Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 964
Filter
1.
Food Microbiol ; 123: 104591, 2024 Oct.
Article in English | MEDLINE | ID: mdl-39038896

ABSTRACT

Human noroviruses (HuNoVs) are the leading etiological agent causing the worldwide outbreaks of acute epidemic non-bacterial gastroenteritis. Histo-blood group antigens (HBGAs) are commonly acknowledged as cellular receptors or co-receptors for HuNoVs. However, certain genotypes of HuNoVs cannot bind with any HBGAs, suggesting potential additional co-factors and attachment receptors have not been identified yet. In addition, food items, such as oysters and lettuce, play an important role in the transmission of HuNoVs. In the past decade, a couple of attachment factors other than HBGAs have been identified and analyzed from foods and microbiomes. Attachment factors exhibit potential as inhibitors of viral binding to receptors on host cells. Therefore, it is imperative to further characterize the attachment factors for HuNoVs present in foods to effectively control the spread of HuNoVs within the food chain. This review summarizes the potential attachment factors/receptors of HuNoVs in humans, foods, and microbiome.


Subject(s)
Caliciviridae Infections , Gastroenteritis , Norovirus , Virus Attachment , Norovirus/genetics , Norovirus/physiology , Humans , Gastroenteritis/virology , Gastroenteritis/microbiology , Caliciviridae Infections/virology , Receptors, Virus/metabolism , Receptors, Virus/genetics , Animals , Blood Group Antigens/metabolism , Food Microbiology
2.
Heliyon ; 10(12): e32779, 2024 Jun 30.
Article in English | MEDLINE | ID: mdl-38975226

ABSTRACT

Background: Sepsis is a life-threatening condition marked by a severe systemic response to infection, leading to widespread inflammation, cellular signaling disruption, and metabolic dysregulation. The role of lipid and amino acid metabolism in sepsis is not fully understood, but aberrations in this pathway could contribute to the disease's pathophysiology. Methods: To explore the potential of lipid and amino acid compounds as biomarkers for the diagnosis and prognosis of sepsis, a two-sample Mendelian Randomization (MR) study was conducted, examining the relationship between sepsis and 249 serum lipid and amino acid-related markers. Key enzymes involved in synthesis of phosphatidylcholine, including choline/ethanolamine phosphotransferase 1 (CEPT1), choline phosphotransferase 1 (CPT1), and ethanolamine phosphotransferase 1 (EPT1), were also targeted for drug-target Mendelian randomization. Results: The study found that phosphatidylcholines (OR IVW: 0.88, 95%CI: 0.80-0.96, p = 0.005) and phospholipids in medium HDL (OR IVW: 0.86, 95%CI: 0.77-0.96, p = 0.007) potentially exhibit a protective effect against sepsis nominally. However, the potential drug target of CEPT1, CPT1, and EPT1 was found to be unrelated to septic outcomes. Conclusion: Our findings suggest that increasing levels of phosphatidylcholines and medium HDL phospholipids may reduce the incidence of sepsis. This highlights the potential of lipid-based biomarkers in the diagnosis and management of sepsis, opening avenues for new therapeutic strategies.

3.
Arch Dermatol Res ; 316(7): 447, 2024 Jul 03.
Article in English | MEDLINE | ID: mdl-38958761

ABSTRACT

Malignant melanoma presents a formidable challenge due to its aggressive metastatic behavior and limited response to current treatments. To address this, our study delves into the impact of anlotinib on angiogenesis and vasculogenic mimicry using malignant melanoma cells and human umbilical vein endothelial cells. Evaluating tubular structure formation, cell proliferation, migration, invasion, and key signaling molecules in angiogenesis, we demonstrated that anlotinib exerts a dose-dependent inhibition on tubular structures and effectively suppresses cell growth and invasion in both cell types. Furthermore, in a mouse xenograft model, anlotinib treatment resulted in reduced tumor growth and vascular density. Notably, the downregulation of VEGFR-2, FGFR-1, PDGFR-ß, and PI3K underscored the multitargeted antitumor activity of anlotinib. Our findings emphasize the therapeutic potential of anlotinib in targeting angiogenesis and vasculogenic mimicry, contributing to the development of novel strategies for combating malignant melanoma.


