Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 12.658
Filter
1.
Biodivers Data J ; 12: e125570, 2024.
Article in English | MEDLINE | ID: mdl-39099603

ABSTRACT

Background: Mycena (Pers.) Roussel (1806) is a large genus of Mycenaceae known for having small to medium-sized basidiomata. It is typified by the species Mycenagalericulata (Scop.) Gray. For years, many mycologists have made important contributions to understanding Mycena and several monographs have been published. Three specimens were collected from China that belonged to the genus Mycena. On the basis of morphological analysis and phylogenetic analyses employing DNA sequences, a new species is described. New information: Mycenabrunnescens sp. nov. is described as a new species from subtropical areas of China. It is characterised by its brown pileus, whitish lamellae that turns brown when bruised, orange to brown lamellae edges, the absence of pleurocystidia and cheilocystidia with simple or branched excrescences at the apex containing yellowish-brown contents. We performed phylogenetic analyses on a concatenated dataset comprising the internal transcribed spacer and large subunit regions of nuclear ribosomal RNA using Bayesian Inference and Maximum Likelihood methods. The result showed that the new taxon clustered in an independent group and is closely related to M.albiceps and M.flosoides.

2.
Chemistry ; : e202402602, 2024 Aug 07.
Article in English | MEDLINE | ID: mdl-39112402

ABSTRACT

Mild and inexpensive copper-catalyzed aromatization-driven ring-opening amination and oxygenation of spiro dihydroquinazolinones are presented, respectively. These protocols provide facile and atom-economical access to the aminated and the carbonyl-containing quinazolin-4(3H)-ones in good yields with good functional group compatibility, which are difficult to obtain by conventional methods. Remarkably, a telescoped procedure involving the condensation and the ring-opening/functionalization for simple cycloalkanone was found to be accessible. Mechanistic studies suggest a radical pathway for this transformation.

3.
Acta Pharmacol Sin ; 2024 Aug 07.
Article in English | MEDLINE | ID: mdl-39112770

ABSTRACT

Cyclic GMP-AMP synthase (cGAS) is a major cytosolic DNA sensor that plays a significant role in innate immunity. Upon binding to double stranded DNA (dsDNA), cGAS utilizes GTP and ATP to synthesize the second messenger cyclic GMP-AMP (cGAMP). The cGAMP then binds to the adapter protein stimulator of interferon genes (STING) in the endoplasmic reticulum, resulting in the activation of the transcription factor interferon regulatory factor 3 (IRF3) and subsequent induction of type I interferon. An important question is how cGAS distinguishes between self and non-self DNA. While cGAS binds to the phosphate backbone of DNA without discrimination, its activation is influenced by physical features such as DNA length, inter-DNA distance, and mechanical flexibility. This suggests that the recognition of DNA by cGAS may depend on these physical features. In this article we summarize the recent progress in research on cGAS-STING pathway involved in antiviral defense, cellular senescence and anti-tumor response, and focus on DNA recognition mechanisms based on the physical features.

4.
Adv Mater ; : e2406653, 2024 Aug 07.
Article in English | MEDLINE | ID: mdl-39113338

ABSTRACT

The solution aggregation structure of conjugated polymers is crucial to the morphology and resultant optoelectronic properties of organic electronics and is of considerable interest in the field. Precise characterizations of the solution aggregation structures of organic photovoltaic (OPV) blends and their temperature-dependent variations remain challenging. In this work, the temperature-dependent solution aggregation structures of three representative high-efficiency OPV blends using small-angle X-ray/neutron scattering are systematically probed. Three cases of solution processing resiliency are elucidated in state-of-the-art OPV blends. The exceptional processing resiliency of high-efficiency PBQx-TF blends can be attributed to the minimal changes in the multiscale solution aggregation structure at elevated temperatures. Importantly, a new parameter, the percentage of acceptors distributed within polymer aggregates (Ф), for the first time in OPV blend solution, establishes a direct correlation between Ф and performance is quantified. The device performance is well correlated with the Kuhn length of the cylinder related to polymer aggregates L1 at the small scale and the Ф at the large scale. Optimal device performance is achieved with L1 at ≈30 nm and Ф within the range of 60 ± 5%. This study represents a significant advancement in the aggregation structure research of organic electronics.

