Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 543
Filter
1.
Int Endod J ; 2024 Sep 10.
Article in English | MEDLINE | ID: mdl-39257034

ABSTRACT

AIM: To investigate the level and distribution of apoptosis, pyroptosis, necroptosis, and NETosis in pulpitis with or without necrosis on a basis of histological classification. Additionally, to examine the effect of pulpitis with necrosis (PWN) on the number and activation of peripheral and bone marrow (BM) neutrophils, as well as spleen lymphocytes, in a mouse model of pulpitis. METHODOLOGY: The material comprised 20 permanent teeth, with or without caries, which were classified into three histological categories based on the distribution of inflammatory cells and the presence or absence of necrosis: (i) healthy pulp (HP), (ii) pulpitis without necrosis (PWON), and (iii) PWN. The levels of the four regulated cell death (RCD) pathways were detected by immunohistochemical and immunofluorescent staining with specific markers: apoptosis (caspase-8, cleaved caspase-3), pyroptosis (cleaved caspase-1, membrane-binding gasdermin D), necroptosis (receptor-interacting kinase 3, phosphorylated MLKL), and NETosis (myeloperoxidase, citrullinated histone H3). Acute pulpitis was induced in C57BL/6J mice via pulp exposure, and the mice were divided into four groups: (i) control (no tooth preparation, n = 6), (ii) Day 1 (sacrificed at 1 day after pulp exposure, n = 3), (iii) Day 3 (n = 3), and (iv) Day 5 (n = 7). The control and Day 5 groups were used for further immunofluorescent analysis to assess the levels of RCD and flow cytometry to monitor the changes in peripheral and BM neutrophils, as well as spleen lymphocytes. Human dental pulp stem cells (hDPSCs) were isolated and cultured from extracted healthy third molars. Apoptosis and necroptosis in hDPSCs were induced by staurosporine, whilst pyroptosis was induced by lipopolysaccharide and nigericin. One-way analysis of variance (ANOVA) with Tukey's test, Welch's ANOVA with Tamhane's test, and Student's t-tests were used to compare immunohistochemical labelling and flow cytometric data amongst groups (p < .05). RESULTS: The pulpal tissue of PWN can be divided into the abscess core (PWN-AC) and fibrous tissue (PWN-FT). The ratio of total necrotic cells (TUNEL-positive) in PWN-AC was significantly higher than in PWN-FT and PWON (both p < .01). Compared with HP, the expression levels of markers for apoptosis and pyroptosis were increased in PWON, whilst the expression levels of markers for apoptosis, pyroptosis, and NETosis were elevated in PWN, primarily detected in PWN-AC. Interestingly, myeloperoxidase (MPO) was exclusively observed in PWN-AC, with minimal detection in PWN-FT and PWON. Additionally, the frequency of MPO+ cells was significantly higher than that of MB-GSDMD+ cells and Cl-cas3+ cells in PWN-AC (both p < .01). Histological observation and TUNEL staining showed abundant necrotic cells in mouse pulpal tissue after pulp exposure, indicating a simulation of human PWN. In mouse pulpitis tissue, markers of apoptosis, pyroptosis, and NETosis were detected. In vitro, various cell deaths including apoptosis, pyroptosis, and necroptosis were also triggered in hDPSCs under various cell death treatments. Furthermore, in terms of systemic changes, pulp exposure-induced pulpitis could increase the number (p < .05) and cellular activity (p < .01) of neutrophils from BM in a mouse model. No significant changes in peripheral blood neutrophils, spleen T cells, B cells, or the CD4/CD8 ratio were detected between the control and pulpitis mice. CONCLUSIONS: Our findings uncover distinct patterns of mixed cell death at different histological stages of human pulpitis and the impact of pulpitis on the number and activity of BM neutrophils. Notably, NETosis occurs specifically and predominates in the abscess area of pulpitis, suggesting a potential effect of neutrophil extracellular traps (NETs) on pulpitis progression and NETs-targeted diagnostic strategy may play a role in decision making for vital pulp therapy.