Subject(s)
Cell Movement , Cell Proliferation , Human Umbilical Vein Endothelial Cells , Indoles , Melanoma , Neovascularization, Pathologic , Quinolines , Vascular Endothelial Growth Factor Receptor-2 , Xenograft Model Antitumor Assays , Quinolines/pharmacology , Quinolines/therapeutic use , Quinolines/administration & dosage , Humans , Melanoma/drug therapy , Melanoma/pathology , Animals , Neovascularization, Pathologic/drug therapy , Neovascularization, Pathologic/pathology , Indoles/pharmacology , Indoles/therapeutic use , Mice , Cell Proliferation/drug effects , Cell Line, Tumor , Vascular Endothelial Growth Factor Receptor-2/metabolism , Vascular Endothelial Growth Factor Receptor-2/antagonists & inhibitors , Cell Movement/drug effects , Receptor, Fibroblast Growth Factor, Type 1/metabolism , Receptor, Fibroblast Growth Factor, Type 1/antagonists & inhibitors , Skin Neoplasms/drug therapy , Skin Neoplasms/pathology , Signal Transduction/drug effects , Antineoplastic Agents/pharmacology , Antineoplastic Agents/therapeutic use , Angiogenesis Inhibitors/pharmacology , Angiogenesis Inhibitors/administration & dosage , Angiogenesis Inhibitors/therapeutic use , Receptor, Platelet-Derived Growth Factor beta/metabolism , Receptor, Platelet-Derived Growth Factor beta/antagonists & inhibitors , Mice, Nude , Angiogenesis
4.
Mol Cancer ; 23(1): 145, 2024 Jul 16.
Article in English | MEDLINE | ID: mdl-39014366

ABSTRACT

Colorectal cancer (CRC) is one of the most prevalent malignancies affecting the gastrointestinal tract and is ranked third among cancers with the highest incidence and second-highest mortality rate worldwide. CRC exhibits a slow progression providing a wide treatment window. The currently employed CRC screening methods have shown great potential to prevent CRC and reduce CRC-related morbidity and mortality. The diagnosis of CRC is achieved by colonoscopy and tissue biopsy, with studies showing that liquid biopsy is more effective in detecting and diagnosing early CRC patients. Increasing number of studies have shown that the tumor components shed into circulating blood can be detected in liquid form, and can be applied in the clinical management of CRC. Analysis of circulating tumor cells (CTCs), circulating tumor DNA (ctDNA), or tumor-associated platelets (TEPs) in the blood can be used for early screening and diagnosis of CRC, aid tumor staging, treatment response monitoring, and prediction of CRC recurrence and metastasis in a minimally invasive manner. This chapter provides an updated review of CTCs, ctDNA, and TEPs as novel biomarkers for CRC, highlighting their strengths and limitations.


Subject(s)
Biomarkers, Tumor , Circulating Tumor DNA , Colorectal Neoplasms , Neoplastic Cells, Circulating , Humans , Colorectal Neoplasms/diagnosis , Colorectal Neoplasms/pathology , Colorectal Neoplasms/genetics , Liquid Biopsy/methods , Neoplastic Cells, Circulating/pathology , Neoplastic Cells, Circulating/metabolism , Circulating Tumor DNA/blood , Prognosis , Early Detection of Cancer/methods , Disease Management , Animals
5.
World J Gastroenterol ; 30(24): 3076-3085, 2024 Jun 28.
Article in English | MEDLINE | ID: mdl-38983956

ABSTRACT

BACKGROUND: Helicobacter pylori (H. pylori) infection is closely associated with gastrointestinal diseases. Our preliminary studies have indicated that H. pylori infection had a significant impact on the mucosal microbiome structure in patients with gastric ulcer (GU) or duodenal ulcer (DU). AIM: To investigate the contributions of H. pylori infection and the mucosal microbiome to the pathogenesis and progression of ulcerative diseases. METHODS: Patients with H. pylori infection and either GU or DU, and healthy individuals without H. pylori infection were included. Gastric or duodenal mucosal samples was obtained and subjected to metagenomic sequencing. The compositions of the microbial communities and their metabolic functions in the mucosal tissues were analyzed. RESULTS: Compared with that in the healthy individuals, the gastric mucosal microbiota in the H. pylori-positive patients with GU was dominated by H. pylori, with significantly reduced biodiversity. The intergroup differential functions, which were enriched in the H. pylori-positive GU patients, were all derived from H. pylori, particularly those concerning transfer RNA queuosine-modification and the synthesis of demethylmenaquinones or menaquinones. A significant enrichment of the uibE gene was detected in the synthesis pathway. There was no significant difference in microbial diversity between the H. pylori-positive DU patients and healthy controls. CONCLUSION: H. pylori infection significantly alters the gastric microbiota structure, diversity, and biological functions, which may be important contributing factors for GU.