5.
Acc Chem Res ; 2024 Aug 08.
Article in English | MEDLINE | ID: mdl-39115139

ABSTRACT

ConspectusFlexible metal-organic frameworks (MOFs), also known as soft porous crystals, exhibit dynamic behaviors in response to external physical and chemical stimuli such as light, heat, electric or magnetic field, or the presence of particular matters, on the premise of maintaining their crystalline state. The reversible structural transformation of flexible MOFs, a unique characteristic seldomly found in other types of known solid-state materials, affords them distinct properties in the realms of molecule separation, optoelectronic devices, chemical sensing, information storage, biomedicine applications, and so on. The mechanisms underlying their dynamic behaviors can be comprehensively investigated at the molecular level by means of in situ single-crystal or powder X-ray diffraction as well as other in situ spectroscopic techniques due to the high regularity of these crystalline materials during stimuli-responsive phase transitions. Through the introduction of specific stimuli-responsive groups/moieties into the well-defined and ordered molecular arrays, targeted applications can be achieved, and the performance of flexible MOFs can also be further improved via rational structural design.In this Account, we summarize our progress on the design, synthesis, and applications of flexible MOFs over the past few years. First, we highlight the construction principle of flexible MOFs, emphasizing the pivotal role of local structural design. Using an F-modified ligand, a flexible MOF with remarkable structural transformations can be obtained; the regulation of the metal coordination environment and interpenetrating frameworks is also crucial for achieving flexible MOFs. We also propose a strong correlation strategy based on the supramolecular interactions between the guest molecules and the framework, which realizes the temperature-responsive dynamic spatial "open-closed" regulation. Mechanisms of the dynamic behaviors investigated by the in situ techniques were also presented for the obtained materials. Second, some representative specific applications of the newly developed dynamic coordination systems were reviewed. The gas molecule responsive flexible MOFs show efficient short-chain alkane separation properties with discriminatory sorption behavior toward similar gaseous substrates. Smart sensing of temperature, pressure, and volatile organic compounds was achieved by several novel flexible fluorescent MOFs, with optimization potential through state-of-the-art chemical design. Furthermore, multiferroic materials with multiple bistable states and high working temperatures were also obtained based on flexible MOFs.Finally, we provide a discussion of the challenges of flexible MOFs in future research, including precise and efficient synthesis, in-depth structure-property relationship investigation, performance optimization, and industrialization. We hope that this Account will stimulate further research interest in developing next-generation smart materials based on flexible MOFs for applications in challenging chemical separation, extreme environmental sensing, massive information storage, and beyond.

6.
Hemoglobin ; : 1-4, 2024 Aug 05.
Article in English | MEDLINE | ID: mdl-39103314

ABSTRACT

We reported a rare ß-thalassemia patient, a 41-year-old Chinese male with small cell hypopigmentation anemia, jaundice and splenomegaly as the main clinical symptoms. By using Next-Generation Sequencing (NGS), we identified a novel de novo HBB mutation(c.358_365dup, p.Phe123Alafs*39) which resulted in an abnormally prolonged ß-globin chain comprising 159 amino acid residues. The secondary and three-dimensional structures of the ß-globin predicted that the novel prolonged ß-globin chain has a considerable risk of instability in the hemoglobin, and leads to clinical phenotype. This study contributes to the enrichment of the genetic pathogenic mutation database for thalassemia and underscores the significance of NGS in the screening of mutations for thalassemia families.

