors: 1) the CC with excellent conductivity serves as a growth substrate, reducing the impedance of charge transfer from the electrode to the electrolyte and accelerating the electron transfer rate; 2) The large number of ultra-thin nanosheets formed on the surface of the catalyst increase the electrochemical specific surface area, expose more reaction sites, and thus improve the electrocatalytic reaction performance. This work provides a new approach for designing efficient non-noble metal electrocatalysts for water splitting.

12.
J Neurosci ; 44(29)2024 Jul 17.
Article in English | MEDLINE | ID: mdl-38844343

ABSTRACT

During the second-to-third trimester, the neuronal pathways of the fetal brain experience rapid development, resulting in the complex architecture of the interwired network at birth. While diffusion MRI-based tractography has been employed to study the prenatal development of structural connectivity network (SCN) in preterm neonatal and postmortem fetal brains, the in utero development of SCN in the normal fetal brain remains largely unknown. In this study, we utilized in utero dMRI data from human fetuses of both sexes between 26 and 38 gestational weeks to investigate the developmental trajectories of the fetal brain SCN, focusing on intrahemispheric connections. Our analysis revealed significant increases in global efficiency, mean local efficiency, and clustering coefficient, along with significant decrease in shortest path length, while small-worldness persisted during the studied period, revealing balanced network integration and segregation. Widespread short-ranged connectivity strengthened significantly. The nodal strength developed in a posterior-to-anterior and medial-to-lateral order, reflecting a spatiotemporal gradient in cortical network connectivity development. Moreover, we observed distinct lateralization patterns in the fetal brain SCN. Globally, there was a leftward lateralization in network efficiency, clustering coefficient, and small-worldness. The regional lateralization patterns in most language, motor, and visual-related areas were consistent with prior knowledge, except for Wernicke's area, indicating lateralized brain wiring is an innate property of the human brain starting from the fetal period. Our findings provided a comprehensive view of the development of the fetal brain SCN and its lateralization, as a normative template that may be used to characterize atypical development.


Subject(s)
Diffusion Magnetic Resonance Imaging , Nerve Net , Pregnancy Trimester, Third , Humans , Female , Male , Pregnancy , Diffusion Magnetic Resonance Imaging/methods , Nerve Net/diagnostic imaging , Nerve Net/embryology , Nerve Net/physiology , Nerve Net/growth & development , Cerebral Cortex/diagnostic imaging , Cerebral Cortex/embryology , Pregnancy Trimester, Second , Neural Pathways/embryology , Neural Pathways/diagnostic imaging , Neural Pathways/physiology , Fetus/diagnostic imaging , Fetal Development/physiology , Diffusion Tensor Imaging/methods
13.
Chem Commun (Camb) ; 60(58): 7475-7478, 2024 Jul 16.
Article in English | MEDLINE | ID: mdl-38938189

ABSTRACT

Here, we explain why the Energy Gap Law and the energy inversion related to the charge-transfer state have opposite effects on the trend of nonradiative energy loss of organic solar cells. The root is the existing condition of energy inversion. There is indeed a certain probability of energy inversion, but it will eventually be implicit or explicit as determined by the hybridization, which depends on the electron-withdrawing unit of the donor, giving rise to different stacking sites. The triplet-state hybridization leads to an explicit characteristic, while singlet-state hybridization leads to an implicit characteristic.

14.
ACS Nano ; 18(27): 17622-17629, 2024 Jul 09.
Article in English | MEDLINE | ID: mdl-38922204

ABSTRACT

Engineering atomic-scale defects has become an important strategy for the future application of transition metal dichalcogenide (TMD) materials in next-generation electronic technologies. Thus, providing an atomic understanding of the electron-defect interactions and supporting defect engineering development to improve carrier transport is crucial to future TMDs technologies. In this work, we utilize low-temperature scanning tunneling microscopy/spectroscopy (LT-STM/S) to elicit how distinct types of defects bring forth scattering potential engineering based on intervalley quantum quasiparticle interference (QPI) in TMDs. Furthermore, quantifying the energy-dependent phase variation of the QPI standing wave reveals the detailed electron-defect interaction between the substitution-induced scattering potential and the carrier transport mechanism. By exploring the intrinsic electronic behavior of atomic-level defects to further understand how defects affect carrier transport in low-dimensional semiconductors, we offer potential technological applications that may contribute to the future expansion of TMDs.

