Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 313
Filter
1.
Se Pu ; 42(8): 792-798, 2024 Aug.
Article in Chinese | MEDLINE | ID: mdl-39086248

ABSTRACT

Sodium cyclamate in Baijiu is a key item in the China National Food Safety Supervision and Inspection Plan. A simple, economical, sensitive, and reliable method is urgently needed for routine analysis and internal quality control. A method based on high performance liquid chromatography with fluorescence detection (HPLC-FLD) was developed for the determination of sodium cyclamate in Baijiu by o-phthalaldehyde derivatization. First, the sodium cyclamate in the sample solution was converted into amino compounds using the desulfurization reaction under acidic conditions. Next, 400 g/L sodium hydroxide solution was added to the sample solution for neutralization. The amino compounds in the sample solution were then derivatized with o-phthalaldehyde to produce indole-substituted derivatives that are capable of producing fluorescence signals. Separation was carried out on a C18 column (250 mm×4.6 mm, 5 µm) in isocratic elution mode using a mobile phase consisting of acetonitrile and phosphate buffer. Finally, the eluate was monitored using a fluorescence detector, and an external standard method was used for quantification. A good linear relationship was obtained in the range of 0.1-2.0 mg/L, with correlation coefficients greater than 0.999. The average recoveries of sodium cyclamate spiked at levels of 0.1-1.0 mg/kg in Baijiu samples ranged from 90.7% to 100.9%, with relative standard deviations (RSDs) of 3.5%-5.6% (n=6). The limits of detection and quantification were 0.03 and 0.10 mg/kg, respectively. Nine Baijiu samples collected from the market were tested, and the results demonstrated that the contents of sodium cyclamate detected by the developed method were consistent with those obtained using the liquid chromatography-tandem mass spectrometry (LC-MS/MS) method described in GB 5009.97-2016 (the third method). The proposed method is economical, sensitive, specific, and accurate; thus, it provides a basic approach for the determination of sodium cyclamate in Baijiu samples and has great potential for routine analysis in foodstuffs.


Subject(s)
Cyclamates , Fluorometry , Food Contamination , Chromatography, High Pressure Liquid/methods , Food Contamination/analysis , Cyclamates/analysis , Fluorometry/methods
2.
J Orthop Surg Res ; 19(1): 403, 2024 Jul 12.
Article in English | MEDLINE | ID: mdl-38997735

ABSTRACT

BACKGROUND: Intramedullary nail (IMN) and plate fixation are the most commonly used surgical modalities for distal tibia fractures. However, the superiority of their efficacy regarding functional outcomes and complications remains controversial. Here, we performed a systematic review and meta-analysis to compare the efficacy of these two modalities. METHODS: Randomized controlled trials (RCTs) comparing the efficacy of IMN and plate fixation in distal tibia fractures were searched in PubMed, Web of Science, EMBASE, ClinicalTrials.gov, and Cochrane Library up to January 31, 2024. Weighted mean difference (WMD) and odds ratio (OR) with corresponding 95% confidence interval (CI) were estimated using a random-effect model for continuous and categorical outcomes, respectively. RESULTS: A total of 20 RCTs comprising 1528 patients were included. Compared with plate fixation, IMN significantly shortened surgery time (WMD=-10.73 min, 95%CI: -15.93 to -5.52), union time (WMD=-1.56 weeks, 95%CI: -2.82 to -0.30), and partial (WMD=-1.71 weeks, 95%CI: -1.91 to -0.43) and full (WMD=-2.61 weeks, 95%CI: -3.53 to -1.70) weight-bearing time. IMN was associated with markedly reduced risk of wound infection (OR = 0.44, 95%CI: 0.31-0.63) and secondary procedures (OR = 0.72, 95%CI: 0.55-0.95), but increased the risk of malunion (OR = 1.53, 95%CI: 1.02-2.30) and anterior knee pain (OR = 3.94, 95%CI: 1.68-9.28). The rates of nonunion, delayed union, and functional assessment scores did not significantly differ between the two groups. The percentages of patients obtaining an excellent functional outcome or an excellent and good functional outcome post-operation were comparable. CONCLUSIONS: Both IMN and plate fixation are effective modalities for the surgical treatment of distal tibia fractures. IMN seems to be preferred since it confers more advantages, but the elevated rates of malunion and knee pain require attention. The decision on fixation modality should be tailored to the specific fracture, considering these pros and cons.