Subject(s)
Duodenal Ulcer , Gastric Mucosa , Gastrointestinal Microbiome , Helicobacter Infections , Helicobacter pylori , Stomach Ulcer , Humans , Helicobacter Infections/microbiology , Helicobacter pylori/isolation & purification , Helicobacter pylori/genetics , Duodenal Ulcer/microbiology , Duodenal Ulcer/diagnosis , Male , Female , Middle Aged , Gastric Mucosa/microbiology , Gastric Mucosa/pathology , Stomach Ulcer/microbiology , Adult , Case-Control Studies , Aged , Metagenomics/methods , Duodenum/microbiology , Dysbiosis/microbiology
6.
Rev Esp Enferm Dig ; 2024 Jul 11.
Article in English | MEDLINE | ID: mdl-38989868

ABSTRACT

A 60-years-old man with previous hypertension was hospitalized because of colonoscopy revealed a cecal submucosal mass for community health examination 1 month ago. The patient has no symptoms such as poor appetite, fatigue, abdominal pain, diarrhea, nausea and vomiting. Laboratory tests and physical examination was unremarkable. A protrusion with multiple superficial small ulcers on the smooth surface measuring 1.5 × 2.0-cm was found beside the appendiceal orifice by colonoscopy. Abdominal computed tomography demonstrated a high-density mass without enhancement protruding towards the ileocecal cavity at the appendiceal orifice measured 1.5 × 1.8 cm. Laparoscopic ileocecal resection was performed because of appendiceal tumor couldn't be excluded and the patient's strong request. Pathology examination of the postoperative specimen revealed dilated appendix cavity with fecalith inside in the submucosal layer of the ileocecal region. The patient was diagnosed as appendiceal orifice submucosal fecalith. He was discharged home uneventfully and no symptoms was observed in 3 months follow-up.

7.
Patient Educ Couns ; 127: 108365, 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38991460

ABSTRACT

OBJECTIVE: While there are various health literacy scales that exist, none of health literacy scale suitable for pregnant women with gestational diabetes mellitus (GDM). To address this gap, this study aimed to develop GDM health literacy scale and evaluate its psychometric properties. METHODS: Based on the Delphi expert consultation, we developed the initial GDM health literacy scale. Item analysis was taken using a sample (n = 299) recruited in China to form formal scale. Additional participants (n = 395) completed survey to assess the internal consistency reliability, test-retest reliability, content validity, construct validity and criterion correlation validity of scale. RESULTS: The scale performed well in terms of internal consistency reliability, content validity, construct validity and criterion correlation validity. Test-retest reliability indicated that the instrument was effective at measuring health literacy of GDM over time. CONCLUSION: The scale is a reliable and valid measure of six domains of health literacy for GDM. PRACTICE IMPLICATIONS: The scale can be used to effectively evaluate the level of health literacy of pregnant women with GDM. The information can provide targeted health support for pregnant women with GDM to improve their health literacy and self-management ability.

