Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Genomics ; 116(4): 110870, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38821220

ABSTRACT

The pathophysiology of atopic dermatitis (AD) is complex. CD4+ T cells play an essential role in the development of lesions in AD. However, the underlying mechanism remains unclear. In the present study, we investigated the differentially expressed genes (DEGs) between adult AD lesioned and non-lesioned skin using two datasets from the Gene Expression Omnibus (GEO) database. 62 DEGs were shown to be related to cytokine response. Compared to non-lesioned skin, lesioned skin showed immune infiltration with increased numbers of activated natural killer (NK) cells and CD4+ T memory cells (p < 0.01). We then identified 13 hub genes with a strong association with CD4+ T cells using weighted correlation network analysis. Single-cell analysis of AD detected a novel CD4+ T subcluster, CD4+ tissue residency memory cells (TRMs), which were verified through immunohistochemistry (IHC) to be increased in the dermal area of AD. The significant relationship between CD4+ TRM and AD was assessed through further analyses. FOXO1 and SBNO2, two of the 13 hub genes, were characteristically expressed in the CD4+ TRM, but down-regulated in IFN-γ/TNF-α-induced HaCaT cells, as shown using quantitative polymerase chain reaction (qPCR). Moreover, SBNO2 expression was associated with increased Th1 infiltration in AD (p < 0.05). In addition, genes filtered using Mendelian randomization were positively correlated with CD4+ TRM and were highly expressed in IFN-γ/TNF-α-induced HaCaT cells, as determined using qPCR and western blotting. Collectively, our results revealed that the newly identified CD4+ TRM may be involved in the pathogenesis of adult AD.


Subject(s)
CD4-Positive T-Lymphocytes , Dermatitis, Atopic , Single-Cell Analysis , Dermatitis, Atopic/genetics , Dermatitis, Atopic/metabolism , Dermatitis, Atopic/immunology , Dermatitis, Atopic/pathology , Humans , CD4-Positive T-Lymphocytes/metabolism , CD4-Positive T-Lymphocytes/immunology , Adult , Memory T Cells/metabolism , Memory T Cells/immunology , Skin/metabolism , HaCaT Cells , Immunologic Memory , Male , Forkhead Transcription Factors/genetics , Forkhead Transcription Factors/metabolism
2.
Heliyon ; 10(4): e26314, 2024 Feb 29.
Article in English | MEDLINE | ID: mdl-38390048

ABSTRACT

Objective: Low-density lipoprotein receptor (LDL-R) gene polymorphisms have been indicated to be correlated with ischemic cerebrovascular disease including ischemic stroke susceptibility. However, the results from each published study are inconsistent. Methods: All eligible case-control studies that met the search terms were retrieved in PubMed, Embase, Wanfang Med Online and Chinese National Knowledge Infrastructure (CNKI) databases. We identified seven independent case-control studies with a total of 10,355 subjects from Chinese population up to May 2023. Summary odds ratios (ORs) and 95% confidence intervals (CIs) were used to evaluate the susceptibility of ischemic stroke. Results: Meta-analysis results indicated that rs1122608 polymorphism of LDL-R gene significantly decreased ischemic stroke risk under dominant model (OR = 0.69, 95% CI = 0.54-0.87), heterozygote comparison (OR = 0.69, 95% CI = 0.53-0.92) and allele comparison (OR = 0.74, 95% CI = 0.65-0.84) in overall analysis. Furthermore, pooled analysis showed that significant associations were observed between rs688 polymorphism and ischemic stroke risk in heterozygote carriers (OR = 1.71, 95% CI = 1.07-2.71) and dominant model (OR = 1.67, 95% CI = 1.04-2.68) in Chinese population. Conclusions: Our comprehensive meta-analysis on the role of LDL-R gene rs1122608 and rs688 polymorphisms in the risk of ischemic stroke revealed that the rs1122608 polymorphism was associated with a decreased risk, while the rs688 polymorphism was associated with an increased risk of ischemic stroke in Chinese population. Further multicenter studies were needed to confirm the effect on the susceptibility of ischemic stroke.

3.
BMC Med Educ ; 23(1): 557, 2023 Aug 08.
Article in English | MEDLINE | ID: mdl-37553632

ABSTRACT

BACKGROUND: Online education has become increasingly popular, but research on the effectiveness of different teaching models in developing cognitive skills is limited. This study investigated the relationship between different teaching models (online and offline) and the development of cognitive skills in clinical medicine students. METHODS: Survey data were collected from 2018 entry students who participated in online teaching and 2019 entry students in offline teaching at Xiangya School of Medicine, Central South University. National Quality Open Courses (NQROC) were provided to both groups of students. The study examined the total score of physiology final exam, score of each type of question, and NQROC learning engagement in different score segments under the two teaching models. Non-parametric statistical methods were utilized to analyze the total score of physiology final exam, score of each type of question, and the NQROC learning engagement. Spearman's rank correlation was utilized to analyze the relationship between the score of physiology final exam and the students' NQROC learning engagement. RESULTS: The study found no statistically significant difference in the total score, short-answer questions (SAQs) score, and case study questions (CSQs) score between online and offline teaching models. However, the multiple-choice questions (MCQs) score was higher in the online teaching model (Z=-4.249, P < 0.001), suggesting that online teaching may be an effective way to improve lower-order cognitive skills among students. In contrast, low-achieving students had higher total scores (Z=-3.223, P = 0.001) and scores in both MCQs (Z=-6.263, P < 0.001) and CSQs (Z=-6.877, P < 0.001) in the online teaching model. High-achieving students in the online teaching model had higher total scores (Z=-3.001, P = 0.003) and MCQs scores (Z=-5.706, P < 0.001) but lower scores in CSQs (Z=-2.775, P = 0.006). Furthermore, students' NQROC learning engagement was greater in the online teaching model. CONCLUSIONS: The results of this study suggested that online teaching was not statistically significantly different from offline in cognitive domains and was more desirable than offline in strengthening lower-order cognitive skills. However, it was important to note that offline teaching may be more effective in reinforcing higher-order cognitive skills among high-achieving students. In conclusion, this study provided important insights into the effectiveness of different teaching models in developing cognitive skills among medical students and highlighted the potential benefits of online teaching in enhancing students' lower-order cognitive skills.


Subject(s)
Education, Medical, Undergraduate , Students, Medical , Humans , Students, Medical/psychology , Learning , Educational Measurement/methods , Education, Medical, Undergraduate/methods , Cognition
SELECTION OF CITATIONS
SEARCH DETAIL
...