Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 78
Filter
Add more filters











Publication year range
1.
Insect Sci ; 2024 Sep 15.
Article in English | MEDLINE | ID: mdl-39279283

ABSTRACT

Bombyx mori ELAV-like-1 (BmEL-1) and B. mori ELAV-like-2 (BmEL-2) are 2 members of the ELAV-like family of RNA-binding proteins. Mutations in Bmel-1 and Bmel-2 resulted in 5.8% and 28.5% decreases in larval weight on the 3rd day of the 5th instar larva (L5D3), respectively. Triglycerides (TG) are the most important energy resource and are the main component of neutral fat (NF) in animals. To investigate the role of Bmelav-like genes in the synthesis and decomposition of TG, transcriptomic, and metabolic analyses were performed on the whole bodies on the 1st day of the 2nd instar larvae (L2D1) and on fat bodies on L5D3 of Bmel-1- and Bmel-2- mutants, respectively. As compared with the control silkworm, differentially expressed genes generated in both mutants were mainly enriched in lysine degradation, fatty acid (FA) metabolism, and unsaturated FAs biosynthesis. The diglyceride and phosphatide contents were significantly lower in Bmel-1- and Bmel-2- fat bodies than those of the control group. Consistently, the NF content of both mutants' fat bodies were reduced by 50% and 60%, respectively. BmEL-2 positively regulates BmAGPATγ (B. mori 1-acyl-sn-glycerol-3-phosphate acyltransferase gamma, LOC101741736) and BmFaF2 (B. mori fatty acid synthetase-associated factor 2, LOC101739090) expression by binding to the specific regions of their 3' untranslated regions in BmN cells. This study suggests that BmEL-2 may be an important regulator of BmAGPATγ and BmFAF2 expression and thereby participates in TG metabolism in the silkworm fat body.

2.
Innovation (Camb) ; 5(4): 100644, 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38933340

ABSTRACT

Insects and their natural microbial pathogens are intertwined in constant arms races, with pathogens continually seeking entry into susceptible hosts through distinct routes. Entomopathogenic fungi are primarily believed to infect host insects through external cuticle penetration. Here, we report a new variety, Beauveria bassiana var. majus (Bbm), that can infect insects through the previously unrecognized foregut. Dual routes of infection significantly accelerate insect mortality. The pH-responsive transcription factor PacC in Bbm exhibits rapid upregulation and efficient proteolytic processing via PalC for alkaline adaptation in the foregut. Expression of PalC is regulated by the adjacent downstream gene Aia. Compared to non-enteropathogenic strains such as ARSEF252, Aia in Bbm lacks a 249-bp fragment, resulting in its enhanced alkaline-induced expression. This induction promotes PalC upregulation and facilitates PacC activation. Expressing the active form of BbmPacC in ARSEF252 enables intestinal infection. This study uncovers the pH-responsive Aia-PalC-PacC cascade enhancing fungal alkaline tolerance for intestinal infection, laying the foundation for developing a new generation of fungal insecticides to control destructive insect pests.

3.
Insect Mol Biol ; 2024 Apr 13.
Article in English | MEDLINE | ID: mdl-38613398

ABSTRACT

The silkworm (Bombyx mori) is an important model lepidopteran insect and can be used to identify pesticide resistance-related genes of great significance for biological control of pests. Uridine diphosphate glucosyltransferases (UGTs), found in all organisms, are the main secondary enzymes involved in the metabolism of heterologous substances. However, it remains uncertain if silkworm resistance to fenpropathrin involves UGT. This study observes significant variations in BmUGT expression among B. mori strains with variable fenpropathrin resistance post-feeding, indicating BmUGT's role in fenpropathrin detoxification. Knockdown of BmUGT with RNA interference and overexpression of BmUGT significantly decreased and increased BmN cell activity, respectively, indicating that BmUGT plays an important role in the resistance of silkworms to fenpropathrin. In addition, fenpropathrin residues were significantly reduced after incubation for 12 h with different concentrations of a recombinant BmUGT fusion protein. Finally, we verified the conservation of UGT to detoxify fenpropathrin in Spodoptera exigua: Its resistance to fenpropathrin decreased significantly after knocking down SeUGT. In a word, UGT plays an important role in silkworm resistance to fenpropathrin by directly degrading the compound, a function seen across other insects. The results of this study are of great significance for breeding silkworm varieties with high resistance and for biological control of pests.