2.
World J Surg Oncol ; 22(1): 240, 2024 Sep 07.
Article in English | MEDLINE | ID: mdl-39244533

ABSTRACT

BACKGROUND: Postoperative recurrence is a vital reason for poor 5-year overall survival in hepatocellular carcinoma (HCC) patients. The ADV score is considered a parameter that can quantify HCC aggressiveness. This study aimed to identify HCC patients at high-risk of recurrence early using the ADV score. METHODS: The medical data of consecutive HCC patients undergoing hepatectomy from The First Affiliated Hospital of Nanjing Medical University (TFAHNJMU) and Nanjing Drum Tower Hospital (NJDTH) were retrospectively reviewed. Based on the status of microvascular invasion and the Edmondson-Steiner grade, HCC patients were divided into three groups: low-risk group (group 1: no risk factor exists), medium-risk group (group 2: one risk factor exists), and high-risk group (group 3: coexistence of two risk factors). In the training cohort (TFAHNJMU), the R package nnet was used to establish a multi-categorical unordered logistic regression model based on the ADV score to predict three risk groups. The Welch's T-test was used to compare differences in clinical variables in three predicted risk groups. NJDTH served as an external validation center. At last, the confusion matrix was developed using the R package caret to evaluate the diagnostic performance of the model. RESULTS: 350 and 405 patients from TFAHNJMU and NJDTH were included. HCC patients in different risk groups had significantly different liver function and inflammation levels. Density maps demonstrated that the ADV score could best differentiate between the three risk groups. The probability curve was plotted according to the predicted results of the multi-categorical unordered logistic regression model, and the best cut-off values of the ADV score were as follows: low-risk ≤ 3.4 log, 3.4 log < medium-risk ≤ 5.7 log, and high-risk > 5.7 log. The sensitivities of the ADV score predicting the high-risk group (group 3) were 70.2% (99/141) and 78.8% (63/80) in the training and external validation cohort, respectively. CONCLUSION: The ADV score might become a valuable marker for screening patients at high-risk of HCC recurrence with a cut-off value of 5.7 log, which might help surgeons, pathologists, and HCC patients make appropriate clinical decisions.


Subject(s)
Carcinoma, Hepatocellular , Hepatectomy , Liver Neoplasms , Neoplasm Recurrence, Local , Humans , Carcinoma, Hepatocellular/surgery , Carcinoma, Hepatocellular/pathology , Carcinoma, Hepatocellular/diagnosis , Liver Neoplasms/pathology , Liver Neoplasms/surgery , Liver Neoplasms/diagnosis , Retrospective Studies , Female , Male , Neoplasm Recurrence, Local/pathology , Neoplasm Recurrence, Local/diagnosis , Neoplasm Recurrence, Local/epidemiology , Middle Aged , Risk Factors , Follow-Up Studies , Prognosis , Risk Assessment/methods , Risk Assessment/statistics & numerical data , Early Detection of Cancer/methods , Neoplasm Invasiveness , Survival Rate , Aged
3.
Asian J Pharm Sci ; 19(4): 100892, 2024 Aug.
Article in English | MEDLINE | ID: mdl-39246509

ABSTRACT

Small-molecule prodrug nanoassembly technology with a unique advantage in off-target toxicity reduction has been widely used for antitumor drug delivery. However, prodrug activation remains a rate-limiting step for exerting therapeutic actions, which requires to quickly reach the minimum valid concentrations of free drugs. Fortunately, we find that a natural compound (BL-193) selectively improves the chemotherapy sensitivity of breast cancer cells to podophyllotoxin (PPT) at ineffective dose concentrations. Based on this, we propose to combine prodrug nanoassembly with chemotherapy sensitization to fully unleash the chemotherapeutic potential of PPT. Specifically, a redox-sensitive prodrug (PSSF) of PPT is synthesized by coupling 9-fluorenyl-methanol (Fmoc-OH) with PPT linked via disulfide bond. Intriguingly, PSSF with a π-conjugated structure readily co-assembles with BL-193 into stable nanoassembly. Significantly, BL-193 serves as an excellent chemosensitizer that creates an ultra-low-dose chemotherapeutic window for PPT. Moreover, prodrug design and precise hybrid nanoassembly well manage off-target toxicity. As expected, such a BL-193-empowered prodrug nanoassembly elicits potent antitumor responses. This study offers a novel paradigm to magnify chemotherapy efficacy-toxicity benefits.

4.
Front Immunol ; 15: 1433393, 2024.
Article in English | MEDLINE | ID: mdl-39257588

ABSTRACT

Introduction: Precise staging and classification of liver fibrosis are crucial for the hierarchy management of patients. The roles of lactylation are newly found in the progression of liver fibrosis. This study is committed to investigating the signature genes with histone lactylation and their connection with immune infiltration among liver fibrosis with different phenotypes. Methods: Firstly, a total of 629 upregulated and 261 downregulated genes were screened out of 3 datasets of patients with liver fibrosis from the GEO database and functional analysis confirmed that these differentially expressed genes (DEGs) participated profoundly in fibrosis-related processes. After intersecting with previously reported lactylation-related genes, 12 DEGs related to histone lactylation were found and narrowed down to 6 core genes using R algorithms, namely S100A6, HMGN4, IFI16, LDHB, S100A4, and VIM. The core DEGs were incorporated into the Least absolute shrinkage and selection operator (LASSO) model to test their power to distinguish the fibrotic stage. Results: Advanced fibrosis presented a pattern of immune infiltration different from mild fibrosis, and the core DEGs were significantly correlated with immunocytes. Gene set and enrichment analysis (GSEA) results revealed that core DEGs were closely linked to immune response and chemokine signaling. Samples were classified into 3 clusters using the LASSO model, followed by gene set variation analysis (GSVA), which indicated that liver fibrosis can be divided into status featuring lipid metabolism reprogramming, immunity immersing, and intermediate of both. The regulatory networks of the core genes shared several transcription factors, and certain core DEGs also presented dysregulation in other liver fibrosis and idiopathic pulmonary fibrosis (IPF) cohorts, indicating that lactylation may exert comparable functions in various fibrotic pathology. Lastly, core DEGs also exhibited upregulation in HCC. Discussion: Lactylation extensively participates in the pathological progression and immune infiltration of fibrosis. Lactylation and related immune infiltration could be a worthy focus for the investigation of HCC developed from liver fibrosis.


