Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Water Res ; 262: 122131, 2024 Jul 21.
Article in English | MEDLINE | ID: mdl-39067277

ABSTRACT

Bisphenol S (BPS), a widely used plasticizer, is known to have potential endocrine disrupting effects to organisms. Its tetrahalogenated derivatives, tetrachlorobisphenol S (TCBPS) and tetrabromobisphenol S (TBBPS), are flame retardants exhibiting high neurodevelopmental toxicity and cytotoxicity. Halogen substitution has been shown to significantly affect the optical and photochemical properties of organic compounds. In this study, we conducted a comparative investigation into the photochemical behaviors of BPS, TCBPS, and TBBPS in aqueous solutions under both laboratory UV and natural sunlight irradiation. Spectroscopic titration results indicated that the pKa of TCBPS (4.16) and TBBPS (4.13) are approximately 3.7 units smaller than that of BPS (7.85), indicating that the halogenated derivatives are mainly present as the phenolate anions under circumneutral conditions. The halogen substituents also cause a significant bathochromic shift in the absorption spectra of TCBPS and TBBPS compared to BPS, leading to the enhanced absorption of sunlight. Meanwhile, TCBPS and TBBPS showed higher quantum yields than BPS, attributed to the "heavy atom" effect of halogen substituents. GCSOLAR modeling predicted half-lives for BPS, TCBPS, and TBBPS in surface water in Nanjing (32°2'7.3''N, 118°50'21''E) under noon sunlight in clear mid-autumn days as 810.2, 3.4, and 0.7 min, respectively. Toxicity evaluation suggest potential ecological risks of BPS/TCBPS/TBBPS and their photoproducts to aquatic organisms. Our findings highlight direct photolysis as an important mechanism accounting for the attenuation of tetrahalogenated bisphenols in both sunlit surface waters and UV based water treatment processes.engineered (e.g., UV disinfection) and natural aquatic environments (e.g., surface fresh waters).

2.
J Hazard Mater ; 474: 134841, 2024 Aug 05.
Article in English | MEDLINE | ID: mdl-38852251

ABSTRACT

Photochemical transformation is an important attenuation process for the non-steroidal anti-inflammatory drug naproxen (NPX) in both engineered and natural waters. Herein, we investigated the photolysis of NPX in aqueous solution exposed to both ultraviolet (UV, 254 nm) and natural sunlight irradiation. Results show that N2 purging significantly promoted NPX photolysis under UV irradiation, suggesting the formation of excited triplet state (3NPX*) as a critical transient. This inference was supported by benzophenone photosensitization and transient absorption spectra. Sunlight quantum yield of NPX was only one fourteenth of that under UV irradiation, suggesting the wavelength-dependence of NPX photochemistry. 3NPX* formed upon irradiation of NPX underwent photodecarboxylation leading to the formation of 2-(1-hydroxyethyl)-6-methoxynaphthalene (2HE6MN), 2-(1-hydroperoxyethyl)-6-methoxynaphthalene (2HPE6MN), and 2-acetyl-6-methoxynaphthalene (2A6MN). Notably, the conjugation and spin-orbit coupling effects of carbonyl make 2A6MN a potent triplet sensitizer, therefore promoting the photodegradation of the parent NPX. In hospital wastewater, the photolysis of NPX was influenced because the photoproduct 2A6MN and wastewater components could competitively absorb photons. Bioluminescence inhibition assay demonstrated that photoproducts of NPX exhibited higher toxicity than the parent compound. Results of this study provide new insights into the photochemical behaviors of NPX during UV treatment and in sunlit surface waters.