Subject(s)
Bone Plates , Fracture Fixation, Intramedullary , Randomized Controlled Trials as Topic , Tibial Fractures , Humans , Tibial Fractures/surgery , Fracture Fixation, Intramedullary/methods , Fracture Fixation, Intramedullary/instrumentation , Treatment Outcome , Bone Nails , Operative Time , Male , Female , Middle Aged , Adult , Postoperative Complications/etiology , Postoperative Complications/epidemiology , Postoperative Complications/prevention & control , Fracture Fixation, Internal/methods , Fracture Fixation, Internal/instrumentation
3.
Molecules ; 29(13)2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38999081

ABSTRACT

Abscisic acid (ABA) is one of the many naturally occurring phytohormones widely found in plants. This study focused on refining APAn, a series of previously developed agonism/antagonism switching probes. Twelve novel APAn analogues were synthesized by introducing varied branched or oxygen-containing chains at the C-6' position, and these were screened. Through germination assays conducted on A. thaliana, colza, and rice seeds, as well as investigations into stomatal movement, several highly active ABA receptor antagonists were identified. Microscale thermophoresis (MST) assays, molecular docking, and molecular dynamics simulation showed that they had stronger receptor affinity than ABA, while PP2C phosphatase assays indicated that the C-6'-tail chain extending from the 3' channel effectively prevented the ligand-receptor binary complex from binding to PP2C phosphatase, demonstrating strong antagonistic activity. These antagonists showed effective potential in promoting seed germination and stomatal opening of plants exposed to abiotic stress, particularly cold and salt stress, offering advantages for cultivating crops under adverse conditions. Moreover, their combined application with fluridone and gibberellic acid could provide more practical agricultural solutions, presenting new insights and tools for overcoming agricultural challenges.


Subject(s)
Abscisic Acid , Germination , Molecular Docking Simulation , Abscisic Acid/chemistry , Germination/drug effects , Arabidopsis/drug effects , Arabidopsis/metabolism , Plant Growth Regulators/chemistry , Plant Growth Regulators/pharmacology , Seeds/drug effects , Seeds/chemistry , Seeds/growth & development , Oryza/drug effects , Oryza/metabolism , Oryza/growth & development , Arabidopsis Proteins/antagonists & inhibitors , Arabidopsis Proteins/metabolism , Molecular Dynamics Simulation , Agriculture/methods , Gibberellins/chemistry , Gibberellins/metabolism , Pyridones
4.
Langmuir ; 40(29): 15161-15170, 2024 Jul 23.
Article in English | MEDLINE | ID: mdl-38994660

ABSTRACT

Metal vanadates as negative electrode materials for lithium-ion batteries have attracted widespread attention, attributed to their substantial capacity, broad availability, and exceptional safety. In this study, NiCo2V2O8@NC microspheres featuring a yolk-double shell structure were successfully synthesized via ion exchange reactions and surface deposition techniques, employing metal glycerolate as a template. Owing to the bimetallic cobalt-nickel synergistic effect and the N-doped carbon network, this configuration not only optimizes the pore structure but also enhances conductivity, thereby augmenting the stability of the overall structure. The unique yolk-double shell design significantly enhances the utilization of active components and reduces the ion transport distance, thereby achieving high capacity. Thanks to the synergistic effects of this bimetallic and intricate structure, the material demonstrates exceptional capacity and cycle stability in lithium storage. The initial discharge capacity possesses 1522 mAh g-1 at a current density of 0.2 A g-1, with the reversible capacity still maintained at 1197 mAh g-1 after 100 cycles. In addition, at a high current density of 0.5 A g-1, the initial discharge capacity is 1487 mAh g-1, with a reversible capacity of 747 mAh g-1 maintained after 500 cycles. This study offers a perspective and methodology for the design and fabrication of complex porous double shell nanostructures.

5.
Front Vet Sci ; 11: 1396053, 2024.
Article in English | MEDLINE | ID: mdl-39021407

ABSTRACT

The nutritional benefits of mare milk are attracting increasing consumer interest. Limited availability due to low yield poses a challenge for widespread adoption. Although lysine and threonine are often used to enhance protein synthesis and muscle mass in horses, their impact on mare milk yield and nutrient composition remains underexplored. This study investigated the effects of lysine and threonine supplementation on 24 healthy Yili mares, mares at day 30 of lactation, over a 120-day period. The mares were divided into control and three experimental groups (six mares each) under pure grazing conditions. The control group received no amino acid supplementation, while experimental groups received varying daily doses of lysine and threonine: Group I (40 g lysine + 20 g threonine), Group II (60 g lysine + 40 g threonine), and Group III (80 g lysine + 60 g threonine). Supplementation in Group II notably increased milk yield, while Groups I and II showed higher milk fat percentages, and all experimental groups exhibited improved milk protein percentages. Additionally, blood levels of total protein, albumin, triglycerides, and glucose were reduced. Detailed analyses from Group II at peak lactation (day 60) included targeted metabolomics and microbial sequencing of milk, blood, and fecal samples. Amino acid metabolomics assessed amino acid content in mare milk and serum, while 16S rRNA gene sequencing evaluated rectal microbial composition. The results indicated that lysine and threonine supplementation significantly increased levels of threonine and creatine in the blood, and lysine, threonine, glutamine, and alanine in mare milk. Microbial analysis revealed a higher prevalence of certain bacterial families and genera, including Prevotellaceae, p_251_o5, and Rikenellaceae at the family level, and unclassified_p_251_o5, Prevotellaceae_UCG_001, and Rikenellaceae_RC9_gut_group at the genus level. Multi-omics analysis showed positive correlations between specific fecal genera and amino acids in mare milk. For instance, Prevotellaceae_UCG_003, unclassified Bacteroidetes_BS11_gut_group, and Corynebacterium were positively correlated with lysine, while unclassified Prevotellaceae was positively correlated with alanine and threonine, and Unclassified_Bacteroidales_BS11_gut_group was positively correlated with glutamine. In summary, lysine and threonine supplementation in grazing lactating mares enhanced milk production and improved milk protein and fat quality. It is recommended that herders, veterinarians, and technicians consider amino acid content in the diet of lactating mares. The optimal supplementation levels under grazing conditions for Yili horses were determined to be 60 g lysine and 40 g threonine per day. Future research should explore the molecular mechanisms by which these amino acids influence milk protein and lipid synthesis in mare mammary epithelial cells.