7.
Dalton Trans ; 2024 Aug 06.
Article in English | MEDLINE | ID: mdl-39105523

ABSTRACT

Metal halide perovskites with suitable energy band structures and excellent visible-light responses have emerged as promising photocatalysts for CO2 reduction to valuable chemicals and fuels. However, the efficiency of CO2 photocatalytic reduction often suffers from inefficient separation and sluggish transfer. Herein, a step-scheme (S-scheme) CsPbBr3/BiOBr photocatalyst with oxygen vacancies possessing intimate interfacial contact was fabricated by anchoring CsPbBr3 QDs on BiOBr-Ov nanosheets using a mild anti-precipitation method. The results showed that CsPbBr3/BiOBr-Ov-2 with an internal electric field (IEF) heterojunction exhibited a boosted evolution rate of 27.4 µmol g-1 h-1 (CO: 23.8 µmol g-1 h-1 and CH4: 3.6 µmol g-1 h-1) with an electron consumption rate (Relectron) of 76.4 µmol g-1 h-1, which was 5.9 and 3.2 times that of single CsPbBr3 and BiOBr-Ov, respectively. Density functional theory (DFT) calculations revealed that BiOBr with oxygen vacancies can effectively enhance the adsorption and activation of CO2 molecules. More importantly, in situ infrared Fourier transform spectroscopy (DRIFTS) spectra show the transformation process of the surface species, while the femtosecond transient absorption spectrum (fs-TA) reveals the charge transfer kinetics of the CsPbBr3/BiOBr-Ov. Overall, this work provides some guidance for the rational design of S-scheme heterojunctions and vacancy-engineered photocatalysts, which are expected to have potential applications in the fields of photocatalysis and solar energy conversion.

8.
Int J Oncol ; 65(3)2024 09.
Article in English | MEDLINE | ID: mdl-39092548

ABSTRACT

The Hippo signaling pathway plays a pivotal role in regulating cell growth and organ size. Its regulatory effects on hepatocellular carcinoma (HCC) encompass diverse aspects, including cell proliferation, invasion and metastasis, tumor drug resistance, metabolic reprogramming, immunomodulatory effects and autophagy. Yes­associated protein 1 (YAP1), a potent transcriptional coactivator and a major downstream target tightly controlled by the Hippo pathway, is influenced by various molecules and pathways. The expression of YAP1 in different cell types within the liver tumor microenvironment exerts varying effects on tumor outcomes, warranting careful consideration. Therefore, research on YAP1­targeted therapies merits attention. This review discusses the composition and regulation mechanism of the Hippo/YAP1 signaling pathway and its relationship with HCC, offering insights for future research and cancer prevention strategies.


Subject(s)
Adaptor Proteins, Signal Transducing , Carcinoma, Hepatocellular , Hippo Signaling Pathway , Liver Neoplasms , Protein Serine-Threonine Kinases , Signal Transduction , Transcription Factors , YAP-Signaling Proteins , Humans , Carcinoma, Hepatocellular/drug therapy , Carcinoma, Hepatocellular/metabolism , Carcinoma, Hepatocellular/pathology , Liver Neoplasms/drug therapy , Liver Neoplasms/metabolism , Liver Neoplasms/pathology , Transcription Factors/metabolism , Signal Transduction/drug effects , YAP-Signaling Proteins/metabolism , Adaptor Proteins, Signal Transducing/metabolism , Protein Serine-Threonine Kinases/metabolism , Tumor Microenvironment/drug effects , Molecular Targeted Therapy/methods , Antineoplastic Agents/therapeutic use , Antineoplastic Agents/pharmacology , Gene Expression Regulation, Neoplastic/drug effects , Cell Proliferation/drug effects , Animals
9.
BMC Cancer ; 24(1): 953, 2024 Aug 05.
Article in English | MEDLINE | ID: mdl-39103758

ABSTRACT

BACKGROUND AND PURPOSE: In the context of the widespread availability of magnetic resonance imaging (MRI) and aggressive salvage irradiation techniques, there has been controversy surrounding the use of prophylactic cranial irradiation (PCI) for small-cell lung cancer (SCLC) patients. This study aimed to explore whether regular brain MRI plus salvage brain irradiation (SBI) is not inferior to PCI in patients with limited-stage SCLC (LS-SCLC). METHODS: This real-world multicenter study, which was conducted between January 2014 and September 2020 at three general hospitals, involved patients with LS-SCLC who had a good response to initial chemoradiotherapy and no brain metastasis confirmed by MRI. Overall survival (OS) was compared between patients who did not receive PCI for various reasons but chose regular MRI surveillance and followed salvage brain irradiation (SBI) when brain metastasis was detected and patients who received PCI. RESULTS: 120 patients met the inclusion criteria. 55 patients received regular brain MRI plus SBI (SBI group) and 65 patients received PCI (PCI group). There was no statistically significant difference in median OS between the two groups (27.14 versus 33.00 months; P = 0.18). In the SBI group, 32 patients underwent whole brain radiotherapy and 23 patients underwent whole brain radiotherapy + simultaneous integrated boost. On multivariate analysis, only extracranial metastasis was independently associated with poor OS in the SBI group. CONCLUSION: The results of this real-world study showed that MRI surveillance plus SBI is not inferior to PCI in OS for LS-SCLC patients who had a good response to initial chemoradiotherapy.