Subject(s)
Anti-Inflammatory Agents, Non-Steroidal , Naproxen , Photolysis , Sunlight , Ultraviolet Rays , Water Pollutants, Chemical , Naproxen/chemistry , Naproxen/radiation effects , Water Pollutants, Chemical/chemistry , Water Pollutants, Chemical/radiation effects , Water Pollutants, Chemical/toxicity , Anti-Inflammatory Agents, Non-Steroidal/chemistry , Anti-Inflammatory Agents, Non-Steroidal/radiation effects , Benzophenones/chemistry , Benzophenones/radiation effects , Photosensitizing Agents/chemistry , Photosensitizing Agents/radiation effects
3.
Environ Pollut ; 345: 123458, 2024 Mar 15.
Article in English | MEDLINE | ID: mdl-38290656

ABSTRACT

Indirect photolysis induced by naturally occurring sensitizers constitutes an important pathway accounting for the transformation and fate of many recalcitrant micropollutants in sunlit surface waters. However, the photochemical transformation of micropollutants by photosensitizing pharmaceuticals has been less investigated. In this study, we demonstrated that the non-steroidal anti-inflammatory drug ketoprofen (KTF) and its photoproducts, 3-acetylbenzophenone (AcBP) and 3-ethylbenzophenone (EtBP), could sensitize the photodegradation of coexisting sulfonamide antibiotics, e.g., sulfamethoxazole (SMX), under artificial 365 nm ultraviolet (UV) and sunlight irradiation. Key reactive species including triplet excited state and singlet oxygen (1O2) responsible for photosensitization were identified by laser flash photolysis (LFP) and electron paramagnetic resonance (EPR) techniques, respectively. High-resolution mass spectrometry (HRMS) and structure-related reactivity analyses revealed that the sensitized photolysis of SMX occurred mainly through single electron transfer. The rate constants of sulfonamides sensitized by AcBP photolysis followed the order of sulfisoxazole (SIX)>sulfathiazole (STZ)>SMX>sulfamethizole (SMT). Exposure to sunlight also enhanced the photolysis of SMX in the presence of KTF or AcBP, and water matrix had limited impact on such process. Overall, our results reveal the feasibility and mechanistic aspects of photosensitization of coexisting contaminants by pharmaceuticals (or their photoproducts) and provide new insights into the cocktail effects of pharmaceutical mixtures on their photochemical behaviors in aqueous environment.


Subject(s)
Ketoprofen , Water Pollutants, Chemical , Anti-Bacterial Agents/analysis , Photolysis , Sulfonamides/chemistry , Sulfanilamide/analysis , Sulfamethoxazole/analysis , Water , Pharmaceutical Preparations , Water Pollutants, Chemical/analysis
4.
Water Res ; 243: 120366, 2023 Sep 01.
Article in English | MEDLINE | ID: mdl-37494746

ABSTRACT

Trace organic contaminants usually go through multiple treatment units in a modern water treatment train. Structural modification triggered by pretreatment (e.g., prechlorination) may influence the further transformation and fate of contaminants in downstream units. However, knowledge on this aspect is still limited. In this contribution, we investigated the chlorination of chloroxylenol (PCMX), an antimicrobial agent extensively used during COVID-19 pandemic, and the photoreactivity of its halogenated derivatives. Results indicate that chlorination of PCMX mainly proceeded through electrophilic substitution to give chlorinated products, including Cl- and 2Cl-PCMX. The presence of bromide (Br-) resulted in brominated analogues. Owing to the bathochromic and "heavy atom" effects of halogen substituents, these products show increased light absorption and photoreactivity. Toxicity evaluation suggest that these halo-derivatives have higher persistence, bioaccumulation, and toxicity (PBT) than the parent PCMX. Results of this contribution advance our understanding of the transformation of PCMX during chlorination and the photochemical activity of its halogenated derivatives in subsequent UV disinfection process or sunlit surface waters.


Subject(s)
COVID-19 , Disinfectants , Water Pollutants, Chemical , Water Purification , Humans , Halogenation , Pandemics , Water Pollutants, Chemical/chemistry , Disinfection/methods , Disinfectants/chemistry , Water Purification/methods
SELECTION OF CITATIONS
SEARCH DETAIL