6.
Article in English | MEDLINE | ID: mdl-39027983

ABSTRACT

Panax notoginseng has the effect of stimulating circulation to end stasis. Our study was designed to evaluate the anti-thrombotic effect of protoparaxotriol saponins (PTS) from Panax notoginseng and the involved mechanisms. A thrombosis model was constructed, and the anti-thrombotic activity of PTS was determined by erythrocyte staining, heart rate, and blood flow velocity. In addition, quantitative real-time polymerase chain reaction (qPCR) was used to identify changes in the expression of genes related to coagulation, inflammation, and apoptosis. PTS alleviated arachidonic acid (AA)-induced caudal vein thrombosis, restored blood flow, and increased the area of cardiac erythrocyte staining, heart rate and blood flow velocity. It reduced the ponatinib-induced cerebral thrombus area and decreased the intensity of erythrocyte staining. The qPCR data showed that the anti-thrombotic effect of PTS was mediated by suppression of genes related to coagulation, inflammation and apoptosis, and also involved inhibition of NF-κB and PI3K/Akt pathways.

7.
Phytochemistry ; 226: 114220, 2024 Jul 10.
Article in English | MEDLINE | ID: mdl-38997099

ABSTRACT

Fourteen undescribed nitrogenous merosesquiterpenoids, purpurols A-D (1-4) and puraminones A-J (5-14), along with three known related compounds (15-17) were isolated from the sponge Pseudoceratina purpurea collected in the South China Sea. Their structures and absolute configurations were unambiguously elucidated by a combination of spectroscopic data, X-ray diffraction analysis, electronic circular dichroism calculations, and chemical derivatization. Purpurols A-D (1-4) incorporated nitrogenous heterocycles, compounds 1 and 2 feature an unusual benzothiazole ring, while 3 and 4 feature benzoxazole ring. Puraminones A-J (5-14) represent sesquiterpenoid aminoquinones with different amine and amino acid side chains at C-20. Additionally, twenty unreported sesquiterpenoid aminoquinone analogues were obtained through chemical derivatization. It is worth noting that all compounds are featured with unusual rearranged 4,9-friedodrimane subunit. In the bioassays, purpurols A and B showed weak anti-inflammation in zebrafish, as well as some compounds showed activities against tumor cells, therefore, preliminary structure-cytotoxicity relationships are also discussed.

8.
Front Microbiol ; 15: 1358783, 2024.
Article in English | MEDLINE | ID: mdl-38939186

ABSTRACT

Exploring the bacterial community in the S. glauca rhizosphere was of great value for understanding how this species adapted to the saline-alkali environment and for the rational development and use of saline-alkali soils. In this study, high-throughput sequencing technology was used to investigate the diversity characteristics and distribution patterns of soil bacterial communities in the rhizosphere of S.glauca-dominated communities in the Hetao Irrigation Distract, Inner Mongolia, China. The relationships among bacterial characteristics, soil physicochemical properties and vegetation in four sampling sites were analyzed. The soil bacterial communities in the rhizosphere of S. glauca-dominated communities were mainly composed of 16 phyla (i.e., Proteobacteria, Actinobacteria, Bacteroidetes, Gemmatimonadetes, Chloroflexi, Acidobacteria, Firmicutes, Planctomycetes, Deinococcus-Thermus, Verrucomicrobia, Saccharibacteria, Cyanobacteria, Nitrospirae, JL-ETNP-Z39, Parcubacteria and Chlorobi), and these populations accounted for more than 99% of the total bacterial community. At the genus level, the main bacterial communities comprised Halomonas, Nitriliruptor, Euzebya and Pelagibius, which accounted for 15.70% of the total bacterial community. An alpha diversity analysis indicated that the richness and diversity of rhizosphere soil bacteria differed significantly among the sampling sites, and the bacterial richness and diversity indices of severe saline-alkali land were higher than those of light and moderate saline-alkali land. The principal component analysis (PCA) and linear discriminant analysis effect size (LEfSe) showed significant differences in the species composition of the rhizosphere soil bacterial community among different sampling sites. A correlation analysis showed that the number of bacterial species exhibited the highest correlation with the soil water content (SWC). The richness and evenness indices were significantly correlated with the SWC and SO4 2-, K+ and Mg2+ concentrations. The electrical conductivity (EC), soluble ions (Na+, CO3 2- + HCO3 -, K+, Ca2+, Mg2+, and SO4 2+), SWC and vegetation coverage (VC) were the main drivers affecting the changes in its community structure. The bacterial community in the rhizosphere of S. glauca enhanced the adaptability of S. glauca to saline-alkali environment by participating in the cycling process of nutrient elements, the decomposition of organic matter and the production of plant growth regulating substances. These results provided a theoretical reference for further study on the relationship among rhizosphere soil microorganisms and salt tolerance in halophytes.