4.
Pest Manag Sci ; 80(8): 3752-3762, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38488318

ABSTRACT

BACKGROUND: Voltage-dependent anion-selective channels (VDACs) serve as pore proteins within the mitochondrial membrane, aiding in the regulation of cell life and cell death. Although the occurrence of cell death is crucial for defense against virus infection, the function played by VDAC in Bombyx mori, in response to the influence of Bombyx mori nucleopolyhedrovirus (BmNPV), remains unclear. RESULTS: BmVDAC was found to be relatively highly expressed both during embryonic development, and in the Malpighian tubule and midgut. Additionally, the expression levels of BmVDAC were found to be different among silkworm strains with varying levels of resistance to BmNPV, strongly suggesting a connection between BmVDAC and virus infection. To gain further insight into the function of BmVDAC in BmNPV, we employed RNA interference (RNAi) to silence and overexpress it by pIZT/V5-His-mCherry. The results revealed that BmVDAC is instrumental in developing the resistance of host cells to BmNPV infection in BmN cell-line cells, which was further validated as likely to be associated with initiating programmed cell death (PCD). Furthermore, we evaluated the function of BmVDAC in another insect, Spodoptera exigua. Knockdown of the BmVDAC homolog in S. exigua, SeVDAC, made the larvae more sensitive to BmNPV. CONCLUSION: We have substantiated the pivotal role of BmVDAC in conferring resistance against BmNPV infection, primarily associated with the initiation of PCD. The findings of this study shine new light on the molecular mechanisms governing the silkworm's response to BmNPV infection, thereby supporting innovative approaches for pest biocontrol. © 2024 Society of Chemical Industry.


Subject(s)
Apoptosis , Bombyx , Larva , Nucleopolyhedroviruses , Voltage-Dependent Anion Channels , Animals , Bombyx/virology , Bombyx/genetics , Nucleopolyhedroviruses/physiology , Larva/virology , Larva/growth & development , Larva/metabolism , Voltage-Dependent Anion Channels/metabolism , Voltage-Dependent Anion Channels/genetics , Insect Proteins/metabolism , Insect Proteins/genetics , RNA Interference
5.
Insect Mol Biol ; 33(3): 246-258, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38323672

ABSTRACT

Molybdenum cofactor sulfurase (MoCoS) is a key gene involved in the uric acid metabolic pathway that activates xanthine dehydrogenase to synthesise uric acid. Uric acid is harmful to mammals but plays crucial roles in insects, one of which is the immune responses. However, the function of Bombyx mori MoCoS in response to BmNPV remains unclear. In this study, BmMoCoS was found to be relatively highly expressed in embryonic development, gonads and the Malpighian tubules. In addition, the expression levels of BmMoCoS were significantly upregulated in three silkworm strains with different levels of resistance after virus infection, suggesting a close link between them. Furthermore, RNAi and overexpression studies showed that BmMoCoS was involved in resistance to BmNPV infection, and its antivirus effects were found to be related to the regulation of uric acid metabolism, which was uncovered by inosine- and febuxostat-coupled RNAi and overexpression. Finally, the BmMoCoS-mediated uric acid pathway was preliminarily confirmed to be a potential target to protect silkworms from BmNPV infection. Overall, this study provides new evidence for elucidating the molecular mechanism of silkworms in response to BmNPV infection and new strategies for the prevention of viral infections in sericulture.


Subject(s)
Bombyx , Insect Proteins , Nucleopolyhedroviruses , Animals , Bombyx/enzymology , Bombyx/genetics , Bombyx/virology , Insect Proteins/metabolism , Insect Proteins/genetics , Larva/metabolism , Larva/growth & development , Larva/virology , Metalloproteins/metabolism , Metalloproteins/genetics , Molybdenum Cofactors , Nucleopolyhedroviruses/physiology , RNA Interference , Uric Acid/metabolism
6.
Arch Insect Biochem Physiol ; 114(4): e22054, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37700521

ABSTRACT

Signaling pathways regulate the transmission of signals during organism growth and development, promoting the smooth and accurate completion of numerous physiological and biochemical reactions. The extracellular signal-regulated kinase (ERK) signaling pathway is an essential pathway involved in regulating various physiological processes, such as cell proliferation, differentiation, adhesion, migration, and more. This pathway also contributes to several important physiological processes in silkworms, including protein synthesis, reproduction, and immune defense against pathogens. Organizing related studies on the ERK signaling pathway in silkworms can provide a better understanding of its mechanism in Lepidopterans and develop a theoretical foundation for improving cocoon production and new strategies for pest biological control.