Subject(s)
Carcinoma, Hepatocellular , Disease Progression , Liver Cirrhosis , Liver Neoplasms , Phenotype , Humans , Liver Cirrhosis/pathology , Liver Cirrhosis/genetics , Liver Cirrhosis/immunology , Liver Cirrhosis/metabolism , Carcinoma, Hepatocellular/genetics , Carcinoma, Hepatocellular/pathology , Carcinoma, Hepatocellular/immunology , Liver Neoplasms/pathology , Liver Neoplasms/genetics , Liver Neoplasms/immunology , Liver Neoplasms/metabolism , Gene Expression Profiling , Transcriptome , Histones/metabolism
5.
Front Microbiol ; 15: 1400947, 2024.
Article in English | MEDLINE | ID: mdl-39257614

ABSTRACT

Background: Cervical cancer, primarily driven by high-risk human papillomavirus (HR-HPV) infection, ranks as the second most common cancer globally. Understanding combined infections' role, including Cervical fungi, is crucial in cervical carcinogenesis. This study aims to explore the potential correlation between HR-HPV, cervical fungi, and cervical cancer, while adjusting for various factors. Methods: The study population comprised patients undergoing colposcopy and conization due to abnormal cervical screening results. Clinical data including age, gravidity, HPV (human papillomavirus) genotypes, cervical pathology, and p16/Ki67 expression were extracted. Cervical TCT (ThinPrep Pap Test) and HPV testing are utilized for screening cervical lesions, with fungal presence suggested by TCT results. 5,528 participants were included in this study. Statistical analyses investigated associations between HPV/fungi co-infection and cervical lesions, employing multinomial logistic regression and interaction analysis. Results: Co-infection with fungi and HPV may decrease the risk of cervical lesions compared to HPV infection alone. In the co-infection group, compared with HPV infection alone, the risk of low-grade squamous intraepithelial lesions (LSIL) was reduced by 27% (OR = 0.73, 95% CI: 0.59-0.90), the risk of high-grade squamous intraepithelial lesions (HSIL) was reduced by 35% (OR = 0.65, 95% CI: 0.51-0.82), and the risk of cervical cancer was reduced by 43% (OR = 0.57, 95% CI: 0.35-0.92). The interaction analysis revealed a negative interaction between fungal and HPV infections in the development of cervical cancer (RERI = -6.25, AP = -0.79, SI = 0.52), HSIL (RERI = -19.15, AP = -0.37, SI = 0.72) and LSIL (RERI = -1.87, AP = -0.33, SI = 0.71), suggesting a sub-additive effect, where the combined effect of the two infections was less than the sum of their individual effects. This indicates that fungal infection may attenuate the promoting effect of HPV on cervical lesions. In exploring the potential mechanism, we found that the co-infection group had significantly lower p16 positivity (54.6%) compared to the HPV-only group (60.2%) (p = 0.004), while there was no statistically significant difference in Ki67 positivity. Conclusion: This study unveils the intricate relationship between cervical fungi and HPV in cervical lesions. Co-infection with fungi and HPV against cervical lesions compared to HPV infection alone, indicating a novel clinical interaction. Lower p16 positivity in co-infection hints at a protective mechanism, urging further exploration.

6.
Article in English | MEDLINE | ID: mdl-39106027

ABSTRACT

High-fat diet-induced metabolic syndrome (MetS) is closely associated with cardiac dysfunction. Recent research studies have indicated a potential association between MetS and ferroptosis. Furthermore, metformin can alleviate MetS-induced cardiac ferroptosis. Metformin is a classic biguanide anti-diabetic drug that has protective effects on cardiovascular diseases, which extend beyond its indirect glycemic control. This study aimed to assess whether MetS mediates cardiac ferroptosis, thereby causing oxidative stress and mitochondrial dysfunction. The results revealed that metformin can mitigate cardiac reactive oxygen species and mitochondrial damage, thereby preserving cardiac function. Mechanistic analysis revealed that metformin upregulates the expression of cardiac Nrf2. Moreover, Nrf2 downregulation compromises the cardio-protective effects of metformin. In summary, this study indicated that MetS promotes cardiac ferroptosis, and metformin plays a preventive and therapeutic role, partially through modulation of Nrf2 expression.