9.
Heliyon ; 10(11): e31920, 2024 Jun 15.
Article in English | MEDLINE | ID: mdl-38882383

ABSTRACT

This study conducted experimental analyses on a 280 Ah single lithium iron phosphate battery using an independently constructed experimental platform to assess the efficacy of compressed nitrogen foam in extinguishing lithium-ion battery fires. Based on theoretical analysis, the fire-extinguishing effects of compressed nitrogen foam at different outlet pressures from foam mixture tanks were analyzed, examining factors such as battery surface temperature, flame temperature, and thermal weight loss. The results indicate that the compressed nitrogen foam can extinguish the open flame of the battery in 14 s at 0.7 MPa, with the battery's surface temperature dropping by approximately 11 % before and after the application of the extinguishing agent. Compared with other commonly used extinguishing agents, the compressed nitrogen foam demonstrates superior extinguishing efficiency, but its cooling efficiency is somewhat lower. At pressures ranging from 0.4 to 0.6 MPa, the foam displays prolonged drainage time and sustained cooling effects, rendering it more suitable for lithium-ion battery fire scenarios. To address the issue of reduced cooling performance during later stages of fire suppression by compressed nitrogen foam, an intermittent injection approach has been proposed to effectively preserve its cooling efficacy.

10.
Sci Data ; 11(1): 625, 2024 Jun 13.
Article in English | MEDLINE | ID: mdl-38871800

ABSTRACT

Recent research in computational imaging largely focuses on developing machine learning (ML) techniques for image recognition in the medical field, which requires large-scale and high-quality training datasets consisting of raw images and annotated images. However, suitable experimental datasets for cervical spine X-ray are scarce. We fill the gap by providing an open-access Cervical Spine X-ray Atlas (CSXA), which includes 4963 raw PNG images and 4963 annotated images with JSON format (JavaScript Object Notation). Every image in the CSXA is enriched with gender, age, pixel equivalent, asymptomatic and symptomatic classifications, cervical curvature categorization and 118 quantitative parameters. Subsequently, an efficient algorithm has developed to transform 23 keypoints in images into 77 quantitative parameters for cervical spine disease diagnosis and treatment. The algorithm's development is intended to assist future researchers in repurposing annotated images for the advancement of machine learning techniques across various image recognition tasks. The CSXA and algorithm are open-access with the intention of aiding the research communities in experiment replication and advancing the field of medical imaging in cervical spine.


Subject(s)
Algorithms , Cervical Vertebrae , Machine Learning , Humans , Cervical Vertebrae/diagnostic imaging , Radiography , Male , Female
11.
Hematology ; 29(1): 2360339, 2024 Dec.
Article in English | MEDLINE | ID: mdl-38828919

ABSTRACT

BACKGROUND: Hemolytic disease of the newborn (HDN) is a common condition that can have a severe impact on the health of newborns due to the hemolytic reactions it triggers. Although numerous studies have focused on understanding the pathogenesis of HDN, there are still many unanswered questions. METHODS: In this retrospective study, serum samples were collected from 15 healthy newborns and 8 infants diagnosed with hemolytic disease. The relationship between different metabolites and various IgG subtypes in Healthy, HDN and BLI groups was studied by biochemical technique and enzyme-linked immunosorbent assay (ELISA). Metabolomics analysis was conducted to identify the differential metabolites associated with HDN. Subsequently, Pearson's correlation analysis was used to determine the relation of these differential metabolites with IgG isoforms. The relationship between the metabolites and IgG subtypes was observed after treatment. RESULTS: The study results revealed that infants with hemolytic disease exhibited abnormal elevations in TBA, IgG1, IgG2a, IgG2b, IgG3, and IgG4 levels when compared to healthy newborns. Additionally, differences in metabolite contents were also observed. N, N-DIMETHYLARGININE showed negative correlations with TBA, IgG1, IgG2a, IgG2b, IgG3, and IgG4, while 2-HYDROXYBUTYRATE, AMINOISOBUTANOATE, Inosine, and ALLYL ISOTHIOCYANATE exhibited positive correlations with TBA, IgG1, IgG2a, IgG2b, IgG3, and IgG4. Through metabolomics-based research, we have discovered associations between differential metabolites and different IgG isoforms during the onset of HDN. CONCLUSION: These findings suggest that changes in metabolite and IgG isoform levels are linked to HDN. Understanding the involvement of IgG isoforms and metabolites can provide valuable guidance for the diagnosis and treatment of HDN.