8.
Adv Mater ; : e2407875, 2024 Jul 25.
Article in English | MEDLINE | ID: mdl-39049679

ABSTRACT

Unlike traditional photoluminescence (PL), mechanoluminescence (ML) achieved under mechanical excitation demonstrates unique characteristics such as high penetrability, spatial resolution, and signal-to-background ratio (SBR) for bioimaging applications. However, bioimaging with organic mechanoluminescent materials remains challenging because of the shallow penetration depth of ML with short emission wavelengths and the absence of a suitable mechanical force to generate ML in vivo. To resolve these issues, the present paper reports the achievement of ultrasound (US)-excited fluorescence and phosphorescence from purely organic luminogens for the first time with emission wavelengths extending to the red/NIR region, with the penetrability of the US-excited emission being considerably higher than that of PL. Consequently, US-excited subcutaneous phosphorescence imaging can be achieved using a mechanoluminescent-luminogen-based capsule device with a quantified intensity of 9.15 ± 1.32 × 104 p s-1 cm-2 sr-1 and an SBR of 24. Moreover, the US-excited emission can be adequately tuned using the packing modes of the conjugated skeletons, dipole orientation of mechanoluminescent luminogens, and strength and direction of intermolecular interactions. Overall, this study innovatively expands the kind of excitation sources and the emission wavelengths of organic mechanoluminescent materials, paving the way for practical biological applications based on US-excited emission.

9.
Phys Med Biol ; 2024 Jul 25.
Article in English | MEDLINE | ID: mdl-39053510

ABSTRACT

Objective. To enable the registration network to be trained only once, achieving fast regularization hyperparameter selection during the inference phase, and to improve registration accuracy and deformation field regularity.Approach. Hyperparameter tuning is an essential process for deep learning deformable image registration (DLDIR). Most DLDIR methods usually perform a large number of independent experiments to select the appropriate regularization hyperparameters, which are time-consuming and resource-consuming. To address this issue, we propose a novel dynamic hyperparameter block, which comprises a distributed mapping network, dynamic convolution, attention feature extraction layer, and instance normalization layer. The dynamic hyperparameter block encodes the input feature vectors and regularization hyperparameters into learnable feature variables and dynamic convolution parameters which changes the feature statistics of the high-dimensional features layer feature variables, respectively. In addition, the proposed method replaced the single-level structure residual blocks in LapIRN with a hierarchical multi-level architecture for the dynamic hyperparameter block in order to improve registration performance.Main results. On the OASIS dataset, the proposed method reduced the percentage of the negative Jacobian determinant by 28.01%, 9.78% and improved Dice similarity coefficient by 1.17%, 1.17%, compared with LapIRN and CIR, respectively. On the DIR-Lab dataset, the proposed method reduced the percentage of the negative Jacobian determinant by 10.00%, 5.70% and reduced target registration error by 10.84%, 10.05%, compared with LapIRN and CIR, respectively.Significance. The proposed method can fast achieve the corresponding registration deformation field for arbitrary hyperparameter value during the inference phase. Extensive experiments demonstrate that the proposed method reduces training time compared to DLDIR with fixed regularization hyperparameters while outperforming the state-of-the-art registration methods concerning registration accuracy and deformation smoothness on brain dataset OASIS and lung dataset DIR-Lab.