7.
Biochem Biophys Res Commun ; 735: 150469, 2024 Jul 29.
Article in English | MEDLINE | ID: mdl-39106601

ABSTRACT

Recurrent epidemics of coronaviruses have posed significant threats to human life and health. The mortality rate of patients infected with the Middle East Respiratory Syndrome Coronavirus (MERS-CoV) is 35 %. The main protease (Mpro) plays a crucial role in the MERS-CoV life cycle, and Mpro exhibited a high degree of conservation among different coronaviruses. Therefore inhibition of Mpro has become an effective strategy for the development of broad-spectrum anti-coronaviral drugs. The inhibition of SARS-CoV-2 Mpro by the anti-tumor drug carmofur has been revealed, but structural studies of carmofur in complex with Mpro from other types of coronavirus have not been reported. Hence, we revealed the structure of the MERS-CoV Mpro-carmofur complex, analysed the structural basis for the binding of carmofur to MERS-CoV Mpro in detail, and compared the binding patterns of carmofur to Mpros of two different coronaviruses, MERS-CoV and SARS-CoV-2. Considering the importance of Mpros for coronavirus therapy, structural understanding of Mpro inhibition by carmofur could contribute to the design and development of novel antiviral drugs with safe and broad-spectrum efficacy.

8.
J Exp Med ; 221(10)2024 Oct 07.
Article in English | MEDLINE | ID: mdl-39167075

ABSTRACT

Changes in mechanosensitive ion channels following radiation have seldom been linked to therapeutic sensitivity or specific factors involved in antitumor immunity. Here, in this study, we found that the mechanical force sensor, Piezo2, was significantly upregulated in tumor cells after radiation, and Piezo2 knockout in tumor cells enhanced tumor growth suppression by radiotherapy. Specifically, loss of Piezo2 in tumor cells induced their IL-15 expression via unleashing JAK2/STAT1/IRF-1 axis after radiation. This increase in IL-15 activates IL-15Rα on tumor-infiltrating CD8+ T cells, thereby leading to their augmented effector and stem cell-like properties, along with reduced terminal exhausted feature. Importantly, Piezo2 expression was negatively correlated with CD8 infiltration, as well as with radiosensitivity of patients with rectum adenocarcinoma receiving radiotherapy treatment. Together, our findings reveal that tumor cell-intrinsic Piezo2 induces radioresistance by dampening the IRF-1/IL-15 axis, thus leading to impaired CD8+ T cell-dependent antitumor responses, providing insights into the further development of combination strategies to treat radioresistant cancers.


Subject(s)
CD8-Positive T-Lymphocytes , Interleukin-15 , Ion Channels , Radiation Tolerance , CD8-Positive T-Lymphocytes/immunology , CD8-Positive T-Lymphocytes/metabolism , Animals , Humans , Ion Channels/metabolism , Ion Channels/genetics , Radiation Tolerance/genetics , Mice , Interleukin-15/metabolism , Interleukin-15/genetics , Cell Line, Tumor , Janus Kinase 2/metabolism , Janus Kinase 2/genetics , Interferon Regulatory Factor-1/metabolism , Interferon Regulatory Factor-1/genetics , Mice, Inbred C57BL , Female , Neoplastic Stem Cells/metabolism , Neoplastic Stem Cells/pathology , Male , STAT1 Transcription Factor/metabolism , STAT1 Transcription Factor/genetics , Signal Transduction
9.
Int J Biol Macromol ; 278(Pt 2): 134571, 2024 Aug 13.
Article in English | MEDLINE | ID: mdl-39147344

ABSTRACT

Interstitial nephritis is the primary cause of mortality in IBV-infected chickens. Our previous research has demonstrated that Radix Isatidis polysaccharide (RIP) could alleviate this form of interstitial nephritis. To explore the mechanism, SPF chickens and chicken embryonic kidney cells (CEKs) were pre-treated with RIP and subsequently infected with QX-genotype IBV strain. Kidneys were sampled for transcriptomic and metabolomic analyses, and the cecum contents were collected for 16S rRNA gene sequencing. Results showed that pre-treatment with RIP led to a 50 % morbidity reduction in infected-chickens, along with decreased tissue lesion and viral load in the kidneys. Multi-omics analysis indicated three possible pathways (including antioxidant, anti-inflammatory and anti-apoptosis) which associated with RIP's efficacy against interstitial nephritis. Following further validation both in vivo and in vitro, the results showed that pre-treatment with RIP could activate the antioxidant transcription factor Nrf2, stimulate antioxidant enzyme expression, and consequently inhibit oxidative stress. Pre-treatment with RIP could also significantly reduce the expression of NLRP3 inflammasome and apoptosis-associated proteins (including Bax, Caspase-3, and Caspase-9). Additionally, RIP was also observed to promote the growth of beneficial bacteria in the intestine. Overall, pretreatment with RIP can alleviate QX-genotype IBV-induced interstitial nephritis via the Nrf2/NLRP3/Caspase-3 signaling pathway. This study lays the groundwork for the potential use of RIP in controlling avian infectious bronchitis (IB).

10.
Int J Mol Sci ; 25(16)2024 Aug 07.
Article in English | MEDLINE | ID: mdl-39201297

ABSTRACT

Pseudomonas aeruginosa is an opportunistic pathogen that requires iron to survive in the host; however, the host immune system limits the availability of iron. Pyochelin (PCH) is a major siderophore produced by P. aeruginosa during infection, which can help P. aeruginosa survive in an iron-restricted environment and cause infection. The infection activity of P. aeruginosa is regulated by the Pseudomonas quinolone signal (PQS) quorum-sensing system. The system uses 2-heptyl-3-hydroxy-4-quinolone (PQS) or its precursor, 2-heptyl-4-quinolone (HHQ), as the signal molecule. PQS can control specific life processes such as mediating quorum sensing, cytotoxicity, and iron acquisition. This review summarizes the biosynthesis of PCH and PQS, the shared transport system of PCH and PQS, and the regulatory relationship between PCH and PQS. The correlation between the PQS and PCH is emphasized to provide a new direction for future research.