Subject(s)
Bombyx , Extracellular Signal-Regulated MAP Kinases , Lepidoptera , Animals , Bombyx/genetics , Extracellular Signal-Regulated MAP Kinases/physiology , Signal Transduction
7.
Pestic Biochem Physiol ; 194: 105485, 2023 Aug.
Article in English | MEDLINE | ID: mdl-37532315

ABSTRACT

The widespread use of pyrethroid pesticides has brought serious economic losses in sericulture, but there is still no viable solution. The key to solving the problem is to improve silkworm resistance to pesticides, which depends on understanding the resistance mechanism of silkworms to pesticides. This study aimed to use transcriptomes to understand the underlying mechanism of silkworm resistance to fenpropathrin, which will provide a theoretical molecular reference for breeding pesticide-resistant silkworm varieties. In this study, the fat bodies of two strains with differential resistance after 12 h of fenpropathrin feeding were analyzed using RNA-Seq. After feeding fenpropathrin, 760 differentially expressed genes (DEGs) were obtained in the p50(r) strain and 671 DEGs in the 8y strain. The DEGs involved in resistance to fenpropathrin were further identified by comparing the two strains, including 207 upregulated DEGs in p50(r) and 175 downregulated DEGs in 8y. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis showed that these fenpropathrin-related DEGs are mainly enriched in the metabolism and transporter pathways. Moreover, 28 DEGs involved in the metabolic pathway and 18 in the transporter pathway were identified. Furthermore, organic cation transporter protein 6 (BmOCT6), a transporter pathway member, was crucial in enhancing the tolerance of BmN cells to fenpropathrin. Finally, the knockdown of the expression of the homologs of BmOCT6 in Glyphodes pyloalis (G. pyloalis) significantly decreased the resistant level of larvae to fenpropathrin. The findings showed that the metabolism and transporter pathways are associated with resistance to fenpropathrin in silkworm, and OCT6 is an effective and potential target not only for silkworm breeding but also for pest biocontrol.


Subject(s)
Bombyx , Lepidoptera , Pesticides , Pyrethrins , Animals , Bombyx/genetics , Bombyx/metabolism , Transcriptome , Lepidoptera/genetics , Fat Body , Gene Expression Profiling , Pyrethrins/toxicity , Pyrethrins/metabolism , Pesticides/metabolism
8.
Front Physiol ; 14: 1194370, 2023.
Article in English | MEDLINE | ID: mdl-37153226

ABSTRACT

Termites are social insects that live in the soil or in decaying wood, where exposure to pathogens should be common. However, these pathogens rarely cause mortality in established colonies. In addition to social immunity, the gut symbionts of termites are expected to assist in protecting their hosts, though the specific contributions are unclear. In this study, we examined this hypothesis in Odontotermes formosanus, a fungus-growing termite in the family Termitidae, by 1) disrupting its gut microbiota with the antibiotic kanamycin, 2) challenging O. formosanus with the entomopathogenic fungus Metarhizium robertsii, and finally 3) sequencing the resultant gut transcriptomes. As a result, 142531 transcripts and 73608 unigenes were obtained, and unigenes were annotated following NR, NT, KO, Swiss-Prot, PFAM, GO, and KOG databases. Among them, a total of 3,814 differentially expressed genes (DEGs) were identified between M. robertsii infected termites with or without antibiotics treatment. Given the lack of annotated genes in O. formosanus transcriptomes, we examined the expression profiles of the top 20 most significantly differentially expressed genes using qRT-PCR. Several of these genes, including APOA2, Calpain-5, and Hsp70, were downregulated in termites exposed to both antibiotics and pathogen but upregulated in those exposed only to the pathogen, suggesting that gut microbiota might buffer/facilitate their hosts against infection by finetuning physiological and biochemical processes, including innate immunity, protein folding, and ATP synthesis. Overall, our combined results imply that stabilization of gut microbiota can assist termites in maintaining physiological and biochemical homeostasis when foreign pathogenic fungi invade.