10.
Biochim Biophys Acta Mol Basis Dis ; : 167355, 2024 Jul 13.
Article in English | MEDLINE | ID: mdl-39009172

ABSTRACT

BACKGROUND: HOIP is the catalytic subunit of the E3 ligase complex (linear ubiquitin chain assembly complex), which is able to generate linear ubiquitin chains. However, the role of rare HOIP functionally deficient variants remains unclear. The pathogenic mechanism and the relationship with immune deficiency phenotypes remain to be clarified. METHODS: Based on a next-generation sequencing panel of 270 genes, we identified a HOIP deletion variant that causes common variable immunodeficiency disease. Bioinformatics analysis and cell-based experiments were performed to study the molecular mechanism by which the variant causes immunodeficiency diseases. FINDINGS: A homozygous loss-of-function variant in HOIP was identified. The variant causes a frameshift and generates a premature termination codon in messenger RNA, resulting in a C-terminal truncated HOIP mutant, that is, the loss of the linear ubiquitin chain-specific catalytic domain. The truncated HOIP mutant has impaired E3 ligase function in linear ubiquitination, leading to the suppression of canonical NF-κB signalling and increased TNF-induced multiple forms of cell death. INTERPRETATION: The loss-of-function HOIP variant accounts for the immune deficiencies. The canonical NF-κB pathway and cell death are involved in the pathogenesis of the disease. FUNDING: This study was funded by the National Natural Science Foundation of China (No. 82270444 and 81501851). RESEARCH IN CONTEXT: Evidence before this study LUBAC is the only known linear ubiquitin chain assembly complex for which HOIP is an essential catalytic subunit. Three HOIP variants have now been identified in two immunodeficient patients and functionally characterised. However, there have been no reports on the pathogenicity of only catalytic domain deletion variants in humans, or the pathogenic mechanisms of catalytic domain deletion variants. Added value of this study We report the first case of an autosomal recessive homozygous deletion variant that results in deletion of the HOIP catalytic structural domain. We demonstrate that this variant is a loss-of-function variant using a heterologous expression system. The variant has impaired E3 ligase function. It can still bind to other subunits of LUBAC, but it fails to generate linear ubiquitin chains. We also explored the underlying mechanisms by which this variant leads to immunodeficiency. The variant attenuates the canonical NF-κB and MAPK signalling cascades and increases the sensitivity of TNFα-induced diverse cell death and activation of mitochondrial apoptosis pathways. These findings provide support for the treatment and drug development of patients with inborn errors of immunity in HOIP and related signalling pathways. Implications of all the available evidence First, this study expands the HOIP pathogenic variant database and phenotypic spectrum. Furthermore, studies on the biological functions of pathogenic variants in relation to the NF-κB signalling pathway and cell death provided new understanding into the genetic basis and pathogenesis of HOIP-deficient immune disease, indicating the necessity of HOIP and related signalling pathway variants as diagnostic targets in patients with similar genetic deficiency phenotypes..

11.
Am J Transl Res ; 16(6): 2445-2452, 2024.
Article in English | MEDLINE | ID: mdl-39006251

ABSTRACT

OBJECTIVE: To explore the application effect of head-mounted virtual reality display immersive experience in improving the perioperative satisfaction of patients undergoing great saphenous vein surgery. METHODS: A total of 158 patients undergoing saphenous vein surgery at the First Affiliated Hospital, Jiangxi Medical College, Nanchang University from January 2020 to January 2023 were randomly divided into an observation group and a control group in a 1:1 ratio, with 79 cases in each group. The observation group received head-mounted display virtual reality immersive experience, whereas the control group received midazolam. The study compared the perioperative satisfaction, changes in preoperative and postoperative anxiety and depression scores, intraoperative blood pressure and heart rate, postoperative visual analog scale (VAS) score, and the incidence of postoperative nausea and vomiting between the two groups. Additionally, the satisfaction of patients, anesthesiologists, and chief surgeons was compared. RESULTS: All surgeries were completed successfully. Patients in the observation group exhibited higher perioperative satisfaction compared to those in the control group (P<0.001). There were no significant differences in anxiety or depression scores between the two groups before surgery (P>0.05). However, both groups showed a reduction in anxiety and depression scores postoperatively, with the observation group demonstrating lower scores than the control group (both P<0.05). The observation group also had lower intraoperative blood pressure, heart rate, postoperative VAS scores, and incidence of nausea and vomiting compared to the control group (all P<0.05). Furthermore, the satisfaction levels of the anesthesiologists and chief surgeons were higher in the observation group than in the control group (P=0.043, 0.012). CONCLUSION: Head-mounted display virtual reality immersive experience can enhance perioperative satisfaction among patients undergoing great saphenous vein surgery, reduce anxiety and depression scores, and contribute to the stabilization of hemodynamics during surgery, thereby decreasing postoperative nausea and vomiting.

12.
Langmuir ; 40(28): 14717-14723, 2024 Jul 16.
Article in English | MEDLINE | ID: mdl-38959333

ABSTRACT

Surface enhanced Raman spectroscopy (SERS) is a highly sensitive analytical detection method commonly employed in biochemical and environmental analysis. Nevertheless, the rapid movement of analytes and interfering components in flow systems can impact the real-time, online detection capability of Raman spectroscopy. To address this issue, we developed an innovative approach utilizing covalent organic framework (COF), a robust porous material with excellent water stability, to coat the surface of Ag nanowire (AgNW) for synthesizing AgNW@COF hybrid. The regular pores of the COF serve to effectively eliminate large interfering molecules while facilitating the efficient transport of specific analytes to SERS hot spots. Additionally, the fluid flow-induced scouring effect aids in excluding interfering molecules from the surface of AgNW. By incorporating AgNW@COF into a bifunctional filter membrane with simultaneous filtration and sensing capabilities, we had achieved efficient purification of organic pollutants as well as real-time identification of pollutant species and concentration.