Subject(s)
Brain Neoplasms , Cranial Irradiation , Lung Neoplasms , Magnetic Resonance Imaging , Salvage Therapy , Small Cell Lung Carcinoma , Humans , Small Cell Lung Carcinoma/radiotherapy , Small Cell Lung Carcinoma/diagnostic imaging , Small Cell Lung Carcinoma/mortality , Small Cell Lung Carcinoma/pathology , Male , Female , Magnetic Resonance Imaging/methods , Lung Neoplasms/radiotherapy , Lung Neoplasms/mortality , Lung Neoplasms/diagnostic imaging , Lung Neoplasms/pathology , Middle Aged , Aged , Cranial Irradiation/methods , Brain Neoplasms/secondary , Brain Neoplasms/radiotherapy , Brain Neoplasms/diagnostic imaging , Brain Neoplasms/mortality , Retrospective Studies , Neoplasm Staging , Adult , Chemoradiotherapy/methods
10.
Acad Radiol ; 2024 Aug 05.
Article in English | MEDLINE | ID: mdl-39107191

ABSTRACT

RATIONALE AND OBJECTIVES: Hematoma expansion (HE) in intracerebral hemorrhage (ICH) is a critical factor affecting patient outcomes, yet effective clinical tools for predicting HE are currently lacking. We aim to develop a fully automated framework based on deep learning for predicting HE using only clinical non-contrast CT (NCCT) scans. MATERIALS AND METHODS: A large retrospective dataset (n = 2484) was collected from 84 centers, while a prospective dataset (n = 500) was obtained from 26 additional centers. Baseline NCCT scans and follow-up NCCT scans were conducted within 6 h and 48 h from symptom onset, respectively. HE was defined as a volume increase of more than 6 mL on the follow-up NCCT. The retrospective dataset was divided into a training set (n = 1876) and a validation set (n = 608) by patient inclusion time. A two-stage framework was trained to predict HE, and its performance was evaluated on both the validation and prospective sets. Receiver operating characteristics area under the curve (AUC), sensitivity, and specificity were leveraged. RESULTS: Our two-stage framework achieved an AUC of 0.760 (95% CI 0.724-0.799) on the retrospective validation set and 0.806 (95% CI 0.750-0.859) on the prospective set, outperforming the commonly used BAT score, which had AUCs of 0.582 and 0.699, respectively. CONCLUSION: Our framework can automatically and robustly identify ICH patients at high risk of HE using admission head NCCT scans, providing more accurate predictions than the BAT score.

11.
Article in English | MEDLINE | ID: mdl-39107221

ABSTRACT

BACKGROUND AND AIM: Nonalcoholic fatty liver disease (NAFLD) is prone to complicated cardiovascular disease, and we aimed to identify patients with NAFLD who are prone to developing stable coronary artery disease (CAD). METHODS AND RESULTS: We retrospectively recruited adults who underwent coronary computed tomography angiography (CTA). A total of 127 NAFLD patients and 127 non-NAFLD patients were included in this study. Clinical features and imaging parameters were analysed, mainly including pericardial adipose tissue (PAT), pericoronary adipose tissue (PCAT), and radiomic features of 6792 PCATs. The inflammatory associations of NAFLD patients with PAT and PCAT were analysed. Clinical features (model 1), CTA parameters (model 2), the radscore (model 3), and a composite model (model 4) were constructed to identify patients with NAFLD with stable CAD. The presence of NAFLD resulted in a greater inflammatory involvement in all three coronary arteries (all P < 0.01) and was associated with increased PAT volume (r = 0.178**, P < 0.05). In the presence of NAFLD, the mean CT value of the PAT was significantly correlated with the fat attenuation index (FAI) in all three vessels and had the strongest correlation with the RCA FAI (r = 0.55, p < 0.001). A total of 9 radiomic features were screened by LASSO regression to calculate radiomic scores. In the model comparison, model 4 had the best performance of all models (AUC 0.914 [0.863-0.965]) and the highest overall diagnostic value of the model (sensitivity: 0.814, specificity: 0.941). CONCLUSIONS: NAFLD correlates with PAT volume and PCAT inflammation. Furthermore, combining clinical features, CTA parameters, and radiomic scores can improve the efficiency of early diagnosis of stable CAD in patients with NAFLD.