9.
Insect Mol Biol ; 32(5): 558-574, 2023 10.
Article in English | MEDLINE | ID: mdl-37209025

ABSTRACT

The white epidermis of silkworms is due to the accumulation of uric acid crystals. Abnormal silkworm uric acid metabolism decreases uric acid production, leading to a transparent or translucent phenotype. The oily silkworm op50 is a mutant strain with a highly transparent epidermis derived from the p50 strain. It shows more susceptibility to Bombyx mori nucleopolyhedrovirus (BmNPV) infection than the wild type; however, the underlying mechanism is unknown. This study analysed the changes in 34 metabolites in p50 and op50 at different times following BmNPV infection based on comparative metabolomics. The differential metabolites were mainly clustered in six metabolic pathways. Of these, the uric acid pathway was identified as critical for resistance in silkworms, as feeding with inosine significantly enhanced larval resistance compared to other metabolites and modulated other metabolic pathways. Additionally, the increased level of resistance to BmNPV in inosine-fed silkworms was associated with the regulation of apoptosis, which is mediated by the reactive oxygen species produced during uric acid synthesis. Furthermore, feeding the industrial strain Jingsong (JS) with inosine significantly increased the level of larval resistance to BmNPV, indicating its potential application in controlling the virus in sericulture. These results lay the foundation for clarifying the resistance mechanism of silkworms to BmNPV and provide new strategies and methods for the biological control of pests.


Subject(s)
Bombyx , Nucleopolyhedroviruses , Animals , Bombyx/genetics , Uric Acid/metabolism , Nucleopolyhedroviruses/physiology , Apoptosis , Larva
10.
Int J Mol Sci ; 24(7)2023 Apr 03.
Article in English | MEDLINE | ID: mdl-37047645

ABSTRACT

Ultrabithorax (Ubx) is a member of the Hox gene group involved in cell fate decisions, cell proliferation and organ identity. Its function has been extensively researched in Drosophila melanogaster but little is known about it in Lepidoptera. To uncover the function of Ubx in the development of lepidopterans, we constructed the Ubx overexpression (UbxOE) strain based on the Nistari strain of Bombyx mori. The UbxOE strain showed a small body size, transparent intersegmental membrane and abnormal posterior silk gland (PSG). In the current study, we focused on the effect of Ubx overexpression on the posterior silk gland. As the major protein product of PSG, the mRNA expression of fibroin heavy chain (Fib-H) and fibroin light chain (Fib-L) was upregulated three times in UbxOE, but the protein expression of Fib-H and Fib-L was not significantly different. We speculated that the overexpression of Ubx downregulated the expression of Myc and further caused abnormal synthesis of the spliceosome and ribosome. Abnormalities of the spliceosome and ribosome affected the synthesis of protein in the PSG and changed its morphology.


Subject(s)
Bombyx , Drosophila Proteins , Fibroins , Animals , Bombyx/metabolism , Fibroins/metabolism , Drosophila melanogaster/genetics , Genes, Homeobox , Silk/metabolism , Insect Proteins/genetics , Insect Proteins/metabolism , Transcription Factors/metabolism , Homeodomain Proteins/genetics , Homeodomain Proteins/metabolism , Drosophila Proteins/metabolism
11.
Nucleic Acids Res ; 51(10): 5228-5241, 2023 06 09.
Article in English | MEDLINE | ID: mdl-37070178