Subject(s)
Phenols , Pseudomonas aeruginosa , Quinolones , Quorum Sensing , Thiazoles , Pseudomonas aeruginosa/metabolism , Quinolones/metabolism , Thiazoles/metabolism , Phenols/metabolism , Signal Transduction , Humans , Bacterial Proteins/metabolism , Bacterial Proteins/genetics , Gene Expression Regulation, Bacterial , Iron/metabolism , Pseudomonas Infections/microbiology , 4-Quinolones/metabolism
11.
mSphere ; : e0040924, 2024 Aug 27.
Article in English | MEDLINE | ID: mdl-39189776

ABSTRACT

Verticillium dahliae causes Verticillium wilt in more than 200 plant species worldwide. As a soilborne fungus, it forms melanized microsclerotia and colonizes the xylem of host plants. Our previous study revealed a subfamily of C2H2-homeobox transcription factors in V. dahliae, but their biological roles remain unknown. In this study, we systematically characterized the functions of seven C2H2-homeobox transcription factors in V. dahliae. Deletion of VdChtf3 and VdChtf6 significantly decreased the production of melanized microsclerotia, and knockout of VdChtf1 and VdChtf4 enhanced virulence. Loss of VdChtf2 and VdChtf6 increased conidium production, whereas loss of VdChtf5 and VdChtf7 did not affect growth, conidiation, microsclerotial formation, or virulence. Further research showed that VdChtf3 activated the expression of genes encoding pectic enzymes to participate in microsclerotial formation. In addition, VdChtf4 reduced the expression of VdSOD1 to disturb the scavenging of superoxide radicals but induced the expression of genes related to cell wall synthesis to maintain cell wall integrity. These findings highlight the diverse roles of different members of the C2H2-homeobox gene family in V. dahliae. IMPORTANCE: Verticillium dahliae is a soilborne fungus that causes plant wilt and can infect a variety of economic crops and woody trees. The molecular basis of microsclerotial formation and infection by this fungus remains to be further studied. In this study, we analyzed the functions of seven C2H2-homobox transcription factors. Notably, VdChtf3 and VdChtf4 exhibited the most severe defects, affecting phenotypes associated with critical developmental stages in the V. dahliae disease cycle. Our results indicate that VdChtf3 is a potential specific regulator of microsclerotial formation, modulating the expression of pectinase-encoding genes. This finding could contribute to a better understanding of microsclerotial development in V. dahliae. Moreover, VdChtf4 was associated with cell wall integrity, reactive oxygen species (ROS) stress resistance, and increased virulence. These discoveries shed light on the biological significance of C2H2-homeobox transcription factors in V. dahliae's adaptation to the environment and infection of host plants.

12.
Article in English | MEDLINE | ID: mdl-38959707

ABSTRACT

Rhei Radix et Rhizoma and Magnoliae Officinalis Cortex have been used together to treat constipation in the clinical practices for more than 2000 years. Nonetheless, their compatibility mechanism is still unclear. In this study, the amelioration of Rhei Radix et Rhizoma combined with Magnoliae Officinalis Cortex on constipation was systematically and comprehensively evaluated. The results showed that their compatibility could markedly shorten gastrointestinal transport time, increase fecal water content and frequency of defecation, improve gastrointestinal hormone disorders and protect colon tissue of constipation rats compared with the single drug. Furthermore, according to 16S rRNA sequencing in conjunction with UPLC-Q-TOF/MS, the combination of two herbal medications could greatly raise the number of salutary bacteria (Lachnospiraceae, Romboutsia and Subdoligranulum) while decreasing the abundance of pathogenic bacteria (Erysipelatoclostridiaceae). And two herb drugs could markedly improve the disorder of fecal metabolic profiles. A total of 7 different metabolites associated with constipation were remarkably shifted by the compatibility of two herbs, which were mainly related to arachidonic acid metabolism, alpha-linolenic acid metabolism, unsaturated fatty acid biosynthesis and other metabolic ways. Thus, the regulation of intestinal microbiome and its metabolism could be a potential target for Rhei Radix et Rhizoma and Magnoliae Officinalis Cortex herb pair to treat constipation. Furthermore, the multi-omics approach utilized in this study, which integrated the microbiome and metabolome, had potential for investigating the mechanism of traditional Chinese medicines.