12.
Phytochem Anal ; 2024 Aug 06.
Article in English | MEDLINE | ID: mdl-39107233

ABSTRACT

INTRODUCTION: Frankincense is used for analgesic, tumor-suppressive, and anti-inflammatory treatments in Traditional Chinese Medicine but poses toxicological concerns. Vinegar processing is a common technique used to reduce the toxicity of frankincense. OBJECTIVE: This study aimed to investigate the chemical composition and quality evaluation of raw and vinegar-processing frankincense by multiple UPLC-MS/MS techniques. Additionally, we purposed refining the vinegar processing technique and identifying potentially harmful ingredients in the raw frankincense. METHODOLOGY: Sub-chronic oral toxicity studies were conducted on raw and vinegar-processing frankincense in rats. The composition of frankincense was identified by UPLC-Q-TOF-MS/MS. Chemometrics were used to differentiate between raw and vinegar-processing frankincense. Potential chemical markers were identified by selecting differential components, which were further exactly determined by UPLC-QQQ-MS/MS. Moreover, the viability of the HepG2 cells of those components with reduced contents after vinegar processing was assessed. RESULTS: The toxicity of raw frankincense is attenuated by vinegar processing, among which vinegar-processing frankincense (R40) (herb weight: rice vinegar weight = 40:1) exhibited the lowest toxicity. A total of 83 components were identified from frankincense, including 40 triterpenoids, 37 diterpenoids, and 6 other types. The contents of six components decreased after vinegar-processing, with the lowest levels in R40. Three components, specifically 3α-acetoxy-11-keto-ß-boswellic acid (AKBA), 3α-acetoxy-α-boswellic acid (α-ABA), and 3α-acetoxy-ß-boswellic acid (ß-ABA), inhibited the viability of HepG2 cells. The processing of frankincense with vinegar at a ratio of 40:1 could be an effective method of reducing the toxicity in raw frankincense. CONCLUSION: Our research improves understanding of the toxic substance basis and facilitates future assessments of frankincense quality.

13.
Nat Commun ; 15(1): 6697, 2024 Aug 06.
Article in English | MEDLINE | ID: mdl-39107299

ABSTRACT

The skeleton has been suggested to function as an endocrine organ controlling whole organism energy balance, however the mediators of this effect and their molecular links remain unclear. Here, utilizing Schnurri-3-/- (Shn3-/-) mice with augmented osteoblast activity, we show Shn3-/-mice display resistance against diet-induced obesity and enhanced white adipose tissue (WAT) browning. Conditional deletion of Shn3 in osteoblasts but not adipocytes recapitulates lean phenotype of Shn3-/-mice, indicating this phenotype is driven by skeleton. We further demonstrate osteoblasts lacking Shn3 can secrete cytokines to promote WAT browning. Among them, we identify a C-terminal fragment of SLIT2 (SLIT2-C), primarily secreted by osteoblasts, as a Shn3-regulated osteokine that mediates WAT browning. Lastly, AAV-mediated Shn3 silencing phenocopies the lean phenotype and augmented glucose metabolism. Altogether, our findings establish a novel bone-fat signaling axis via SHN3 regulated SLIT2-C production in osteoblasts, offering a potential therapeutic target to address both osteoporosis and metabolic syndrome.


Subject(s)
Adipose Tissue, White , Bone and Bones , Diet, High-Fat , Intercellular Signaling Peptides and Proteins , Mice, Knockout , Obesity , Osteoblasts , Animals , Obesity/metabolism , Obesity/genetics , Obesity/etiology , Adipose Tissue, White/metabolism , Osteoblasts/metabolism , Intercellular Signaling Peptides and Proteins/metabolism , Intercellular Signaling Peptides and Proteins/genetics , Mice , Diet, High-Fat/adverse effects , Bone and Bones/metabolism , Nerve Tissue Proteins/metabolism , Nerve Tissue Proteins/genetics , Male , Adipose Tissue, Brown/metabolism , Mice, Inbred C57BL , Adipocytes/metabolism , Signal Transduction
14.
Int J Biol Macromol ; 277(Pt 4): 134518, 2024 Aug 05.
Article in English | MEDLINE | ID: mdl-39111496