ABSTRACT

Conversely to canonical splicing, back-splicing connects the upstream 3' splice site (SS) with a downstream 5'SS and generates exonic circular RNAs (circRNAs) that are widely identified and have regulatory functions in eukaryotic gene expression. However, sex-specific back-splicing in Drosophila has not been investigated and its regulation remains unclear. Here, we performed multiple RNA analyses of a variety sex-specific Drosophila samples and identified over ten thousand circular RNAs, in which hundreds are sex-differentially and -specifically back-spliced. Intriguingly, we found that expression of SXL, an RNA-binding protein encoded by Sex-lethal (Sxl), the master Drosophila sex-determination gene that is only spliced into functional proteins in females, promoted back-splicing of many female-differential circRNAs in the male S2 cells, whereas expression of a SXL mutant (SXLRRM) did not promote those events. Using a monoclonal antibody, we further obtained the transcriptome-wide RNA-binding sites of SXL through PAR-CLIP. After splicing assay of mini-genes with mutations in the SXL-binding sites, we revealed that SXL-binding on flanking exons and introns of pre-mRNAs facilitates back-splicing, whereas SXL-binding on the circRNA exons inhibits back-splicing. This study provides strong evidence that SXL has a regulatory role in back-splicing to generate sex-specific and -differential circRNAs, as well as in the initiation of sex-determination cascade through canonical forward-splicing.


Subject(s)
Drosophila Proteins , RNA, Circular , RNA-Binding Proteins , Animals , Female , Male , Drosophila/genetics , Drosophila/metabolism , Drosophila Proteins/genetics , Drosophila Proteins/metabolism , RNA/genetics , RNA/metabolism , RNA Splicing/genetics , RNA, Circular/metabolism , RNA, Messenger/metabolism , RNA-Binding Proteins/genetics , RNA-Binding Proteins/metabolism
12.
Insect Sci ; 30(3): 789-802, 2023 Jun.
Article in English | MEDLINE | ID: mdl-36097390

ABSTRACT

The silkworm Bombyx mori L. is a model organism of the order Lepidoptera. Understanding the mechanism of pesticide resistance in silkworms is valuable for Lepidopteran pest control. In this study, comparative metabolomics was used to analyze the metabolites of 2 silkworm strains with different pesticide resistance levels at 6, 12, and 24 h after feeding with fenpropathrin. Twenty-six of 27 metabolites showed significant differences after fenpropathrin treatment and were classified into 6 metabolic pathways: glycerophospholipid metabolism, sulfur metabolism, glycolysis, amino acid metabolism, the urea cycle, and the tricarboxylic acid (TCA) cycle. After analyzing the percentage changes in the metabolic pathways at the 3 time points, sulfur metabolism, glycolysis, and the TCA cycle showed significant responses to fenpropathrin. Confirmatory experiments were performed by feeding silkworms with key metabolites of the 3 pathways. The combination of iron(II) fumarate + folic acid (IF-FA) enhanced fenpropathrin resistance in silkworms 6.38 fold, indicating that the TCA cycle is the core pathway associated with resistance. Furthermore, the disruption of several energy-related metabolic pathways caused by fenpropathrin was shown to be recovered by IF-FA in vitro. Therefore, IF-FA may have a role in boosting silkworm pesticide resistance by modulating the equilibrium between the TCA cycle and its related metabolic pathways.


Subject(s)
Bombyx , Lepidoptera , Pesticides , Animals , Bombyx/metabolism , Metabolomics , Pesticides/metabolism , Sulfur/metabolism
13.
Int J Mol Sci ; 25(1)2023 Dec 25.
Article in English | MEDLINE | ID: mdl-38203476

ABSTRACT

The study of functional genes involved in baculovirus infection is vital for its wide application in pest biocontrol. This study utilized the Autographa californica nucleopolyhedrovirus (AcMNPV) and silkworm as models to elucidate the role of BmRRS1, which has been found to exhibit notable differential expression between resistant and susceptible silkworm strains. The results showed that it was evolutionarily conserved in selected species. Among different tissues, it was expressed at the highest level in the gonads, followed by the hemolymph and silk glands; among the different developmental stages, it was the highest in the second instar, followed by the pupae and adults. Moreover, its vital role in suppressing AcMNPV infection was verified by the decreased expression of lef3 and vp39 protein after overexpression of BmRRS1 as well as by the increased expression of the viral gene lef3 and the viral protein vp39 after siRNA treatment against BmRRS1 expression in BmN cells. Additionally, the direct interaction between BmRRS1 and AcMNPV was detected by the GST pull-down assay. Finally, the homologue of BmRRS1 in Spodoptera frugiperda was found to be involved in larval resistance to AcMNPV. In a word, BmRRS1 plays a vital role in AcMNPV resistance in silkworms, and this might be related to the direct interaction with AcMNPV. The results of this study provide a potential target for protecting silkworm larvae from virus infection and controlling agricultural and forestry pests.