13.
J Hazard Mater ; 476: 135029, 2024 Jun 28.
Article in English | MEDLINE | ID: mdl-38959830

ABSTRACT

Co-combustion of industrial and municipal solid wastes has emerged as the most promising disposal technology, yet its effect on unknown contaminants generation remains rarely revealed due to waste complexity. Hence, six batches of large-scale engineering experiments were designed in an incinerator of 650 t/d, which overcame the inauthenticity and deviation of laboratory tests. 953-1772 non-targeted compounds were screened in fly ash. Targeting the impact of co-combustion, a pseudo-component matrix model was innovatively integrated to quantitatively extract nine components from complex wastes grouped into biomass and plastic. Thus, the influence was evaluated across eight dimensions, covering molecular characteristics and toxicity. The effect of co-combustion with biomass pseudo-components was insignificant. However, co-combustion with high ratios of plastic pseudo-components induced higher potential risks, significantly promoting the formation of unsaturated hydrocarbons, highly unsaturated compounds (DBE≥15), and cyclic compounds by 19 %- 49 %, 17 %- 31 %, and 7 %- 27 %, respectively. Especially, blending with high ratios of PET plastic pseudo-components produced more species of contaminants. Unique 2 Level I toxicants, bromomethyl benzene and benzofuran-2-carbaldehyde, as well as 4 Level II toxicants, were locked, receiving no concern in previous combustion. The results highlighted risks during high proportion plastics co-combustion, which can help pollution reduction by tuning source wastes to enable healthy co-combustion.

14.
Ecotoxicol Environ Saf ; 281: 116615, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38905933

ABSTRACT

BACKGROUND: Paraquat (PQ) is a widely used herbicide that poisons human by accident or intentional ingestion. PQ poisoning causes systemic inflammatory response syndrome (SIRS) resulting in acute lung injury (ALI) with an extremely high mortality rate. Blood trematode Schistosoma japonicum-produced cystatin (Sj-Cys) is a strong immunomodulatory protein that has been experimentally used to treat inflammation related diseases. In this study, Sj-Cys recombinant protein (rSj-Cys) was used to treat PQ-induced lung injury and the immunological mechanism underlying the therapeutic effect was investigated. METHODS: PQ-induced acute lung injury mouse model was established by intraperitoneally injection of 20 mg/kg of paraquat. The poisoned mice were treated with rSj-Cys and the survival rate was observed up to 7 days compared with the group without treatment. The pathological changes of PQ-induced lung injury were observed by examining the histochemical sections of affected lung tissue and the wet to dry ratio of lung as a parameter for inflammation and edema. The levels of the inflammation related cytokines IL-6 and TNF-α and regulatory cytokines IL-10 and TGF-ß were measured in sera and in affected lung tissue using ELISA and their mRNA levels in lung tissue using RT-PCR. The macrophages expressing iNOS were determined as M1 and those expressing Arg-1 as M2 macrophages. The effect of rSj-Cys on the transformation of inflammatory M1 to regulatory M2 macrophages was measured in affected lung tissue in vivo (EKISA and RT-PCR) and in MH-S cell line in vitro (flow cytometry). The expression levels of TLR2 and MyD88 in affected lung tissue were also measured to determine their role in the therapy of rSj-Cys on PQ-induced lung injury. RESULT: We identified that treatment with rSj-Cys significantly improved the survival rate of mice with PQ-induced lung injury from 30 % (untreated) to 80 %, reduced the pathological damage of poisoning lung tissue, associated with significantly reduced levels of proinflammatory cytokines (IL-6 from 1490 to 590 pg/ml, TNF-α from 260 to 150 pg/ml) and increased regulatory cytokines (IL-10 from360 to 550 pg/ml, and TGF-ß from 220 to 410 pg/ml) in both sera (proteins) and affected lung tissue (proteins and mRNAs). The polarization of macrophages from M1to M2 type was found to be involved in the therapeutic effect of rSj-Cys on the PQ-induced acute lung injury, possibly through inhibiting TLR2/MyD88 signaling pathway. CONCLUSIONS: Our study demonstrated the therapeutic effect of rSj-Cys on PQ poisoning caused acute lung injury by inducing M2 macrophage polarization through inhibiting TLR2/MyD88 signaling pathway. The finding in this study provides an alternative approach for the treatment of PQ poisoning and other inflammatory diseases.