ABSTRACT

Bacterial biofilm-related infections have become a significant global concern in public health and economy. Extracellular DNA (eDNA) is regarded as one of the key elements of extracellular polymeric substances (EPS) in bacterial biofilm, providing robust support to maintain the stability of bacterial biofilms for fighting against environmental stresses (such as antibiotics, reactive oxygen species (ROS), and hyperthermia). In this study, ternary AuAgCu hydrogels nanozyme with porous network structures were utilized for the immobilization of DNase (AuAgCu@DNase hydrogels) to realize enhanced biofilm decomposition and antibacterial therapy of MRSA. The prepared AuAgCu@DNase hydrogels can efficiently hydrolyze eDNA in biofilms so that the generated ROS and hyperthermia by laser irradiation can permeate into the interior of the biofilm to achieve deep sterilization. The typical interface interactions between AuAgCu hydrogels and DNase and the excellent photothermal-boost peroxidase-like performances of AuAgCu hydrogels take responsibility for the enhanced antibacterial activity. In the MRSA-infected wounds model, the in vivo antibacterial results revealed that the AuAgCu@DNase hydrogels possess excellent drug-resistant bacteria-killing performance with superb biocompatibility. Meanwhile, the pathological analysis of collagen deposition and fibroblast proliferation of wounds demonstrate highly satisfactory wound healing. This work offers an innovative path for developing nanozyme-enzyme antibacterial composites against drug-resistant bacteria and their biofilms.

15.
Am J Transl Res ; 16(7): 3014-3025, 2024.
Article in English | MEDLINE | ID: mdl-39114721

ABSTRACT

OBJECTIVE: To evaluate the predictive value of thromboelastography, routine blood indices, ultrasound measurements, and placental thickness for fetal outcome. METHODS: A retrospective analysis of 218 expectant mothers at our hospital from April 2020 to June 2022 was conducted. Mothers were classified into favorable (n=164) and adverse (n=54) fetal outcome groups. We compared thromboelastography, blood counts, and ultrasound parameters, including placental thickness, between the two groups. Predictive models using lasso regression were developed for individual assessment type and their combinations. Model efficacies were evaluated by ROC curves and Delong's test. RESULTS: Thromboelastography indicated significantly higher values of R (P=0.004), Angle (P<0.001), and MA (P=0.002) while notably lower K (P<0.001) in the adverse outcome group compared to the favorable outcome group. Peripheral blood analysis showed elevated levels of WBC (P<0.001), CRP (P=0.001), and PLR (P<0.001) in the adverse outcome group. Ultrasound assessments revealed significant increases in S/D (P<0.001), PI (P=0.016), RI (P<0.001), and placental thickness (P<0.001) in the adverse outcome group. The areas under the curve (AUCs) for the thromboelastography (4 features), peripheral blood indices (3 features), ultrasound parameters (4 features), and combined index model (11 features) were 0.774, 0.779, 0.961, and 0.978, respectively. Delong's test indicated that the combined model's AUC did not significantly differ from that of the ultrasound parameters (P>0.05) but was superior to the models based on thromboelastography, peripheral blood indices, and placental thickness alone (P<0.001). CONCLUSION: This study underscores the unparalleled predictive value of ultrasound metrics in identifying the risk of adverse pregnancy outcomes, highlighting their critical role in prenatal risk assessment and monitoring frameworks.