Subject(s)
Bombyx , Nucleopolyhedroviruses , Animals , Baculoviridae , Bombyx/genetics , Nucleopolyhedroviruses/genetics , Larva , Cell Proliferation
14.
Insects ; 13(11)2022 Oct 22.
Article in English | MEDLINE | ID: mdl-36354792

ABSTRACT

Bombyx mori, domesticated from wild silkworms, is an economic insect that feeds on mulberry leaves and produces silk. In the current study, we demonstrated the contribution of BmAbl1 in silk protein synthesis. The inhibition and knockout of BmAbl1 can reduce the larva weight and CSW. The effect on CSW of BmAbl1 is not on the transcriptional level, but on the translational level. RNA-sequencing data suggested that amino acid synthesis and the metabolism process had a great difference between the BmAbl1- and Control strain, particularly glutathione metabolism. An abnormality in glutathione metabolism led to the reduction of free glycine and serine content, which are the main components of fibroin protein. Finally, fibroin protein synthesis has been reduced, including fibroin-heavy chain, fibroin-light chain, and p25 protein. This finding brought to light the role of BmAbl1 in the silk protein synthesis process.

15.
Pest Manag Sci ; 78(12): 5302-5312, 2022 Dec.
Article in English | MEDLINE | ID: mdl-36054174

ABSTRACT

BACKGROUND: Nucleopolyhedrovirus (NPV), one of the baculoviruses, is a promising biopesticide for pest control. Lepidopteran account for 70% of pests, therefore investigation on highly conserved genes associated with viral infections in the lepidopteran model, the silkworm, will serve as a valuable reference for improving the effectiveness of pest management. BmE74A is a member of the erythroblast transformation-specific (ETS) family of transcription factors in Bombyx mori, which we previously found to be highly conserved and closely associated with BmNPV. This study aimed to elucidate the role of BmE74A in viral infection. RESULTS: A significantly high expression of BmE74A in eggs indicated its important role in embryonic development, as did relatively high expressions in the hemolymph and midgut. Significant differences in BmE74A expression in different resistant strains after BmNPV infection suggested its involvement as a response to viral infection. Moreover, RNA interference (RNAi) and overexpression experiments confirmed the important role of BmE74A in promoting viral infection. BmNPV infection was significantly suppressed and enhanced by BmE74A knockdown and overexpression, respectively. Besides, BmE74A was found to regulate the expression of BmMdm2 and Bmp53. Furthermore, the binding of ETS, the functional domain of BmE74A, to occlusion-derived virus proteins was confirmed by far-western blotting, and four viral proteins that may interact with ETS proteins were identified by mass spectrometry. Similarly, a homolog of BmE74A in Spodoptera litura was also found to be involved in larval susceptibility to BmNPV. CONCLUSION: BmE74A promotes BmNPV proliferation by directly interacting with the virus, which may be related to the suppression of the p53 pathway. © 2022 Society of Chemical Industry.


Subject(s)
Bombyx , Nucleopolyhedroviruses , Animals , Bombyx/metabolism , Transcription Factors/genetics , Nucleopolyhedroviruses/physiology , Hemolymph/metabolism , Gene Expression Regulation , Insect Proteins/genetics
16.
PLoS One ; 17(7): e0270840, 2022.
Article in English | MEDLINE | ID: mdl-35797274

ABSTRACT

Bombyx mori is an important economic insect, its economic value mainly reflected in the silk yield. The major functional genes affecting the silk yield of B. mori have not been determined yet. Bombyx mori vacuolar protein sorting-associated protein 13d (BmVps13d) has been identified, but its function is not reported. In this study, BmVps13d protein shared 30.84% and 34.35% identity with that of in Drosophila melanogaster and Homo. sapiens, respectively. The expressions of BmVps13d were significantly higher in the midgut and silk gland of JS (high silk yield) than in that of L10 (low silk yield). An insertion of 9 bp nucleotides and two deficiencies of adenine ribonucleotides in the putative promoter region of BmVps13d gene in L10 resulted in the decline of promoter activity was confirmed using dual luciferase assay. Finally, the functions of BmVps13d in B. mori were studied using the CRISPR/Cas9 system, and the mutation of BmVps13d resulted in a 24.7% decline in weight of larvae, as well as a 27.1% (female) decline and a 11.8% (male) decline in the silk yield. This study provides a foundation for studying the molecular mechanism of silk yield and breeding the silkworm with high silk yield.