Subject(s)
Immunoglobulin G , Metabolomics , Protein Isoforms , Humans , Immunoglobulin G/blood , Infant, Newborn , Metabolomics/methods , Female , Male , Retrospective Studies , Erythroblastosis, Fetal/blood , Erythroblastosis, Fetal/metabolism , Erythroblastosis, Fetal/diagnosis
12.
ACS Appl Bio Mater ; 7(6): 4051-4061, 2024 Jun 17.
Article in English | MEDLINE | ID: mdl-38790078

ABSTRACT

Hyperlipidemia has been a huge challenge to global health, leading to the cardiovascular disease, hypertension, and diabetes. Atorvastatin calcium (AC), a widely prescribed drug for hyperlipidemia, faces huge challenges with oral administration due to poor water solubility and hepatic first-pass effects, resulting in low therapeutic efficacy. In this work, we designed and developed a hybrid microneedle (MN) patch system constructed with soluble poly(vinyl alcohol) (PVA) and AC-loaded polymeric micelles (AC@PMs) for transdermal delivery of AC to enhance the hyperlipidemia therapy. We first prepared various AC@PM formulations self-assembled from mPEG-PLA and mPEG-PLA-PEG block copolymers using a dialysis method and evaluated the physicochemical properties in combination with experiment skills and dissipative particle dynamics (DPD) simulations. Then, we encapsulated the AC@PMs into the PVA MN patch using a micromold filling method, followed by characterizing the performances, especially the structural stability, mechanical performance, and biosafety. After conducting in vivo experiments using a hyperlipidemic rat model, our findings revealed that the hybrid microneedle-mediated administration exhibited superior therapeutic efficacy when compared to oral delivery methods. In summary, we have successfully developed a hybrid microneedle (MN) patch system that holds promising potential for the efficient transdermal delivery of hydrophobic drugs.


Subject(s)
Administration, Cutaneous , Atorvastatin , Hyperlipidemias , Micelles , Needles , Hyperlipidemias/drug therapy , Animals , Atorvastatin/chemistry , Atorvastatin/administration & dosage , Atorvastatin/pharmacology , Rats , Particle Size , Biocompatible Materials/chemistry , Polymers/chemistry , Materials Testing , Rats, Sprague-Dawley , Drug Delivery Systems , Male
13.
ChemSusChem ; : e202400091, 2024 Apr 16.
Article in English | MEDLINE | ID: mdl-38623692

ABSTRACT

Transition metal oxides (TMOs) are highly dense in energy and considered as promising anode materials for a new generation of alkaline ion batteries. However, their electrode structure is disrupted due to significant volume changes during charging and discharging, resulting in the short cycle life of batteries. In this paper, the hierarchical Ni3V2O8@N-doped carbon (Ni3V2O8@NC) hollow double-shell microspheres were prepared and used as electrode materials for lithium-ion batteries (LIBs). The utilization efficiency and ion transfer rate of Ni3V2O8 were improved by the hollow microsphere structure formed through nanoparticle self-assembly. Furthermore, the uniform N-doped carbon layer not only enhanced the structural stability of Ni3V2O8, but also improved the overall electrical conductivity of the composite. The Ni3V2O8@NC electrode has an initial discharge capacity of up to 1167.3 mAh g-1 at a current density of 0.3 A g-1, a reversible capacity of up to 726.5 mAh g-1 after 200 cycles, and still has a capacity of 567.6 mAh g-1 after 500 cycles at a current density of 1 A g-1, indicating that the material has good cycle stability and high-rate capability. This work presents new findings on the design and fabrication of complex porous double-shell nanostructures.