Subject(s)
Constipation , Drugs, Chinese Herbal , Feces , Gastrointestinal Microbiome , Magnolia , Rats, Sprague-Dawley , Rheum , Rats , Animals , Drugs, Chinese Herbal/chemistry , Drugs, Chinese Herbal/pharmacology , Magnolia/chemistry , Gastrointestinal Microbiome/drug effects , Constipation/drug therapy , Constipation/metabolism , Male , Rheum/chemistry , Feces/microbiology , Feces/chemistry , Chromatography, High Pressure Liquid , Metabolomics , Rhizome/chemistry , Metabolome/drug effects , Multiomics
13.
Microbiol Res ; 287: 127842, 2024 Oct.
Article in English | MEDLINE | ID: mdl-39032266

ABSTRACT

The swift emergence and propagation of multidrug-resistant (MDR) bacterial pathogens constitute a tremendous global health crisis. Among these pathogens, the challenge of antibiotic resistance in Gram-negative bacteria is particularly pressing due to their distinctive structure, such as highly impermeable outer membrane, overexpressed efflux pumps, and mutations. Several strategies have been documented to combat MDR Gram-negative bacteria, including the structural modification of existing antibiotics, the development of antimicrobial adjuvants, and research on novel targets that MDR bacteria are sensitive to. Drugs functioning as adjuvants to mitigate resistance to existing antibiotics may play a pivotal role in future antibacterial therapy strategies. In this review, we provide a brief overview of potential antibacterial adjuvants against Gram-negative bacteria and their mechanisms of action, and discuss the application prospects and potential for bacterial resistance to these adjuvants, along with strategies to reduce this risk.


Subject(s)
Anti-Bacterial Agents , Drug Resistance, Multiple, Bacterial , Gram-Negative Bacteria , Gram-Negative Bacterial Infections , Gram-Negative Bacteria/drug effects , Anti-Bacterial Agents/pharmacology , Gram-Negative Bacterial Infections/drug therapy , Gram-Negative Bacterial Infections/microbiology , Humans , Adjuvants, Pharmaceutic/pharmacology , Adjuvants, Pharmaceutic/therapeutic use
14.
Sci Data ; 11(1): 792, 2024 Jul 18.
Article in English | MEDLINE | ID: mdl-39025879

ABSTRACT

Coregonus ussuriensis Berg, distributed widely in cold waters above 45° N latitude, is a savored freshwater whitefish that has been included in the list of endangered animals as a consequence of overfishing. Lack of genomic information seriously hampers evolutionary and genetic research on C. ussuriensis warranting the need to assemble a high-quality reference genome to promote its genetic breeding. We assembled and constructed a reference chromosome-level C. ussuriensis genome (sequence length, 2.51 Gb; contig N50 length, 4.27 Mb) using PacBio sequencing and Hi-C assembly technology, 3,109 contigs were assembled into scaffolds, resulting in a genome assembly with 40 chromosomes and a scaffold N50 length of 62.20 Mb. In addition, 43,320 protein-coding genes were annotated. The peak Ks position in the species comparison reflects the whole-genome replication event of C. ussuriensis. This chromosome-level genome provides reference data for further studies on the molecular breeding of C. ussuriensis.


Subject(s)
Chromosomes , Genome , Animals , Chromosomes/genetics , Evolution, Molecular
15.
J Breath Res ; 18(4)2024 Aug 05.
Article in English | MEDLINE | ID: mdl-39019071

ABSTRACT

Lung cancer subtyping, particularly differentiating adenocarcinoma (ADC) from squamous cell carcinoma (SCC), is paramount for clinicians to develop effective treatment strategies. In this study, we aimed: (i) to discover volatile organic compound (VOC) biomarkers for precise diagnosis of ADC and SCC, (ii) to investigated the impact of risk factors on ADC and SCC prediction, and (iii) to explore the metabolic pathways of VOC biomarkers. Exhaled breath samples from patients with ADC (n= 149) and SCC (n= 94) were analyzed by gas chromatography-mass spectrometry. Both multivariate and univariate statistical analysis method were employed to identify VOC biomarkers. Support vector machine (SVM) prediction models were developed and validated based on these VOC biomarkers. The impact of risk factors on ADC and SCC prediction was investigated. A panel of 13 VOCs was found to differ significantly between ADC and SCC. Utilizing the SVM algorithm, the VOC biomarkers achieved a specificity of 90.48%, a sensitivity of 83.50%, and an area under the curve (AUC) value of 0.958 on the training set. On the validation set, these VOC biomarkers attained a predictive power of 85.71% for sensitivity and 73.08% for specificity, along with an AUC value of 0.875. Clinical risk factors exhibit certain predictive power on ADC and SCC prediction. Integrating these risk factors into the prediction model based on VOC biomarkers can enhance its predictive accuracy. This work indicates that exhaled breath holds the potential to precisely detect ADCs and SCCs. Considering clinical risk factors is essential when differentiating between these two subtypes.