Subject(s)
Bombyx , Genes, Insect , Insect Proteins , Silk , Animals , Bombyx/chemistry , Bombyx/genetics , Bombyx/metabolism , Drosophila Proteins , Drosophila melanogaster/chemistry , Female , Genes, Insect/genetics , Humans , Insect Proteins/genetics , Insect Proteins/metabolism , Intracellular Signaling Peptides and Proteins , Larva/anatomy & histology , Male , Mutation , Promoter Regions, Genetic/genetics , Proteins , Silk/biosynthesis
17.
Insects ; 13(5)2022 May 06.
Article in English | MEDLINE | ID: mdl-35621772

ABSTRACT

In Bombyx mori, as an important economic insect, it was first found that some strains were completely refractory to infection with Autographa californica nucleopolyhedrovirus (AcMNPV) through intrahemocelical injection; whereas almost all natural strains had difficulty resisting Bombyx mori nucleopolyhedrovirus (BmNPV), which is also a member of the family Baculoviridae. Previous genetics analysis research found that this trait was controlled by a potentially corresponding locus on chromosome 3, but the specific gene and mechanism was still unknown. With the help of the massive silkworm strain re-sequencing dataset, we performed the Genome-Wide Association Studies (GWAS) to identify the gene related to the resistance of AcMNPV in this study. The GWAS results showed that the Niemann-Pick type C1 (NPC-1) gene was the most associated with the trait. The knockdown experiments in BmN cells showed that BmNPC1 has a successful virus suppression infection ability. We found a small number of amino acid mutations among different resistant silkworms, which indicates that these mutations contributed to the resistance of AcMNPV. Furthermore, inhibition of the BmNPC1 gene also changed the viral gene expression of the AcMNPV, which is similar to the expression profile in the transcriptome data of p50 and C108 strains.

18.
Insect Sci ; 29(5): 1262-1274, 2022 Oct.
Article in English | MEDLINE | ID: mdl-35411705

ABSTRACT

The growth and development of metabolous insects are mainly regulated by ecdysone and juvenile hormone. As a member of the low-density lipoprotein receptor (LDLR) family, megalin (mgl) is involved in the lipoprotein transport of cholesterol which is an essential precursor for the synthesis of ecdysone. Despite extensive studies in mammals, the function of mgl is still largely unknown in insects. In this study, we characterize the function of mgl in the silkworm Bombyx mori, the model species of Lepidoptera. We find that mgl is broadly present in the genomes of lepidopteran species and evolved with divergence between lepidopterans and Drosophila. The expression pattern suggests a ubiquitous role of mgl in the growth and development in the silkworm. We further perform clustered regularly interspaced palindromic repeats (CRISPR) / CRISPR-associated protein 9-based mutagenesis of Bmmgl and find that both the development and the silk production of the silkworm are seriously affected by the disruption of Bmmgl. Our results not only explore the function of mgl in Lepidoptera but also add to our understanding of how cholesterol metabolism is involved in the development of insects.


Subject(s)
Bombyx , Animals , CRISPR-Associated Protein 9 , Ecdysone , Insect Proteins/genetics , Insect Proteins/metabolism , Juvenile Hormones , Lipoproteins , Lipoproteins, LDL , Low Density Lipoprotein Receptor-Related Protein-2 , Mammals/metabolism , Silk
19.
Arch Insect Biochem Physiol ; 110(2): e21886, 2022 Jun.
Article in English | MEDLINE | ID: mdl-35307854