14.
Infect Drug Resist ; 17: 1291-1301, 2024.
Article in English | MEDLINE | ID: mdl-38576824

ABSTRACT

Objective: Staphylococcus haemolyticus can cause a series of infections including otitis media (OM), and the oxacillin-resistant S. haemolyticus has become a serious health concern. This study aimed to investigate the genomic characteristics of two strains of oxacillin-resistant and mecA-positive S. haemolyticus isolated from the samples of ear swabs from patients with OM and explore their acquired antibiotic resistance genes (ARGs) and the mobile genetic elements (MGEs). Methods: Two oxacillin-resistant S. haemolyticus strains, isolated from ear swab samples of patients with OM, underwent antimicrobial susceptibility evaluation, followed by whole-genome sequencing. The acquired ARGs and the MGEs carried by the ARGs, harbored by the genomes of two strains of S. haemolyticus were identified. Results: The two strains of oxacillin-resistant S. haemolyticus (strain SH1275 and strain SH9361) both carried the genetic contexts of mecA with high similarity with the SCCmec type V(5C2&5) subtype c. Surprisingly, the chromosomal aminoglycoside resistance gene aac(6')-aph(2") harbored by S. haemolyticus strain SH936 was flanked by two copies of IS256, forming the IS256-element (IS256-GNAT-[aac(6')-aph(2")]-IS256), which was widely present in strains of both Staphylococcus and Enterococcus genus. Furthermore, the two strains of oxacillin-resistant and MDR S. haemolyticus were found to harbor antimicrobial resistance plasmids, including one 26.9-kb plasmid (pSH1275-2) containing msr(A)-mph(C)) and qacA, one mobilizable plasmid pSH1275-3 harboring vga(A)LC, one plasmid (pSH9361-1) carrying erm(C), and one plasmid (pSH9361-2) carrying qacJ. Conclusion: The systematic analysis of whole-genome sequences provided insights into the mobile genetic elements responsible for multi-drug resistance in these two strains of oxacillin-resistant and mecA-positive S. haemolyticus, which will assist clinicians in devising precise, personalized, and clinical therapeutic strategies for treating otitis media caused by multi-drug resistant S. haemolyticus.

15.
J Agric Food Chem ; 2024 Apr 10.
Article in English | MEDLINE | ID: mdl-38597654

ABSTRACT

Abscisic acid (ABA), a phytohormone, and its analogs have been found to enhance plant resistance to various biotic and abiotic stresses, particularly drought, by activating the ABA signaling pathway. This study used a combination of structure-directed design and molecular docking screening methods to synthesize a novel series of opabactin (OP) analogs. Among them, compounds 4a-4d and 5a showed comparable or superior activity to OP in bioassays, including seed germination and seedling growth inhibition in A. thaliana and rice, stomatal closure, and drought resistance in wheat and soybean. Further transcriptome analysis revealed distinct mechanisms of action between compound 4c and iso-PhABA in enhancing drought tolerance in A. thaliana. These findings highlight the application prospect of 4c and its analogs in agricultural cultivation, particularly in drought resistance. Additionally, they provide new insights into the mechanisms by which different ABA receptor agonists enhance drought resistance.

16.
Molecules ; 29(8)2024 Apr 22.
Article in English | MEDLINE | ID: mdl-38675723

ABSTRACT

Silibinin is a flavonoid compound extracted from the seeds of Silybum marianum (L.) Gaertn. It has the functions of liver protection, blood-lipid reduction and anti-tumor effects. However, the potential molecular mechanism of silibinin against tumors is still unknown. This study aimed to assess the anti-tumor effects of silibinin in adenoid cystic carcinoma (ACC2) cells and Balb/c nude mice, and explore its potential mechanism based on network pharmacology prediction and experimental verification. A total of 347 targets interacting with silibinin were collected, and 75 targets related to the tumor growth process for silibinin were filtrated. Based on the PPI analysis, CASP3, SRC, ESR1, JAK2, PRKACA, HSPA8 and CAT showed stronger interactions with other factors and may be the key targets of silibinin for treating tumors. The predicted target proteins according to network pharmacology were verified using Western blot analysis in ACC2 cells and Balb/c nude mice. In the pharmacological experiment, silibinin was revealed to significantly inhibit viability, proliferation, migration and induce the apoptosis of ACC2 cells in vitro, as well as inhibit the growth and development of tumor tissue in vivo. Western blot analysis showed that silibinin affected the expression of proteins associated with cell proliferation, migration and apoptosis, such as MMP3, JNK, PPARα and JAK. The possible molecular mechanism involved in cancer pathways, PI3K-Akt signaling pathway and viral carcinogenesis pathway via the inhibition of CASP3, MMP3, SRC, MAPK10 and CDK6 and the activation of PPARα and JAK. Overall, our results provided insight into the pharmacological mechanisms of silibinin in the treatment of tumors. These results offer a support for the anti-tumor uses of silibinin.


Subject(s)
Apoptosis , Cell Proliferation , Network Pharmacology , Silybin , Silybin/pharmacology , Animals , Mice , Cell Proliferation/drug effects , Humans , Apoptosis/drug effects , Cell Line, Tumor , Mice, Nude , Xenograft Model Antitumor Assays , Mice, Inbred BALB C , Cell Movement/drug effects , Signal Transduction/drug effects , Cell Survival/drug effects , Antineoplastic Agents, Phytogenic/pharmacology , Antineoplastic Agents, Phytogenic/chemistry , Antineoplastic Agents/pharmacology
17.
Mar Drugs ; 22(4)2024 Mar 27.
Article in English | MEDLINE | ID: mdl-38667765

ABSTRACT

Marine natural products are important sources of novel drugs. In this study, we isolated 4-hydroxyphenylacetic acid (HPA) from the marine-derived fungus Emericellopsis maritima Y39-2. The antithrombotic activity and mechanism of HPA were reported for the first time. Using a zebrafish model, we found that HPA had a strong antithrombotic activity because it can significantly increase cardiac erythrocytes, blood flow velocity, and heart rate, reduce caudal thrombus, and reverse the inflammatory response caused by Arachidonic Acid (AA). Further transcriptome analysis and qRT-PCR validation demonstrated that HPA may regulate autophagy by inhibiting the PI3K/AKT/mTOR signaling pathway to exert antithrombotic effects.