Subject(s)
Breath Tests , Carcinoma, Squamous Cell , Exhalation , Gas Chromatography-Mass Spectrometry , Lung Neoplasms , Volatile Organic Compounds , Humans , Volatile Organic Compounds/analysis , Breath Tests/methods , Male , Female , Middle Aged , Lung Neoplasms/diagnosis , Lung Neoplasms/metabolism , Carcinoma, Squamous Cell/diagnosis , Carcinoma, Squamous Cell/metabolism , Aged , Biomarkers, Tumor/analysis , Adenocarcinoma of Lung/diagnosis , Support Vector Machine , Diagnosis, Differential
16.
Sci Total Environ ; 949: 174878, 2024 Nov 01.
Article in English | MEDLINE | ID: mdl-39047841

ABSTRACT

Earthworms are pivotal in soil ecosystems due to their crucial role in shaping soil characteristics through casts and burrow walls. Previous research has predominantly focused on the direct impact of soil pollution on live earthworms, overlooking the subsequent effects on earthworm-mediated soil, such as casts and burrow walls. Using 2D-terraria as incubation containers and the geophagous earthworm species Metaphire guillelmi, this study assessed the change in various properties of earthworm-mediated soil in both uncontaminated soils and Cd- and Pye-contaminated soils. Overall, both Cd and Pye overall improved the ammonium nitrogen (NH4+-N), Olsen's phosphorus (Olsen-P) levels, and invertase and catalase activities while decreasing catalase activities in earthworm-mediated soil. They also fluctuating affected the pH, soil organic matter (SOM) content, soil urease, alkaline phosphatase activities, and microbial functional genes in the cast and burrow walls. These results indicated that earthworms remained crucial "ecosystem engineers" even in polluted soil. Additionally, differences were observed in the responses of properties between casts and burrow walls, showing unequal contributions of transit-through-gut and burrowing processes to soil modification. Specifically, transit-through-gut was found to have a more significant influence on soil NH4+-N and Olsen-P content compared to burrowing behavior. Regarding the pattern of microbial functional genes in earthworm-associated compartments, results revealed that they differed significantly in casts from those in bulk soil and burrow walls under unpolluted conditions, with pollution-enhancing disparities among compartments. Furthermore, NH4+-N and Olsen-P content, urease, and catalase activities in burrow walls and/or casts were identified as potential biomarkers for soil pollution, exhibiting a clear dose-effect relationship. Developing such biomarkers could address ethical concerns related to conventional earthworm biomarkers that require sacrificing earthworms. This study provides insights into the consequences of soil pollution on earthworm-mediated soil components, highlighting the importance of considering the indirect effects of contaminants on soil ecosystems.


Subject(s)
Cadmium , Oligochaeta , Pyrenes , Soil Pollutants , Soil , Oligochaeta/physiology , Animals , Soil Pollutants/analysis , Soil/chemistry , Cadmium/analysis , Phosphorus/analysis
17.
Chem Biol Interact ; 400: 111165, 2024 Sep 01.
Article in English | MEDLINE | ID: mdl-39059605

ABSTRACT

Acute kidney injury (AKI) is common and an independent risk factor for mortality in patients with paraquat (PQ) poisoning. Currently, no specific antidote is available. Synaptotagmin-1 (SYT1) has been identified as a key protein that facilitates PQ efflux in PQ-resistant A549 cells, thereby preventing PQ-induced lung injury. However, the protective effect of STY1 on PQ-induced AKI remains to be elucidated. This study exposed human kidney 2 (HK-2) cells overexpressing SYT1 to PQ. These cells exhibited significantly lower levels of growth inhibition, reactive oxygen species production, early apoptosis, and PQ accumulation compared to the parent HK-2 cells. Transcriptomic screening and Western blot analysis revealed that SYT1 overexpression significantly promoted the expression of glucose transporter 2 (GLUT2). Inhibition of GLUT2 completely abolished the protective effects of SYT1 overexpression in HK-2 cells and restored intracellular PQ concentrations. Further immunoprecipitation-shotgun and RNA interference experiments revealed that SYT1 binds to and stabilizes the protein SERPINE1 mRNA-binding protein 1 (SERBP1), enhancing the stability of GLUT2 mRNA and its protein levels. In summary, SYT1 antagonizes PQ intracellular accumulation and prevents nephrocyte toxicity by up-regulating SERBP1/GLUT2 expression. This study identifies a potential target for the treatment of PQ-induced AKI.


Subject(s)
Glucose Transporter Type 2 , Paraquat , Synaptotagmin I , Up-Regulation , Humans , Paraquat/toxicity , Synaptotagmin I/metabolism , Synaptotagmin I/genetics , Up-Regulation/drug effects , Cell Line , Glucose Transporter Type 2/metabolism , Glucose Transporter Type 2/genetics , RNA-Binding Proteins/metabolism , RNA-Binding Proteins/genetics , Apoptosis/drug effects , Reactive Oxygen Species/metabolism , Acute Kidney Injury/metabolism , Acute Kidney Injury/chemically induced , Acute Kidney Injury/pathology
18.
Int J Biol Macromol ; 276(Pt 1): 133706, 2024 Sep.
Article in English | MEDLINE | ID: mdl-38981557