16.
Nature ; 2024 Aug 07.
Article in English | MEDLINE | ID: mdl-39112701

ABSTRACT

The dopamine transporter has a crucial role in regulation of dopaminergic neurotransmission by uptake of dopamine into neurons and contributes to the abuse potential of psychomotor stimulants1-3. Despite decades of study, the structure, substrate binding, conformational transitions and drug-binding poses of human dopamine transporter remain unknown. Here we report structures of the human dopamine transporter in its apo state, and in complex with the substrate dopamine, the attention deficit hyperactivity disorder drug methylphenidate, and the dopamine-uptake inhibitors GBR12909 and benztropine. The dopamine-bound structure in the occluded state precisely illustrates the binding position of dopamine and associated ions. The structures bound to drugs are captured in outward-facing or inward-facing states, illuminating distinct binding modes and conformational transitions during substrate transport. Unlike the outward-facing state, which is stabilized by cocaine, GBR12909 and benztropine stabilize the dopamine transporter in the inward-facing state, revealing previously unseen drug-binding poses and providing insights into how they counteract the effects of cocaine. This study establishes a framework for understanding the functioning of the human dopamine transporter and developing therapeutic interventions for dopamine transporter-related disorders and cocaine addiction.

17.
Ann Clin Microbiol Antimicrob ; 23(1): 71, 2024 Aug 10.
Article in English | MEDLINE | ID: mdl-39127671

ABSTRACT

Brucella spp. are facultative intracellular pathogens that cause zoonosis- brucellosis worldwide. There has been a trend of the re-emergence of brucellosis worldwide in recent years. The epidemic situation of brucellosis is serious in Xinjiang. To analyze the epidemic situation of Brucella spp. in Xinjiang among humans and animals, this study identified 144 Brucella isolates from Xinjiang using classical identification and 16 S rRNA sequencing. MLVA, drug resistance testing, and wgSNP detection were also performed. At the same time, analysis was conducted based on the published data of Brucella isolates worldwide. The results showed that the dominant species was B. melitensis biovar 3, which belonged to GT42 (MLVA-8 typing) and the East Mediterranean lineage. The correlation among isolates was high both in humans or animals. The isolates in Xinjiang exhibited higher polymorphism compared to other locations in China, with polymorphism increasing each year since 2010. No amikacin/kanamycin-resistant strains were detected, but six rifampicin-intermediate isolates were identified without rpoB gene variation. The NJ tree of the wgSNP results indicated that there were three main complexes of the B. melitensis epidemic in Xinjiang. Based on the results of this study, the prevention and control of brucellosis in Xinjiang should focus on B. melitensis, particularly strains belonging to B. melitensis bv.3 GT42 (MLVA-8 typing) and East Mediterranean lineage. Additionally, the rifampicin- and trimethoprim-sulfamethoxazole- resistance of isolates in Xinjiang should be closely monitored to avoid compromising the therapeutic efficacy and causing greater losses. These results provide essential data for the prevention and control of brucellosis in Xinjiang and China. Although the isolates from Xinjiang have significant characteristics among Chinese isolates and can reflect the epidemiological situation of brucellosis in China to some extent, this study cannot represent the characteristics of isolates from other regions.


Subject(s)
Anti-Bacterial Agents , Brucella melitensis , Brucellosis , Genotype , Brucellosis/epidemiology , Brucellosis/microbiology , Brucella melitensis/genetics , Brucella melitensis/drug effects , Brucella melitensis/isolation & purification , China/epidemiology , Humans , Animals , Anti-Bacterial Agents/pharmacology , Drug Resistance, Bacterial/genetics , Microbial Sensitivity Tests , RNA, Ribosomal, 16S/genetics , Phylogeny , Polymorphism, Genetic , Epidemics
18.
PeerJ ; 12: e17851, 2024.
Article in English | MEDLINE | ID: mdl-39131613

ABSTRACT

Background: Modic changes (MCs) are identified as an independent risk factor for low back pain. Different subtypes of MCs vary in their impact on postoperative pain relief. However, consensus on the transformation of postoperative MC fractions in patients with distinct MC subtypes is lacking. Methods: This comprehensive systematic review and meta-analysis searched English-language articles in PubMed, Cochrane Library, Web of Science, and Embase databases until January 2024. Studies included focused on patients transitioning between various microcrack subtypes post-discectomy. The primary outcome measure was the transformation between different postoperative microcrack fractions. Results: Eight studies with 689 participants were analyzed. Overall, there is moderate to high-quality evidence indicating differences in the incidence of MC conversion across MC subtypes. The overall incidence of MC conversion was 27.7%, with rates of 37.0%, 20.5%, and 19.1% for MC0, MC1, and MC2 subtypes, respectively. Thus, postoperative MC type transformation, particularly from preoperative MC0 to MC1 (17.7%) or MC2 (13.1%), was more common, with MC1 transformation being predominant. Patients with preoperative comorbid MC1 types (19.0%) exhibited more postoperative transitions than those with MC2 types (12.4%). Conclusion: This study underscores the significance of analyzing post-discectomy MCs in patients with lumbar disc herniation, revealing a higher incidence of MCs post-lumbar discectomy, particularly from preoperative absence of MC to MC1 or MC2. Preoperative MC0 types were more likely to undergo postoperative MC transformation than combined MC1 or MC2 types. These findings are crucial for enhancing surgical outcomes and postoperative care.