15.
J Hazard Mater ; 476: 134921, 2024 Jun 13.
Article in English | MEDLINE | ID: mdl-38909466

ABSTRACT

The toxicity of nanoplastics at environmentally relevant concentrations has received widespread attention in the context of global warming. Despite numerous studies on the impact of mean temperature (MT), the effects of daily temperature fluctuations (DTFs) on the ecotoxicity of nanoplastics remains largely unexplored. Moreover, the role of evolutionary adaptation in assessing long-term ecological risks is unclear. Here, we investigated the effects of polystyrene nanoplastics (5 µg L-1) on Daphnia magna under varying MT (20 °C and 24 °C) and DTFs (0 °C, 5 °C, and 10 °C). Capitalizing on a space-for-time substitution approach, we further assessed how local thermal adaptation affect the sensitivity of Daphnia to nanoplastics under global warming. Our results indicated that nanoplastics exposure in general reduced heartbeat rate, thoracic limb activity and feeding rate, and increased CytP450, ETS activity and Hgb concentrations. Higher MT and DTFs enhanced these effects. Notably, clones originating from their respective sites performed better under their native temperature conditions, indicating local thermal adaptation. Warm-adapted low-latitude D. magna showed stronger nanoplastics-induced increases in CytP450, ETS activity and Hgb concentrations under local MT 24 °C, while cold-adapted high-latitude D. magna showed stronger nanoplastics-induced decreases in heartbeat rate, thoracic limb activity and feeding rate under high MT than under low MT.

16.
Neuroimage ; 297: 120669, 2024 Jun 07.
Article in English | MEDLINE | ID: mdl-38852805

ABSTRACT

The relationship between brain entropy (BEN) and early brain development has been established through animal studies. However, it remains unclear whether the BEN can be used to identify age-dependent functional changes in human neonatal brains and the genetic underpinning of the new neuroimaging marker remains to be elucidated. In this study, we analyzed resting-state fMRI data from the Developing Human Connectome Project, including 280 infants who were scanned at 37.5-43.5 weeks postmenstrual age. The BEN maps were calculated for each subject, and a voxel-wise analysis was conducted using a general linear model to examine the effects of age, sex, and preterm birth on BEN. Additionally, we evaluated the correlation between regional BEN and gene expression levels. Our results demonstrated that the BEN in the sensorimotor-auditory and association cortices, along the 'S-A' axis, was significantly positively correlated with postnatal age (PNA), and negatively correlated with gestational age (GA), respectively. Meanwhile, the BEN in the right rolandic operculum correlated significantly with both GA and PNA. Preterm-born infants exhibited increased BEN values in widespread cortical areas, particularly in the visual-motor cortex, when compared to term-born infants. Moreover, we identified five BEN-related genes (DNAJC12, FIG4, STX12, CETN2, and IRF2BP2), which were involved in protein folding, synaptic vesicle transportation and cell division. These findings suggest that the fMRI-based BEN can serve as an indicator of age-dependent brain functional development in human neonates, which may be influenced by specific genes.

17.
Pathol Res Pract ; 259: 155371, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38820929

ABSTRACT

BACKGROUND: Targeted therapy with combined dabrafenib and trametinib has been proven to provide clinical benefits in patients with BRAF V600E mutation-positive NSCLC. Nevertheless, the treatment strategy for NSCLC patients with BRAF non-V600E mutations remains limited. CASE PRESENTATION: Here, we present a NSCLC patient with a BRAF N581S mutation, which is a class III BRAF mutation, and this patient had a durable response to targeted therapy with combined anlotinib and tislelizumab. CONCLUSION: We hope to bring more attention to rare non-V600 BRAF mutations by presenting this case of NSCLC.


Subject(s)
Adenocarcinoma of Lung , Antibodies, Monoclonal, Humanized , Antineoplastic Combined Chemotherapy Protocols , Indoles , Lung Neoplasms , Proto-Oncogene Proteins B-raf , Quinolines , Humans , Adenocarcinoma of Lung/drug therapy , Adenocarcinoma of Lung/genetics , Adenocarcinoma of Lung/pathology , Antibodies, Monoclonal, Humanized/therapeutic use , Antineoplastic Combined Chemotherapy Protocols/therapeutic use , Carcinoma, Non-Small-Cell Lung/drug therapy , Carcinoma, Non-Small-Cell Lung/genetics , Carcinoma, Non-Small-Cell Lung/pathology , Indoles/therapeutic use , Lung Neoplasms/drug therapy , Lung Neoplasms/genetics , Lung Neoplasms/pathology , Mutation , Proto-Oncogene Proteins B-raf/genetics , Quinolines/therapeutic use , Treatment Outcome
18.
J Infect Dis ; 2024 May 09.
Article in English | MEDLINE | ID: mdl-38723186