Subject(s)
Acute Lung Injury , Cystatins , Paraquat , Schistosoma japonicum , Animals , Paraquat/toxicity , Acute Lung Injury/chemically induced , Acute Lung Injury/pathology , Acute Lung Injury/drug therapy , Mice , Herbicides/toxicity , Macrophages/drug effects , Lung/pathology , Lung/drug effects , Male , Cytokines/metabolism , Disease Models, Animal
15.
Acta Pharmacol Sin ; 2024 Jun 28.
Article in English | MEDLINE | ID: mdl-38942954

ABSTRACT

C/EBP homologous protein (CHOP) triggers the death of multiple cancers via endoplasmic reticulum (ER) stress. However, the function and regulatory mechanism of CHOP in liver cancer remain elusive. We have reported that late endosomal/lysosomal adapter, mitogen-activated protein kinase and mTOR activator 5 (LAMTOR5) suppresses apoptosis in various cancers. Here, we show that the transcriptional and posttranscriptional inactivation of CHOP mediated by LAMTOR5 accelerates liver cancer growth. Clinical bioinformatic analysis revealed that the expression of CHOP was low in liver cancer tissues and that its increased expression predicted a good prognosis. Elevated CHOP contributed to destruction of LAMTOR5-induced apoptotic suppression and proliferation. Mechanistically, LAMTOR5-recruited DNA methyltransferase 1 (DNMT1) to the CpG3 region (-559/-429) of the CHOP promoter and potentiated its hypermethylation to block its interaction with general transcription factor IIi (TFII-I), resulting in its inactivation. Moreover, LAMTOR5-enhanced miR-182/miR-769 reduced CHOP expression by targeting its 3'UTR. Notably, lenvatinib, a first-line targeted therapy for liver cancer, could target the LAMTOR5/CHOP axis to prevent liver cancer progression. Accordingly, LAMTOR5-mediated silencing of CHOP via the regulation of ER stress-related apoptosis promotes liver cancer growth, providing a theoretical basis for the use of lenvatinib for the treatment of liver cancer.

16.
Entropy (Basel) ; 26(6)2024 May 21.
Article in English | MEDLINE | ID: mdl-38920444

ABSTRACT

High-temperature creep refers to the slow and continuous plastic deformation of materials under the effects of high temperatures and mechanical stress over extended periods, which can lead to the degradation or even failure of the components' functionality. AlxCr0.2NbTiV (x = 0.2, 0.5, or 0.8) refractory high-entropy alloys were fabricated by arc melting. The effects of Al content on the microstructure of AlxCr0.2NbTiV alloys were studied using X-ray diffraction, scanning electron microscopy, and electron backscatter diffraction. The microhardness, compression properties, and nanoindentation creep properties of AlxCr0.2NbTiV alloys were also tested. The results show that the AlxCr0.2NbTiV series exhibits a BCC single-phase structure. As the Al content increases, the lattice constant of the alloys gradually decreases, and the intensity of the (110) crystal plane diffraction peak increases. Adding aluminum enhances the effect of solution strengthening; however, due to grain coarsening, the microhardness and room temperature compressive strength of the alloy are only slightly improved. Additionally, because the effect of solution strengthening is diminished at high temperatures, the compressive strength of the alloy at 1000 °C is significantly reduced. The creep mechanism of the alloys is predominantly governed by dislocation creep. Moreover, increasing the Al content helps to reduce the sensitivity of the alloy to the loading rate during the creep process. At a loading rate of 2.5 mN/s, the Al0.8Cr0.2NbTiV alloy exhibits the lowest creep strain rate sensitivity index (m), which is 0.0758.