Subject(s)
Diskectomy , Intervertebral Disc Displacement , Lumbar Vertebrae , Humans , Intervertebral Disc Displacement/surgery , Intervertebral Disc Displacement/epidemiology , Diskectomy/adverse effects , Lumbar Vertebrae/surgery , Lumbar Vertebrae/pathology , Low Back Pain/etiology , Low Back Pain/epidemiology , Postoperative Complications/etiology , Postoperative Complications/epidemiology , Risk Factors
19.
Article in English | MEDLINE | ID: mdl-39137323

ABSTRACT

Carbonate-based electrolytes show distinct advantages in high-voltage cathodes but generate nonuniform and mechanically fragile solid-electrolyte interphase (SEI) in lithium (Li) metal batteries. Herein, we propose a LiF-rich SEI incorporating an in situ polymerized poly(hexamethylene diisocyanate)-based gel polymer electrolyte (GPE) to improve the homogeneity and mechanical stability of SEI. Fluoroethylene carbonate (FEC) as a fluorine-based additive for building LiF-rich SEI on Li metal electrodes. With this strategy, the assembled Li symmetric batteries cycled stably for 700 h, and the formation of byproducts on the Li electrode surface was significantly inhibited. The Li/LiFePO4 battery delivered significant capacity retention (91% retention after 800 cycles) at 1 C. With high-voltage LiNi0.8Co0.1Mn0.1O2 (NCM811) as cathode, the Li/GPE-FEC/NCM811 cell delivered a discharge capacity of 168.9 mAh g-1 with a capacity retention of 82% after 300 cycles at 0.5 C. From the above, the work could assist the rapid development of high-energy-density rechargeable Li metal batteries toward remarkable performance.

20.
J Diabetes Complications ; 38(10): 108831, 2024 Aug 06.
Article in English | MEDLINE | ID: mdl-39137676

ABSTRACT

AIMS: To compare the time in range (TIR) obtained from self-monitoring of blood glucose (SMBG) with that obtained from continuous glucose monitoring (CGM), and explore the relationship of TIR with microalbuminuria outcome, HOMA-IR and HOMA-ß test. METHODS: We recruited 400 patients with type 2 diabetes to carry out blood glucose monitoring by both SMBG and CGM for 3 consecutive days. TIR, TAR, TBR and other blood glucose variation indices were calculated respectively through the glucose data achieved from SMBG and CGM. The HOMA-IR and HOMA-ß test was evaluated by an oral glucose tolerance test. Urinary microalbumin-to-creatinine ratio completed in the laboratory. RESULTS: The median (25 %, 75 % quartile) of TIRCGM and TIRSMBG were 74.94(44.90, 88.04) and 70.83(46.88, 87.50) respectively, and there was no significant difference, p = 0.489; For every 1 % increase in TIRCGM, the risk of microalbuminuria decreased by 1.6 % (95%CI:0.973, 0.995, p = 0.006) and for every 1 % increase in TIRSMBG, the risk of microalbuminuria decreased by 1.3 % (95%CI:0.975, 0.999, p = 0.033). Stepwise multiple linear regression analysis showed an independent positive correlation between TIR (including TIRCGM and TIRSBMG) and LnDI30 and LnDI120 levels (p = 0.000). CONCLUSIONS: The TIR calculated by SMBG was highly consistent with that reported by CGM and was significantly associated with the risk of microalbuminuria and the HOMA-ß. Higher TIR quartiles were associated with lower incidence of microalbuminuria as well as higher lever of HOMA-ß. For patients with limited CGM application, SMBG-derived TIR may be an alternative to CGM-derived TIR, to assess blood glucose control.

SELECTION OF CITATIONS
SEARCH DETAIL