ABSTRACT

Main proteases (Mpros) are a class of conserved cysteine hydrolases among coronaviruses and play a crucial role in viral replication. Therefore, Mpros are ideal targets for the development of pan-coronavirus drugs. X77, previously developed against SARS-CoV Mpro, was repurposed as a non-covalent tight binder inhibitor against SARS-CoV-2 Mpro during COVID-19 pandemic. Many novel inhibitors with favorable efficacy have been discovered using X77 as a reference, suggesting that X77 could be a valuable scaffold for drug design. However, the broad-spectrum performance of X77 and underlying mechanism remain less understood. Here, we reported the crystal structures of Mpros from SARS-CoV-2, SARS-CoV, and MERS-CoV, and several Mpro mutants from SARS-CoV-2 variants bound to X77. A detailed analysis of these structures revealed key structural determinants essential for interaction and elucidated the binding modes of X77 with different coronaviral Mpros. The potencies of X77 against these investigated Mpros were further evaluated through molecular dynamic simulation and binding free energy calculation. These data provide molecular insights into broad-spectrum inhibition against coronaviral Mpros by X77 and the similarities and differences of X77 when bound to various Mpros, which will promote X77-based design of novel antivirals with broad-spectrum efficacy against different coronaviruses and SARS-CoV-2 variants.


Subject(s)
Coronavirus 3C Proteases , Molecular Dynamics Simulation , SARS-CoV-2 , SARS-CoV-2/enzymology , SARS-CoV-2/drug effects , Crystallography, X-Ray , Coronavirus 3C Proteases/antagonists & inhibitors , Coronavirus 3C Proteases/chemistry , Coronavirus 3C Proteases/metabolism , Antiviral Agents/chemistry , Antiviral Agents/pharmacology , Humans , Protein Binding , Protease Inhibitors/chemistry , Protease Inhibitors/pharmacology , COVID-19/virology , Severe acute respiratory syndrome-related coronavirus/enzymology , Betacoronavirus/enzymology , Betacoronavirus/drug effects , Middle East Respiratory Syndrome Coronavirus/enzymology , Middle East Respiratory Syndrome Coronavirus/drug effects , Cysteine Endopeptidases/chemistry , Cysteine Endopeptidases/metabolism , Viral Nonstructural Proteins/chemistry , Viral Nonstructural Proteins/antagonists & inhibitors , Viral Nonstructural Proteins/metabolism , Binding Sites , Coronavirus Infections/virology , Coronavirus Infections/drug therapy , Pandemics , Pneumonia, Viral/virology , Pneumonia, Viral/drug therapy
19.
Front Cell Dev Biol ; 12: 1396890, 2024.
Article in English | MEDLINE | ID: mdl-38983788

ABSTRACT

Background: The Juan-Bi decoction (JBD) is a classic traditional Chinese medicines (TCMs) prescription for the treatment of rheumatoid arthritis (RA). However, the active compounds of the JBD in RA treatment remain unclear. Aim: The aim of this study is to screen effective compounds in the JBD for RA treatment using systems pharmacology and experimental approaches. Method: Botanical drugs and compounds in the JBD were acquired from multiple public TCM databases. All compounds were initially screened using absorption, distribution, metabolism, excretion, and toxicity (ADMET) and physicochemical properties, and then a target prediction was performed. RA pathological genes were acquired from the DisGeNet database. Potential active compounds were screened by constructing a compound-target-pathogenic gene (C-T-P) network and calculating the cumulative interaction intensity of the compounds on pathogenic genes. The effectiveness of the compounds was verified using lipopolysaccharide (LPS)-induced RAW.264.7 cells and collagen-induced arthritis (CIA) mouse models. Results: We screened 15 potentially active compounds in the JBD for RA treatment. These compounds primarily act on multiple metabolic pathways, immune pathways, and signaling transduction pathways. Furthermore, in vivo and in vitro experiments showed that bornyl acetate (BAC) alleviated joint damage, and inflammatory cells infiltrated and facilitated a smooth cartilage surface via the suppression of the steroid hormone biosynthesis. Conclusion: We screened potential compounds in the JBD for the treatment of RA using systems pharmacology approaches. In particular, BAC had an anti-rheumatic effect, and future studies are required to elucidate the underlying mechanisms.

20.
Sci Rep ; 14(1): 15604, 2024 Jul 06.
Article in English | MEDLINE | ID: mdl-38971900

ABSTRACT

Enhancing infrared images is essential for detecting wind turbine blades using infrared technology. This paper introduces an Infrared Image Enhancement Method based on Adaptive Iterative Cutoff Threshold Difference Multi-Scale Top-Hat Transformation (AICT-DMTH) to address the challenge of low image clarity in infrared detection. The method involves performing a black-white difference top-hat transformation by utilizing structural elements of varying scales for dilation and erosion. Additionally, an iterative threshold method is applied to extract more detailed image features, followed by setting a cutoff constant to determine the final scale of the structural element. The effectiveness of the proposed method is evaluated both qualitatively and quantitatively, with infrared images from laboratory and wind farm settings enhanced and compared against existing methods. The experimental results indicate that the proposed method significantly improves the clarity of infrared images, demonstrating robustness in enhancing images from various environments.

SELECTION OF CITATIONS
SEARCH DETAIL