18.
Food Chem ; 457: 140136, 2024 Jun 17.
Article in English | MEDLINE | ID: mdl-38936129

ABSTRACT

Excessive dietary salt intake leads to health issues, while reducing NaCl content compromises flavor. Therefore, identifying methods to decrease salt levels without sacrificing flavor is crucial. This study investigated the sensory interaction between the saltiness of NaCl and the pungency of Litsea oleoresin. Glyceryl monostearate (6.6%) and soy lecithin (4.4%) were used as gelling agents to create oleogels, which were then employed to immobilize NaCl nanocrystals, optimizing sensory interactions. NaCl nanocrystals (427.73 ± 61.98 nm) were encapsulated in a Litsea oleoresin-sunflower seed oleogel system with uniform distribution. Sensory evaluation indicated that the NaCl nanocrystal/Litsea oleoresin@oleogel system, with moderate pungency, significantly enhanced perceived saltiness intensity (29.00 ± 1.14, compared to the control, 18.48 ± 1.12) (P < 0.05). When applied to potato chips, this system noticeably increased saltiness perception. This research provides a promising approach for developing low-sodium yet flavorful foods.

19.
Int Urogynecol J ; 2024 Jun 20.
Article in English | MEDLINE | ID: mdl-38900163

ABSTRACT

INTRODUCTION AND HYPOTHESIS: Identifying the factors influencing the development of female urinary incontinence (UI) may facilitate early intervention, potentially delaying its progression. This study was aimed at investigating the impact of lifestyle habits on the severity of UI among women in East China. METHODS: This study included 414 women from six communities in East China who reported symptoms of UI and was conducted between September and December 2020. Data were collected using a general information questionnaire, the Toileting Behaviours: Women's Elimination Behaviours scale, and the International Consultation on Incontinence Questionnaire Urinary Incontinence Short Form Chinese Version. Participants were categorised into two groups: those with mild UI and those with moderate-to-severe UI. Propensity-score matching was performed to balance confounding factors, and logistic regression was used to explore the relationship between lifestyle behaviours and UI severity. RESULTS: A total of 117 pairs were successfully matched. Logistic regression analysis revealed that daily perineal cleaning significantly protected against moderate-to-severe UI (p < 0.05). Conversely, living alone, poor sleep quality and hovering over the toilet while voiding were identified as independent risk factors for moderate-to-severe UI (p < 0.05). CONCLUSION: Several lifestyle habits significantly impact the severity of UI among adult women. Screening for mild urinary leakage symptoms and implementing timely interventions are crucial for preventing the aggravation of UI and improving ability to work and quality of life.

20.
Sci Total Environ ; 940: 173663, 2024 Aug 25.
Article in English | MEDLINE | ID: mdl-38823714

ABSTRACT

In a mixed forest, certain plants can release allelochemicals that exert allelopathic effects on neighboring plants, thereby facilitating interspecific coexistence of two species. Previous studies have demonstrated that allelochemicals released from Ficus carica Linn. roots in mixed forest of F. carica and Taxus cuspidata Sieb. et Zucc. has phase characteristics over time, which can improve the soil physicochemical properties, enzyme activity and microbial diversity, thus promoting the growth of T. cuspidata. Based on the irrigation of exogenous allelochemicals, changes in soil fertility (soil physical and chemical properties, soil enzyme activity and soil microelement content) were observed in response to variations in allelochemicals during five phases of irrigation: initial disturbance phase (0-2 d), physiological compensation phase (2-8 d), screening phase (8-16 d), restore phase (16-32 d) and maturity phase (32-64 d), which was consistent with the response of soil microorganisms. The allelopathic response of growth physiological indexes of T. cuspidata, however, exhibited a slight lag behind the soil fertility, with distinct phase characteristics becoming evident on the 4th day following irrigation of allelochemicals. The findings demonstrated that the allelochemicals released by the root of F. carica induced a synergistic effect on soil fertility and microorganisms, thereby facilitating the growth of T. cuspidata. This study provides a comprehensive elucidation of the phased dynamic response-based allelopathic mechanism employed by F. carica to enhance the growth of T. cuspidata, thus establishing a theoretical basis for optimizing forest cultivation through allelopathic pathways.


Subject(s)
Ficus , Pheromones , Plant Roots , Taxus , Taxus/physiology , Allelopathy , Soil/chemistry , Soil Microbiology , Plant Exudates
SELECTION OF CITATIONS
SEARCH DETAIL