ABSTRACT

Bt toxins are parasporal crystals produced by Bacillus thuringiensis (Bt). They have specific killing activity against various insects and have been widely used to control agricultural pests. However, their widespread use has developed the resistance of many target insects. To maintain the sustainable use of Bt products, the resistance mechanism of insects to Bt toxins must be fully clarified. In this study, Bt-resistant and Bt-susceptible silkworm strains were used to construct genetic populations, and the genetic pattern of silkworm resistance to Cry1Ac toxin was determined. Sequence-tagged site molecular marker technology was used to finely map the resistance gene and to draw a molecular genetic linkage map, and the two closest markers were T1590 and T1581, indicating the resistance gene located in the 155 kb genetic region. After analyzing the sequence of the predicted gene in the genetic region, an ATP binding cassette transporter (ABCC2) was identified as the candidate gene. Molecular modeling and protein-protein docking result showed that a tyrosine insertion in the mutant ABCC2 might be responsible for the interaction between Cry1Ac and ABCC2. Moreover, CRISPR/Cas9-mediated genome editing technology was used to knockout ABCC2 gene. The homozygous mutant ABCC2 silkworm was resistant to Cry1Ac toxin, which indicated ABCC2 is the key gene that controls silkworm resistance to Cry1Ac toxin. The results have laid the foundation for elucidating the molecular resistance mechanism of silkworms to Cry1Ac toxin and could provide a theoretical basis for the biological control of lepidopteran pests.


Subject(s)
Bacillus thuringiensis , Bombyx , Moths , Animals , Bacillus thuringiensis/chemistry , Bacillus thuringiensis Toxins , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Bombyx/genetics , Bombyx/metabolism , Cloning, Molecular , Endotoxins/metabolism , Endotoxins/pharmacology , Hemolysin Proteins/metabolism , Hemolysin Proteins/pharmacology , Insect Proteins/genetics , Insect Proteins/metabolism , Insecta/metabolism , Insecticide Resistance/genetics , Larva/genetics , Larva/metabolism , Moths/genetics , Multidrug Resistance-Associated Protein 2 , Multidrug Resistance-Associated Proteins/genetics , Multidrug Resistance-Associated Proteins/metabolism
20.
PLoS Genet ; 18(3): e1010131, 2022 03.
Article in English | MEDLINE | ID: mdl-35312700

ABSTRACT

Sperm deliver the male complement of DNA to the ovum, and thus play a key role in sexual reproduction. Accordingly, spermatogenesis has outstanding significance in fields as disparate as infertility treatments and pest-control, making it a broadly interesting and important focus for molecular genetics research in a wide range of species. Here we investigate spermatogenesis in the model lepidopteran insect Bombyx mori (silkworm moth), with particular focus on the gene PMFBP1 (polyamine modulated factor 1 binding protein 1). In humans and mouse, PMFBP1 is essential for spermatogenesis, and mutations of this gene are associated with acephalic spermatozoa, which cause infertility. We identified a B. mori gene labeled as "PMFBP1" in GenBank's RefSeq database and sought to assess its role in spermatogenesis. Like in mammals, the silkworm version of this gene (BmPMFBP1) is specifically expressed in testes. We subsequently generated BmPMFBP1 mutants using a transgenic CRISPR/Cas9 system. Mutant males were sterile while the fertility of mutant females was comparable to wildtype females. In B. mori, spermatogenesis yields two types of sperm, the nucleated fertile eupyrene sperm, and anucleated unfertile apyrene sperm. Mutant males produced abnormal eupyrene sperm bundles but normal apyrene sperm bundles. For eupyrene sperm, nuclei were mislocated and disordered inside the bundles. We also found the BmPMFBP1 deficiency blocked the release of eupyrene sperm bundles from testes to ejaculatory seminalis. We found no obvious abnormalities in the production of apyrene sperm in mutant males, and double-matings with apyrene-deficient sex-lethal mutants rescued the ΔBmPMFBP1 infertility phenotype. These results indicate BmPMFBP1 functions only in eupyrene spermatogenesis, and highlight that distinct genes underlie the development of the two sperm morphs commonly found in Lepidoptera. Bioinformatic analyses suggest PMFBP1 may have evolved independently in lepidoptera and mammals, and that despite the shared name, are likely not homologous genes.


Subject(s)
Bombyx , Moths , Animals , Bombyx/genetics , Cytoskeletal Proteins/metabolism , Female , Fertility/physiology , Male , Mammals , Mice , Spermatogenesis/genetics , Spermatozoa/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL