Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 1.280
Filter
1.
PLoS One ; 19(8): e0308369, 2024.
Article in English | MEDLINE | ID: mdl-39116119

ABSTRACT

Ten SSR markers based on transcriptome sequencing were employed to genotype 231 samples of G. littoralis subsp. littoralis (Apiaceae) from nine cultivated populations and seven wild populations, aiming to assess the genetic diversity and genetic structure, and elucidate the origin of the cultivated populations. Cultivated populations exhibited relatively high genetic diversity (h = 0.441, I = 0.877), slightly lower than that of their wild counterparts (h = 0.491, I = 0.930), likely due to recent domestication and ongoing gene flow between wild and cultivated germplasm. The primary cultivated population in Shandong have the crucial genetic status. A single origin of domestication was inferred through multiple analysis, and wild populations from Liaoning and Shandong are inferred to be potentially the ancestor source for the present cultivated populations. Phenotypic analysis revealed a relatively high heritability of root length across three growth periods (0.683, 0.284, 0.402), with significant correlations observed between root length and petiole length (Pearson correlation coefficient = 0.30, P<0.05), as well as between root diameter and leaf area (Pearson correlation coefficient = 0.36, P<0.01). These parameters can serve as valuable indicators for monitoring the developmental progress of medicinal plants during field management. In summary, this study can shed light on the intricate genetic landscape of G. littoralis subsp. littoralis, providing foundational insights crucial for conservation strategies, targeted breeding initiatives, and sustainable management practices in both agricultural and natural habitats.


Subject(s)
Apiaceae , Genetic Variation , Microsatellite Repeats , Phenotype , Plants, Medicinal , Plants, Medicinal/genetics , Plants, Medicinal/growth & development , Microsatellite Repeats/genetics , Apiaceae/genetics , Apiaceae/growth & development , Genotype
2.
Small ; : e2405573, 2024 Aug 06.
Article in English | MEDLINE | ID: mdl-39104295

ABSTRACT

Volatile solid additives have emerged as a promising strategy for enhancing film morphology and promoting the power conversion efficiency (PCE) of organic solar cells (OSCs). Herein, a series of novel polycyclic aromatic additives with analogous chemical structures, including fluorene (FL), dibenzothiophene (DBT), and dibenzofuran (DBF) derived from crude oils, are presented and incorporated into OSCs. All these additives exhibit strong interactions with the electron-deficient terminal groups of L8-BO within the bulk-heterojunction OSCs. Moreover, they demonstrate significant sublimation during thermal annealing, leading to increase free volumes for the rearrangement and recrystallization of L8-BO. This phenomenon leads to an improved film morphology and an elevated glass-transition temperature of the photoactive layers. Consequently, the PCE of the PM6:L8-BO blend has been boosted from 16.60% to 18.60% with 40 wt% DBF additives, with a champion PCE of 19.11% achieved for ternary PM6:L8-BO:BTP-eC9 OSCs. Furthermore, the prolonged shelf and thermal stability have been observed in OSCs with these additives. This study emphasizes the synergic effect of volatile solid additives on the performance and thermal stability of OSCs, highlighting their potential for advancing the field of photovoltaics.

3.
Research (Wash D C) ; 7: 0452, 2024.
Article in English | MEDLINE | ID: mdl-39171118

ABSTRACT

Real-time thermal sensing through flexible temperature sensors in extreme environments is critically essential for precisely monitoring chemical reactions, propellant combustions, and metallurgy processes. However, despite their low response speed, most existing thermal sensors and related sensing materials will degrade or even lose their sensing performances at either high or low temperatures. Achieving a microsecond response time over an ultrawide temperature range remains challenging. Here, we design a flexible temperature sensor that employs ultrathin and consecutive Mo1-x W x S2 alloy films constructed via inkjet printing and a thermal annealing strategy. The sensing elements exhibit a broad work range (20 to 823 K on polyimide and 1,073 K on flexible mica) and a record-low response time (about 30 µs). These properties enable the sensors to detect instantaneous temperature variations induced by contact with liquid nitrogen, water droplets, and flames. Furthermore, a thermal sensing array offers the spatial mapping of arbitrary shapes, heat conduction, and cold traces even under bending deformation. This approach paves the way for designing unique sensitive materials and flexible sensors for transient sensing under harsh conditions.

4.
Cell Rep Med ; 5(8): 101690, 2024 Aug 20.
Article in English | MEDLINE | ID: mdl-39168099

ABSTRACT

Hyperuricemic nephropathy (HN) is a global metabolic disorder characterized by uric acid (UA) metabolism dysfunction, resulting in hyperuricemia (HUA) and tubulointerstitial fibrosis (TIF). Sodium-dependent glucose transporter 2 inhibitor, dapagliflozin, has shown potential in reducing serum UA levels in patients with chronic kidney disease (CKD), though its protective effects against HN remain uncertain. This study investigates the functional, pathological, and molecular changes in HN through histological, biochemical, and transcriptomic analyses in patients, HN mice, and UA-stimulated HK-2 cells. Findings indicate UA-induced tubular dysfunction and fibrotic activation, which dapagliflozin significantly mitigates. Transcriptomic analysis identifies estrogen-related receptor α (ERRα), a downregulated transcription factor in HN. ERRα knockin mice and ERRα-overexpressed HK-2 cells demonstrate UA resistance, while ERRα inhibition exacerbates UA effects. Dapagliflozin targets ERRα, activating the ERRα-organic anion transporter 1 (OAT1) axis to enhance UA excretion and reduce TIF. Furthermore, dapagliflozin ameliorates renal fibrosis in non-HN CKD models, underscoring the therapeutic significance of the ERRα-OAT1 axis in HN and CKD.


Subject(s)
Benzhydryl Compounds , Fibrosis , Glucosides , Hyperuricemia , Sodium-Glucose Transporter 2 Inhibitors , Animals , Glucosides/pharmacology , Glucosides/therapeutic use , Benzhydryl Compounds/pharmacology , Fibrosis/drug therapy , Sodium-Glucose Transporter 2 Inhibitors/pharmacology , Hyperuricemia/drug therapy , Hyperuricemia/complications , Humans , Mice , Male , ERRalpha Estrogen-Related Receptor , Kidney Diseases/drug therapy , Kidney Diseases/pathology , Kidney Diseases/metabolism , Kidney/pathology , Kidney/drug effects , Kidney/metabolism , Mice, Inbred C57BL , Uric Acid/blood , Receptors, Estrogen/metabolism , Organic Anion Transport Protein 1/metabolism , Organic Anion Transport Protein 1/genetics , Cell Line , Renal Insufficiency, Chronic/drug therapy , Renal Insufficiency, Chronic/pathology , Disease Models, Animal , Female
5.
J Med Biochem ; 43(4): 334-349, 2024 Jun 15.
Article in English | MEDLINE | ID: mdl-39139159

ABSTRACT

Background: The aim of this study was to explore the association between lactate/albumin ratio and the prognosis of sepsis patients. Methods: A computerized search was performed in Pubmed, EMbase, Ovid, Medline, and Google Scholar to collate relevant studies. The results were compared using standardized mean differences (SMD)/odds ratio (OR) and 95% confidence intervals (CI). Prospective and retrospective cohort studies were both included in this study.

6.
Sci Rep ; 14(1): 19194, 2024 08 19.
Article in English | MEDLINE | ID: mdl-39160287

ABSTRACT

Rheum pumilum stands as both a quintessential alpine plant and a significant traditional Chinese and Tibetan medicinal herb. Unraveling the molecular intricacies of seed germination in Rh. pumilum not only unveils the genetic foundations of plant seed germination strategies in high-altitude environments but also offers insights for cultivating Rh. pumilum medicinal materials. Employing transcriptome sequencing and the Weighted Gene Co-expression Network Analysis, this study delved into the shifts in gene expression levels across various stages of seed germination in Rh. pumilum. The process of seed germination in Rh. pumilum entails a cascade of complex physiological events. Six hormones (ABA, IAA, ETH, GA, BR, CK) emerged as pivotal players in seeds breaking in shells and the facilitation of rapid seed germination in Rh. pumilum. Fourteen transcription factor families (LOB, GRAS, B3, bHLH, bZIP, EIL, MYB, MYB related, NAC, TCP, WRKY, HSF, PLATZ, and SBP) along with four key genes (E2.4.1.13, EIN3, BZR, and BIN2) were identified that may be associated with both biotic and abiotic environmental stress. The ETR, ACACA and ATPeV0C genes were linked with energy accumulation during the initial stages of seed germination, CYP707A may play an important role in breaking seed dormancy, while the BRI1 gene may be correlated with swift seed germination. Additionally, several unidentified genes were recognized to play key roles in seed germination of Rh. pumilum, warranting further investigation. Moreover, Rh. pumilum demonstrates full activation of crucial physiological functions such as energy metabolism, signal transduction, and responses to biological and abiotic stresses during the seed breaking in shells. This study provides molecular evidence elucidating the swift seed germination strategies adopted by alpine plants to thrive in high-altitude environments. Furthermore, it serves as a foundational reference for enhancing seed germination rates and breeding practices to promote the sustainable development of Rh. pumilum medicinal materials.


Subject(s)
Gene Expression Profiling , Gene Expression Regulation, Plant , Germination , Rheum , Seeds , Germination/genetics , Rheum/genetics , Seeds/genetics , Seeds/growth & development , Gene Expression Profiling/methods , Transcriptome , Plant Growth Regulators/metabolism , Plant Proteins/genetics , Plant Proteins/metabolism , Transcription Factors/genetics , Transcription Factors/metabolism
7.
Adv Mater ; : e2409212, 2024 Aug 28.
Article in English | MEDLINE | ID: mdl-39194393

ABSTRACT

Single-component organic solar cells based on double cable polymers have achieved remarkable performance, with DCPY2 reaching a high efficiency of over 13%. In this study, DCPY2 is further optimized with an efficiency of 13.85%, maintaining a high fill factor (FF) without compromising the short circuit current. Despite its intermixed morphology, DCPY2 shows a reduced recombination rate compared to their binary counterpart (PBDB-T:Y-O6). This slower recombination in DCPY2 is attributed to the reduced wavefunction overlap of delocalized charges, achieved by spatially separating the donor and acceptor units with an alkyl linker, thereby restricting the recombination pathways. Adding 1,8-diiodooctane (DIO) into DCPY2 further reduced the recombination rate by facilitating acceptor aggregation, allowing free charges to become more delocalized. The DIO-assisted aggregation in DCPY2 (5% DIO) is evidenced by an increased pseudo-pure domain size of Y-O6. Fine molecular control at the donor/acceptor interface in the double-cable polymer achieves reduced non-geminate recombination under efficient charge generation, increased mobility, and charge carrier lifetime, thereby achieving superior performance. Nevertheless, the FF is still limited by relatively low mobility compared to the blend, suggesting the potential for further mobility improvement through enhanced higher-dimensional packing of the double-cable material.

8.
J Agric Food Chem ; 2024 Aug 28.
Article in English | MEDLINE | ID: mdl-39196852

ABSTRACT

Vanillin (VAN) is a common flavoring agent that can cause liver damage when ingested in large amounts. Nevertheless, the precise processes responsible for its toxicity remain obscure. The present research aimed to examine the metabolic activation of VAN and establish a potential correlation between its reactive metabolites and its cytotoxicity. In rat liver microsomes incubated with VAN, reduced glutathione/N-acetylcysteine (GSH/NAC), and nicotinamide adenine dinucleotide phosphate (NADPH), two conjugates formed from GSH and one conjugate derived from NAC were identified. We also discovered one GSH conjugate in both the bile obtained from rats and the rat primary hepatocytes that were subjected to VAN exposure. Additionally, the NAC conjugate exerted in the urine of VAN-treated rats was observed. These results indicate that a quinone intermediate was produced from VAN both in vitro and in vivo. Next, we identified CYP3A as the main enzyme that initiated the bioactive pathway of VAN. After the activity of CYP3A was selectively inhibited by ketoconazole (KTZ), the generation of the GSH conjugate declined in hepatocytes exposed to VAN. Furthermore, the vulnerability to VAN-induced toxicity was alleviated by KTZ in hepatocytes. Thus, we propose that the cytotoxicity of VAN may derive from metabolic activation triggered by CYP3A.

9.
Adv Mater ; : e2405405, 2024 Jul 26.
Article in English | MEDLINE | ID: mdl-39054938

ABSTRACT

The flexible pressure sensors with a broad pressure range and unsaturated sensitivity are highly desired in practical applications. However, pressure sensors by piezoresistive effect are always limited by the compressibility of sensing layers, resulting in a theoretically decreasing sensitivity of less than 100%. Here, a unique strategy is proposed that utilizes the strain effect, simultaneously achieving a trade-off between a wider pressure detection range and unsaturated sensitivity. Ascribed to the strain effect of sensing layers induced by interlaced microdomes, the sensors possess an increased sensitivity (5.22-70 MPa-1) over an ultrawide pressure range (45 Pa-4.1 MPa), a high-pressure resolution (5 Pa), fast response/recovery time (30/45 ms), and a robust response under a high-pressure loading of 3.5 MPa for more than 5000 cycles. These superior sensing performances allow the sensor to monitor large pressure. The flexible pressure sensor array can assist doctors in restoring the neutral mechanical axis, tracking knee flexion angles, and extracting gait features. Moreover, the flexible sensing array can be integrated into the joint motion surveillance system to map the balance medial-lateral contact forces on the metal compartments in real time, demonstrating the potential for further development into precise medical human-machine interfaces during total knee replacement surgery.

10.
Sci Total Environ ; 946: 174368, 2024 Oct 10.
Article in English | MEDLINE | ID: mdl-38955273

ABSTRACT

The possible contamination routes, environmental adaptation, and genetic basis of Cronobacter spp. in infant and follow-up formula production factories and retailed products in mainland China have been determined by laboratory studies and whole-genome comparative analysis in a 7-year nationwide continuous surveillance spanning from 2012 to 2018. The 2-year continuous multicenter surveillance of the production process (conducted in 2013 and 2014) revealed that the source of Cronobacter spp. in the dry-blending process was the raw dry ingredients and manufacturing environment (particularly in the vibro sieve and vacuum cleaner), while in the combined process, the main contamination source was identified as the packing room. It is important to note that, according to the contamination control knowledge obtained from the production process surveillance, the contamination rate of retail powdered infant formula (PIF) and follow-up formula (FUF) products in China decreased significantly from 2016 onward, after improving the hygiene management practices in factories. The prevalence of Cronobacter spp. in retailed PIF and FUF in China in 2018 was dramatically reduced from 1.55 % (61/3925, in 2012) to an average as low as 0.17 % (13/7655 in 2018). Phenotype determination and genomic analysis were performed on a total of 90 Cronobacter spp. isolates obtained from the surveillance. Of the 90 isolates, only two showed resistance to either cefazolin or cefoxitin. The multilocus sequence typing results revealed that C. sakazakii sequence type 1 (ST1), ST37, and C. malonaticus ST7 were the dominant sequence types (STs) collected from the production factories, while C. sakazakii ST1, ST4, ST64, and ST8 were the main STs detected in the retailed PIF and FUF nationwide. One C. sakazakii ST4 isolate (1.1 %, 1/90) had strong biofilm-forming ability and 13 isolates (14.4 %, 13/90) had weak biofilm-forming ability. Genomic analysis revealed that Cronobacter spp. have a relatively stable core-genome and an increasing pan-genome size. Plasmid IncFIB (pCTU3) was prevalent in this genus and some contained 14 antibacterial biocide- and metal-resistance genes (BMRGs) including copper, silver, and arsenic resistant genes. Plasmid IncN_1 was predicted to contain 6 ARGs. This is the first time that a multi-drug resistance IncN_1 type plasmid has been reported in Cronobacter spp. Genomic variations with respect to BMRGs, virulence genes, antimicrobial resistance genes (ARGs), and genes involved in biofilm formation were observed among strains of this genus. There were apparent differences in copies of bcsG and flgJ between the biofilm-forming group and non-biofilm-forming group, indicating that these two genes play key roles in biofilm formation. The findings of this study have improved our understanding of the contamination characteristics and genetic basis of Cronobacter spp. in PIF and FUF and their production environment in China and provide important guidance to reduce contamination with this pathogen during the production of PIF and FUF.


Subject(s)
Cronobacter , Infant Formula , China , Cronobacter/genetics , Food Microbiology , Food Contamination/analysis , Humans , Infant
11.
Sci Total Environ ; 947: 174773, 2024 Oct 15.
Article in English | MEDLINE | ID: mdl-39013495

ABSTRACT

Biosolids from municipal wastewater treatment contain many contaminants of emerging concern, including microplastics (MPs), per- and polyfluoroalkyl substances (PFAS), pharmaceuticals and chemicals from personal care products (PPCPs). Many of these contaminants have very slow biotic or abiotic degradation rates and have been shown to have human and ecological health impacts. Application of biosolids to agriculture, a common disposal method, can result in extended environmental contamination. An approach for eliminating the contaminants is pyrolysis, which can also generate biochar, enhancing carbon sequestration as a side-benefit. We pyrolyzed biosolid samples from an operating facility at various temperatures from 400 to 700 °C with a 2-hour residence time. We then evaluated contaminant removal, which in many cases was 100 %, with only a few residuals. No trace of PFAS was detectable even at 400 °C. Overall mass removal of PPCPs, including PFAS, was over 99.9 %. MP removal via pyrolysis ranged from 91 to 97 %. The biochar contains significant amounts of Fe and P, which make it a useful fertilizer amendment. The techno-economic analysis indicates that pyrolysis may generate significant cost savings, and revenue from the sale of biochar, sufficient to more than cover the investment and operating costs of the dryer and pyrolysis unit.


Subject(s)
Charcoal , Microplastics , Pyrolysis , Water Pollutants, Chemical , Charcoal/chemistry , Water Pollutants, Chemical/analysis , Microplastics/analysis , Waste Disposal, Fluid/methods , Fluorocarbons/analysis , Pharmaceutical Preparations/analysis , Cosmetics/analysis
12.
Nano Lett ; 24(31): 9608-9616, 2024 Aug 07.
Article in English | MEDLINE | ID: mdl-39012768

ABSTRACT

Fibers of liquid crystal elastomers (LCEs) as promising artificial muscle show ultralarge and reversible contractile strokes. However, the contractile force is limited by the poor mechanical properties of the LCE fibers. Herein, we report high-strength LCE fibers by introducing a secondary network into the single-network LCE. The double-network LCE (DNLCE) shows considerable improvements in tensile strength (313.9%) and maximum actuation stress (342.8%) compared to pristine LCE. To facilitate the controllability and application, a coiled artificial muscle fiber consisting of DNLCE-coated carbon nanotube (CNT) fiber is prepared. When electrothermally driven, the artificial muscle fiber outputs a high actuation performance and programmable actuation. Furthermore, by knitting the artificial muscle fibers into origami structures, an intelligent gripper and crawling inchworm robot have been demonstrated. These demonstrations provide promising application scenarios for advanced intelligent systems in the future.

13.
J Dermatolog Treat ; 35(1): 2378165, 2024 Dec.
Article in English | MEDLINE | ID: mdl-39004426

ABSTRACT

INTRODUCTION: To investigate the efficacy and safety of Cutegel® MAX (Cutegel) in the correction of moderate-to-severe nasolabial folds (NLFS) compared to Restylane® (Restylane, control). METHODS: This study was a 52-week, multicenter, randomized, double-blinded, active-controlled clinical trial. Qualified participants with moderate-to-severe NLFs were randomly assigned in a 1:1 ratio to receive Cutegel or Restylane. For the primary efficacy endpoint, the response rate was defined as the percentage of subjects exhibiting an improvement of at least one-point based on blinded evaluation of Wrinkle Severity Rating Scale (WSRS) at 24 weeks after injection. Other secondary efficacy endpoints and treatment-emergent adverse events (TEAEs) were assessed. RESULTS: Of 340 subjects randomized, 317 completed the week 52 visit. In the per protocol set (PPS), the blinded evaluator-assessed response rates at week 24 were 81.17% for Cutegel versus 77.56% for Restylane (p = 0.327). The between-group treatment differences in response rates were 3.60% [95% confidence interval (CI) = (-5.39%, 12.60%)], which demonstrated the noninferiority of Cutegel. Other secondary efficacy endpoints supported this. No significant differences were observed in the occurrence of adverse events between the two groups. CONCLUSION: Similar to Restylane, Cutegel was effective and well tolerated in correcting moderate-to-severe NLFs among the Chinese population.


Nasolabial folds (NLFs) are among the early indicators of facial aging process. In the past, rhytidectomy has been considered a safe procedure, yet it continues to carry risks such as hematoma, skin necrosis, nerve injury, and infection. With the ongoing development of biomaterials including hyaluronic acid (HA), minimally invasive injection procedures for the aesthetic correction of NLFs have become the preferred choice in recent years. The widespread use of HA has resulted in the development of various types of commercial HA fillers, such as Cutegel and Restylane. It is well known that HA filler products produce varying effects, attributable to differences in their components and physical properties. Previous studies have established that Restylane is a safe and effective HA dermal filler for the correction of NLFs. However, there is a lack of studies on both the cosmetic results and safety data for Cutegel in the published literature. Therefore, a randomized, double-blinded, active-controlled clinical trial was conducted at seven Chinese hospitals to evaluate the efficacy and safety of Cutegel for the correction of moderate-to-severe NLFs, compared to the approved Restylane in China. Among the 340 randomized subjects, 170 subjects received Cutegel, and 169 subjects received Restylane. Both groups reported similar improvements in WSRS (the between-group treatment differences in response rates exceeded the prespecified noninferiority margins), and also in other efficacy evaluations. Additionally, the two treatment groups showed similar safety profiles. In summary, Cutegel proved to be well tolerated and effective in this randomized, active-controlled clinical study, demonstrating its noninferiority to Restylane and validating its use as an alternative treatment for Chinese subjects with moderate-to-severe NLFs.


Subject(s)
Dermal Fillers , Hyaluronic Acid , Nasolabial Fold , Skin Aging , Adult , Female , Humans , Male , Middle Aged , China , Cosmetic Techniques , Dermal Fillers/administration & dosage , Double-Blind Method , East Asian People , Follow-Up Studies , Hyaluronic Acid/administration & dosage , Hyaluronic Acid/analogs & derivatives , Skin Aging/drug effects , Treatment Outcome
14.
J Agric Food Chem ; 72(28): 15971-15984, 2024 Jul 17.
Article in English | MEDLINE | ID: mdl-38959404

ABSTRACT

Myristicin (MYR) mainly occurs in nutmeg and belongs to alkoxy-substituted allylbenzenes, a class of potentially toxic natural chemicals. RNA interaction with MYR metabolites in vitro and in vivo has been investigated in order to gain a better understanding of MYR toxicities. We detected two guanosine adducts (GA1 and GA2), two adenosine adducts (AA1 and AA2), and two cytosine adducts (CA1 and CA2) by LC-MS/MS analysis of total RNA extracts from cultured primary mouse hepatocytes and liver tissues of mice after exposure to MYR. An order of nucleoside adductions was found to be GAs > AAs > CAs, and the result of density functional theory calculations was in agreement with that detected by the LC-MS/MS-based approach. In vitro and in vivo studies have shown that MYR was oxidized by cytochrome P450 enzymes to 1'-hydroxyl and 3'-hydroxyl metabolites, which were then sulfated by sulfotransferases (SULTs) to form sulfate esters. The resulting sulfates would react with the nucleosides by SN1 and/or SN2 reactions, resulting in RNA adduction. The modification may alter the biochemical properties of RNA and disrupt RNA functions, perhaps partially contributing to the toxicities of MYR.


Subject(s)
Activation, Metabolic , Allylbenzene Derivatives , Cytochrome P-450 Enzyme System , RNA , Sulfotransferases , Tandem Mass Spectrometry , Animals , Mice , Sulfotransferases/metabolism , Sulfotransferases/genetics , Sulfotransferases/chemistry , Cytochrome P-450 Enzyme System/metabolism , Cytochrome P-450 Enzyme System/genetics , Cytochrome P-450 Enzyme System/chemistry , Allylbenzene Derivatives/chemistry , Allylbenzene Derivatives/metabolism , RNA/metabolism , RNA/chemistry , Male , Hepatocytes/metabolism , Dioxolanes/metabolism , Dioxolanes/chemistry , Dioxolanes/toxicity , Liver/metabolism , Liver/enzymology , Disulfides/chemistry , Disulfides/metabolism , Myristica/chemistry , Myristica/metabolism
15.
Mater Horiz ; 2024 Jul 18.
Article in English | MEDLINE | ID: mdl-39022827

ABSTRACT

The development of wearable electronics has driven the need for smart fibers with advanced multifunctional synergy. In this paper, we present a design of a multifunctional coaxial fiber that is composed of a biopolymer-derived core and an MXene/silver nanowire (AgNW) sheath by wet spinning. The fiber synergistically integrates moisture actuation, length tracing, humidity sensing, and electric heating, making it highly promising for portable devices and protective systems. The biopolymer-derived core provides deformation for moisture-sensitive actuation, while the MXene/AgNW sheath with good conductivity enables the fiber to perform electric heating, humidity sensing, and self-sensing actuation. The coaxial fiber can be programmed to rapidly desorb water molecules to shrink to its original length by using the MXene/AgNW sheath as an electrical heater. We demonstrate proof-of-concept applications based on the multifunctional fibers for thermal physiotherapy and wound healing/monitoring. The sodium alginate@MXene-based coaxial fiber presents a promising solution for the next-generation of smart wearable electronics.

16.
BMC Plant Biol ; 24(1): 621, 2024 Jun 29.
Article in English | MEDLINE | ID: mdl-38951829

ABSTRACT

Slow-controlled release fertilizers are experiencing a popularity in rice cultivation due to their effectiveness in yield and quality with low environmental costs. However, the underlying mechanism by which these fertilizers regulate grain quality remains inadequately understood. This study investigated the effects of five fertilizer management practices on rice yield and quality in a two-year field experiment: CK, conventional fertilization, and four applications of slow-controlled release fertilizer (UF, urea formaldehyde; SCU, sulfur-coated urea; PCU, polymer-coated urea; BBF, controlled-release bulk blending fertilizer). In 2020 and 2021, the yields of UF and SCU groups showed significant decreases when compared to conventional fertilization, accompanied by a decline in nutritional quality. Additionally, PCU group exhibited poorer cooking and eating qualities. However, BBF group achieved increases in both yield (10.8 t hm-2 and 11.0 t hm-2) and grain quality reaching the level of CK group. The adequate nitrogen supply in PCU group during the grain-filling stage led to a greater capacity for the accumulation of proteins and amino acids in the PCU group compared to starch accumulation. Intriguingly, BBF group showed better carbon-nitrogen metabolism than that of PCU group. The optimal nitrogen supply present in BBF group suitable boosted the synthesis of amino acids involved in the glycolysis/ tricarboxylic acid cycle, thereby effectively coordinating carbon-nitrogen metabolism. The application of the new slow-controlled release fertilizer, BBF, is advantageous in regulating the carbon flow in the carbon-nitrogen metabolism to enhance rice quality.


Subject(s)
Carbon , Fertilizers , Nitrogen , Oryza , Oryza/metabolism , Oryza/growth & development , Nitrogen/metabolism , Carbon/metabolism , Edible Grain/metabolism , Edible Grain/growth & development , Delayed-Action Preparations
17.
RSC Adv ; 14(31): 22560-22568, 2024 Jul 12.
Article in English | MEDLINE | ID: mdl-39021453

ABSTRACT

V-based materials are considered promising candidates as cathode materials for zinc ion batteries (ZIBs). However, the inherent low conductivity of V-based compounds leads to the sluggish diffusion kinetics of Zn2+ and serious cycling capacity degradation of ZIBs. Herein, 1D Zn3V2O7(OH)2·2H2O (ZVO) nanowires were grown on monodisperse 2D Ti3C2T x MXene nanosheets via a facile microwave-assisted method. The introduction of Ti3C2T x MXenes effectively improved the conductivity and hydrophilicity of ZVO. Furthermore, the Zn2+ diffusion coefficient of ZVO/Ti3C2T x composites was enhanced to 10-7-10-8 cm2 s-1, which was superior to that of pure ZVO nanowires (10-8-10-10 cm2 s-1) and other previously reported typical V-based cathodes. The ZIBs based on the ZVO/Ti3C2T x cathode possessed an excellent discharge specific capacity of 215.2 mAh g-1 at 0.1 A g-1 and cycling stability (84% retention over 14 000 cycles at 10 A g-1). Moreover, the flexible Zn//ZVO/Ti3C2T x ZIBs using a gel electrolyte still exhibited good cycling stability and rate performance.

18.
Ecotoxicol Environ Saf ; 282: 116699, 2024 Sep 01.
Article in English | MEDLINE | ID: mdl-38981389

ABSTRACT

Amidst the global antimicrobial resistance (AMR) crisis, antibiotic resistance has permeated even the most remote environments. To understand the dissemination and evolution of AMR in minimally impacted ecosystems, the resistome and mobilome of wetlands across the Qinghai-Tibetan Plateau and its marginal regions were scrutinized using metagenomic sequencing techniques. The composition of wetland microbiomes exhibits significant variability, with dominant phyla including Proteobacteria, Actinobacteria, Bacteroidetes, and Verrucomicrobia. Notably, a substantial abundance of Antibiotic Resistance Genes (ARGs) and Mobile Genetic Elements (MGEs) was detected, encompassing 17 ARG types, 132 ARG subtypes, and 5 types of MGEs (Insertion Sequences, Insertions Sequences, Genomic Islands, Transposons, and Integrative Conjugative Elements). No significant variance was observed in the prevalence of resistome and mobilome across different wetland types (i.e., the Yellow River, other rivers, lakes, and marshes) (R=-0.5882, P=0.607). The co-occurrence of 74 ARG subtypes and 22 MGEs was identified, underscoring the pivotal role of MGEs in shaping ARG pools within the Qinghai-Tibetan Plateau wetlands. Metagenomic binning and analysis of assembled genomes (MAGs) revealed that 93 out of 206 MAGs harbored ARGs (45.15 %). Predominantly, Burkholderiales, Pseudomonadales, and Enterobacterales were identified as the primary hosts of these ARGs, many of which represent novel species. Notably, a substantial proportion of ARG-carrying MAGs also contained MGEs, reaffirming the significance of MGEs in AMR dissemination. Furthermore, utilizing the arg_ranker framework for risk assessment unveiled severe contamination of high-risk ARGs across most plateau wetlands. Moreover, some prevalent human pathogens were identified as potential hosts for these high-risk ARGs, posing substantial transmission risks. This study aims to investigate the prevalence of resistome and mobilome in wetlands, along with evaluating the risk posed by high-risk ARGs. Such insights are crucial for informing environmental protection strategies and facilitating the management of water resources on the Qinghai-Tibetan Plateau.


Subject(s)
Wetlands , Risk Assessment , Tibet , Drug Resistance, Microbial/genetics , Microbiota/drug effects , Drug Resistance, Bacterial/genetics , China , Bacteria/genetics , Bacteria/drug effects , Bacteria/classification , Metagenomics , Anti-Bacterial Agents/pharmacology , Environmental Monitoring , Interspersed Repetitive Sequences
19.
Materials (Basel) ; 17(11)2024 Jun 06.
Article in English | MEDLINE | ID: mdl-38894046

ABSTRACT

Ag-Sn-In-Ni-Te alloy ingots were produced through a heating-cooling combined mold continuous casting technique; they were then drawn into wires. However, during the drawing process, the alloy wires tended to harden, making further diameter reduction challenging. To overcome this, heat treatment was necessary to soften the previously drawn wires. The study investigated how variations in heat treatment temperature and holding time affected the microstructure, microhardness and corrosion resistance of the alloy wires. The results indicate that the alloy wires subjected to heat treatment at 700 °C for 2 h not only exhibited a uniform microstructure distribution, but also demonstrated low microhardness and excellent corrosion resistance.

20.
Opt Express ; 32(9): 16506-16513, 2024 Apr 22.
Article in English | MEDLINE | ID: mdl-38859275

ABSTRACT

Tb-doped magneto-optical (MO) glass is widely used in fiber optics, optical isolators, and modulators. However, only the paramagnetic Tb3+ ions exhibit significant MO effects, whereas the diamagnetism Tb4+ ions suppress the MO effects. Therefore, the valence state control of Tb ions is very critical to optimize MO performance. Here, a reduction strategy was introduced to adjust the Tb valence in glass to achieve the high MO effect. The TiO, which has low valence Ti2+ ions and good reducibility, was used to suppress the oxidation of Tb3+ to Tb4+ ions. In the TiO-B2O3-Al2O3-Na2O glass, 10 mol% TiO can increase the Verdet constant at 650 nm by 19%. With the further increase in Tb2O3 concentration, the Verdet constant reaches a high value of 117 rad/(T·m) at 650 nm, which is close to the Verdet constant of TGG crystal (121 rad/(T·m)). This work provides a new approach to increase the Verdet constant of MO glass.

SELECTION OF CITATIONS
SEARCH DETAIL