Subject(s)
Autophagy , Fibrinolytic Agents , Phenylacetates , Zebrafish , Animals , Phenylacetates/pharmacology , Autophagy/drug effects , Fibrinolytic Agents/pharmacology , Signal Transduction/drug effects , Biological Products/pharmacology , Thrombosis/drug therapy , Disease Models, Animal , Aquatic Organisms
18.
Int. j. morphol ; 42(2): 462-469, abr. 2024. ilus, graf
Article in English | LILACS | ID: biblio-1558146

ABSTRACT

SUMMARY: Traumatic ankle osteoarthritis is a degenerative condition resulting from traumatic injuries. The objective of this study was to evaluate the impact of minimally invasive ankle joint fusion surgery on ankle function, oxidative damage, and inflammatory factor levels in traumatic ankle osteoarthritis patients. A total of 112 traumatic ankle osteoarthritis patients treated in our hospital from January 2022 to January 2023 were enrolled. They were randomly rolled into a control group (Group C) and an experimental group (Group E), with the former undergoing conventional open ankle joint fusion surgery and the latter receiving minimally invasive ankle joint fusion surgery. A comparison was made between the two groups based on American Orthopedic Foot and Ankle Society (AOFAS), bony fusion rates, and visual analog scale (VAS) scores at pre-operation, and at 1, 2, and 3 months post-operation. Additionally, serum oxidative damage indicators and inflammatory factor levels were measured to evaluate the recovery effects in both groups. Relative to Group C, Group E showed drastically increased AOFAS scores and bony fusion rates (P<0.05), as well as greatly decreased VAS scores (P<0.05). Moreover, Group E exhibited more pronounced improvements in oxidative damage indicators and inflammatory factors versus Group C (P<0.05). Minimally invasive ankle joint fusion surgery drastically improves ankle function in traumatic ankle osteoarthritis patients and reduces levels of oxidative damage and inflammatory response. This provides an important clinical treatment option.


La osteoartritis traumática del tobillo es una afección degenerativa resultante de lesiones traumáticas. El objetivo de este estudio fue evaluar el impacto de la cirugía mínimamente invasiva de fusión de la articulación talocrural sobre la función del tobillo, el daño oxidativo y los niveles de factor inflamatorio en pacientes con osteoartritis traumática del tobillo. Se inscribieron un total de 112 pacientes con artrosis traumática de tobillo tratados en nuestro hospital desde enero de 2022 hasta enero de 2023. Fueron divididos aleatoriamente en un grupo de control (Grupo C) y un grupo experimental (Grupo E), donde el primero se sometió a una cirugía de fusión de la articulación talocrural abierta convencional y el segundo recibió una cirugía de fusión de la articulación talocrural mínimamente invasiva. Se realizó una comparación entre los dos grupos según la Sociedad Estadounidense de Ortopedia de Pie y Tobillo (AOFAS), las tasas de fusión ósea y las puntuaciones de la escala visual analógica (EVA) antes de la operación y 1, 2 y 3 meses después de la operación. Además, se midieron los indicadores de daño oxidativo sérico y los niveles de factor inflamatorio para evaluar los efectos de la recuperación en ambos grupos. En relación con el grupo C, el grupo E mostró puntuaciones AOFAS y tasas de fusión ósea drásticamente aumentadas (P <0,05), así como puntuaciones VAS muy disminuidas (P <0,05). Además, el grupo E exhibió mejoras más pronunciadas en los indicadores de daño oxidativo y factores inflamatorios en comparación con el grupo C (P <0,05). La cirugía de fusión de la articulación talocrural mínimamente invasiva mejora drásticamente la función del tobillo en pacientes con osteoartritis traumática del tobillo y reduce los niveles de daño oxidativo y la respuesta inflamatoria. Esto proporciona una importante opción de tratamiento clínico.