ABSTRACT

Targeted therapy is an attractive approach for treating infectious diseases. Affibody molecules have similar capability to antibodies that facilitate molecular recognition in both diagnostic and therapeutic applications. Targeting major outer membrane protein (MOMP) for treating infection of Chlamydia trachomatis, one of the most common sexually transmitted pathogens, is a promising therapeutic approach. Previously, we have reported a MOMP-specific affibody (ZMOMP:461) from phage display library. Here, we first fused it with modified Pseudomonas Exotoxin (PE38KDEL) and a cell-penetrating peptide (CPP) to develop an affitoxin, Z461X-CPP. We then verified the addition of both toxin and CPPs that did not affect the affinitive capability of ZMOMP:461 to MOMP. Upon uptake by C.trachomatis-infected cells, Z461X-CPP induced cell apoptosis in vitro. In animal model, Z461X significantly shortened the duration of C. trachomatis infection and prevented pathological damage in mouse reproductive system. These findings provide compelling evidence that the MOMP-specific affitoxin has great potential for targeting therapy of C. trachomatis infection.

19.
Molecules ; 29(9)2024 May 03.
Article in English | MEDLINE | ID: mdl-38731612

ABSTRACT

Organic dyes are widely used in many important areas, but they also bring many issues for water pollution. To address the above issues, a reconstructed kaolinite hybrid compound (γ-AlOOH@A-Kaol) was obtained from raw kaolinite (Kaol) in this work. The product was then characterized by X-ray diffraction (XRD), Fourier-transform infrared (ATR-FTIR), Brunauer-Emmett-Teller (BET), and scanning electron microscopy (SEM), and the absorption properties of γ-AlOOH@A-Kaol for congo red were further studied. The results demonstrated that flower-like γ-AlOOH with nanolamellae were uniformly loaded on the surface of acid-treated Kaol with a porous structure (A-Kaol). In addition, the surface area (36.5 m2/g), pore volume (0.146 cm3/g), and pore size (13.0 nm) of γ-AlOOH@A-Kaol were different from those of A-Kaol (127.4 m2/g, 0.127 cm3/g, and 4.28 nm, respectively) and γ-AlOOH (34.1 m2/g, 0.315 cm3/g, and 21.5 nm, respectively). The unique structure could significantly enhance the sorption capacity for congo red, which could exceed 1000 mg/g. The reasons may be ascribed to the abundant groups of -OH, large specific surface area, and porous structure of γ-AlOOH@A-Kaol. This work provides an efficient route for comprehensive utilization and production of Kaol-based compound materials that could be used in the field of environmental conservation.

20.
J Am Chem Soc ; 146(22): 15538-15548, 2024 Jun 05.
Article in English | MEDLINE | ID: mdl-38769050

ABSTRACT

The integration of oxidation and reduction half-reactions to amplify their synergy presents a considerable challenge in CO2 photoconversion. Addressing this challenge requires the construction of spatially adjacent redox sites while suppressing charge recombination at these sites. This study introduces an innovative approach that utilizes spatial synergy to enable synergistic redox reactions within atomic proximity and employs spin polarization to inhibit charge recombination. We incorporate Mn into Co3O4 as a catalyst, in which Mn sites tend to enrich holes as water activation sites, while adjacent Co sites preferentially capture electrons to activate CO2, forming a spatial synergy. The direct H transfer from H2O at Mn sites facilitates the formation of *COOH on adjacent Co sites with remarkably favorable thermodynamic energy. Notably, the incorporation of Mn induces spin polarization in the system, significantly suppressing the recombination of photogenerated charges at redox sites. This effect is further enhanced by applying an external magnetic field. By synergizing spatial synergy and spin polarization, Mn/Co3O4 exhibits a CH4 production rate of 23.4 µmol g-1 h-1 from CO2 photoreduction, showcasing a 28.8 times enhancement over Co3O4. This study first introduces spin polarization to address charge recombination issues at spatially adjacent redox sites, offering novel insights for synergistic redox photocatalytic systems.

SELECTION OF CITATIONS
SEARCH DETAIL