Subject(s)
Humans , Male , Female , Middle Aged , Aged , Osteoarthritis/surgery , Arthrodesis/methods , Ankle Injuries/surgery , Osteoarthritis/etiology , Ankle Injuries/complications , Oxidative Stress , Minimally Invasive Surgical Procedures , Inflammation , Ankle/physiopathology , Ankle Joint/surgery
19.
Biomater Sci ; 12(9): 2394-2407, 2024 Apr 30.
Article in English | MEDLINE | ID: mdl-38502151

ABSTRACT

Particles with a porous structure can lead to quick hemostasis and provide a good matrix for cell proliferation during wound healing. Recently, many particle-based wound healing materials have been clinically applied. However, these products show good hemostatic ability but with poor wound healing ability. To solve this problem, this study fabricated APGG composite particles using yeast ß-glucan (obtained from Saccharomyces cerevisiae), sodium alginate, and γ-polyglutamic acid as the starting materials. The structure of yeast ß-glucan was modified with many carboxymethyl groups to obtain carboxymethylated ß-glucan, which could coordinate with Ca2+ ions to form a crosslinked structure. A morphology study indicated that the APGG particles showed an irregular spheroidal structure with a low density (<0.1 g cm-3) and high porosity (>40%). An in vitro study revealed that the particles exhibited a low BCI value, low hemolysis ratio, and good cytocompatibility against L929 cells. The APGG particles could quickly stop bleeding in a mouse liver injury model and exhibited better hemostatic ability than the commercially available product Celox. Furthermore, the APGG particles could accelerate the healing of non-infected wounds, and the expression levels of CD31, α-SMA, and VEGF related to angiogenesis were significantly enhanced.


Subject(s)
Alginates , Hemostasis , Polyglutamic Acid , Polyglutamic Acid/analogs & derivatives , Saccharomyces cerevisiae , Wound Healing , beta-Glucans , Animals , Wound Healing/drug effects , Alginates/chemistry , Alginates/pharmacology , Polyglutamic Acid/chemistry , Polyglutamic Acid/pharmacology , beta-Glucans/chemistry , beta-Glucans/pharmacology , Mice , Hemostasis/drug effects , Cell Line , Hemostatics/pharmacology , Hemostatics/chemistry , Hemostatics/administration & dosage , Biocompatible Materials/chemistry , Biocompatible Materials/pharmacology , Male
20.
Front Vet Sci ; 11: 1339940, 2024.
Article in English | MEDLINE | ID: mdl-38482164

ABSTRACT

The objective of this study was to examine the effects of supplemental ß-alanine feeding on the athletic performance of Yili horses involved in speed racing, focusing on alterations in plasma free amino acid patterns pre and post exercise. Additionally, the research aimed to evaluate the effects of carnosine on the plasma acid-base buffering capacity and antioxidant levels in these horses. Twelve Yili horse stallions, averaging 3 years in age and 346.50 ± 21.39 kg in weight, were chosen and randomly divided into two groups: a control group and a test group, each comprising six horses. The control group received a supplementation of 300 mg/kg BW/day of α-alanine, while the test group received 300 mg/kg BW/day of ß-alanine. This supplementation regimen was maintained for a 30-day supplementation trial period, under identical feeding and management conditions. Throughout the trial, the horses participated in the 1,000 Speed Race, and three distinct blood samples were gathered for assessing plasma free amino acids, blood gases, biochemical parameters, and antioxidant parameters. The outcomes indicated a considerable enhancement in the 1,000 m exercise performance of the speed racing Yili horses in the test group compared to the control group, showcasing a noteworthy improvement of 12.01%, with the test group completing the race 13.29 s faster. Notably, the α-alanine content in the plasma of the control group Yili horses remained higher than that of the test group, demonstrating a consistent increasing trend. By contrast, the plasma ß-alanine content was notably higher in the test group than in the control group. Over the course of the supplementation period, plasma ß-alanine exhibited an escalating and then stabilizing trend in the test group, whereas in the control group, although ß-alanine content also increased, the trend was less pronounced. The plasma levels of histidine and carnosine showed minimal variance between the two groups. Overall, the test group of Yili horses exhibited slightly higher plasma levels of histidine and carnosine compared to the control group. The addition of ß-alanine to their diet for a duration of 30 days notably affected the plasma levels of amino acids both pre- and post-exercise in speed-racing Yili horses. Furthermore, ß-alanine demonstrated an inhibitory effect on the catabolism of these horses' bodies during high-intensity exercise. Ten marker amino acids, including valine, leucine, ß-alanine, isoleucine, carnosine, 3-methyl-histidine, lysine, ethanolamine, argnine, and taurine, displayed statistically significant changes. ß-alanine notably increased the blood glucose levels of Yili horses and played a role in expediting the restoration of blood gas levels post-exercise. Moreover, in the test group of Yili horses, the levels of superoxide dismutase, glutathione peroxidase, and total antioxidant capacity significantly increased both before and after the race, while the content of malondialdehyde, an oxidation product, exhibited an extremely significant decrease immediately after the race. These outcomes suggest that the addition of ß-alanine significantly augmented antioxidant levels during high-intensity exercise in Yili horses. Consequently, it reduced post-exercise injuries and accelerated the recovery process after exercise.

SELECTION OF CITATIONS
SEARCH DETAIL