Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 841
Filter
1.
J Chromatogr A ; 1732: 465200, 2024 Jul 20.
Article in English | MEDLINE | ID: mdl-39096780

ABSTRACT

A covalent organic framework (COF) was gown on porous silica with 1,3,5-tri(4-aminophenyl)benzene and 2,5-divinyl-1,4-phenyldiformaldehyde as monomers, and two ionic liquids were grafted to COF by a click reaction. The materials before and after the modification of ionic liquids were separately packed into solid-phase extraction columns (10 × 4.6 mm, i.d.), which were coupled with liquid chromatography to construct online analysis systems. The extraction mechanisms of polycyclic aromatic hydrocarbons, bisphenols, diphenylalkanes and benzoic acids were investigated on these materials. There were π-π, hydrogen-bond and electrostatic interactions on ionic liquid-functionalized sorbents. After the comparison among these materials, the best sorbent was used, and the analytical method was established and successfully applied to the detection of some estrogens from actual samples. For the analytical method, the detection limit was as low as 0.005 µg L-1, linear range was as wide as 0.017-10.0 µg L-1, and enrichment ratio was as high as 3635. The recoveries in actual samples were 70 %-129 %.

2.
RSC Adv ; 14(30): 21623-21634, 2024 Jul 05.
Article in English | MEDLINE | ID: mdl-38979472

ABSTRACT

Carbon nanofiber membranes (CNMs) are expected to be used in many energy devices to improve the reaction rate. In this paper, CNMs embedded with palladium nanoparticles (Pd-CNMs) were prepared by electrospinning and carbonization using polyimide as the raw material. The effects of carbonization temperature, carbonization atmosphere, and heating rate on the physicochemical properties of the as-obtained Pd-CNMs were studied in detail. On this basis, the electrocatalytic performance of Pd-CNMs prepared under optimal conditions was characterized. The results showed that highly active zero-valent palladium nanoparticles with uniform particle size could be distributed on the surface of carbon nanofibers. Under vacuum conditions, at a carbonization temperature of 800 °C and a heating rate of 2 °C min-1, Pd-CNMs have lower H2O2 yield, lower Tafel slope (73.3 mV dec-1), higher electron transfer number (∼4), and superior durability, suggesting that Pd-CNMs exhibit excellent electrocatalytic activity for ORR in alkaline electrolyte. Therefore, polyimide-derived CNMs embedded with Pd nanoparticles are expected to become an excellent cathode catalyst layer for fuel cells.

3.
Int J Mol Sci ; 25(13)2024 Jun 27.
Article in English | MEDLINE | ID: mdl-39000182

ABSTRACT

Triple-negative breast cancer (TNBC) is a subtype of breast cancer with high mortality and poor prognosis. Meanwhile, doxorubicin, a chemotherapeutic agent for triple-negative breast cancer, has poor sensitivity. The objective of this study was to examine the effect of cordycepin on doxorubicin sensitivity and efficacy in the TNBC xenograft model and explore the relevant molecular pathways. The combination of the drugs in nude mice carrying MDA-MB-231 xenografts significantly reduced the volume, size, and weight of xenografts and improved the tumor inhibition rate. The drug combination was significantly more effective than cordycepin or doxorubicin alone, reflecting the fact that cordycepin enhanced the anti-tumor effects of doxorubicin in MDA-MB-231 xenografts. At the same time, the monitoring of several biological parameters failed to detect any obvious side effects associated with this treatment. After predicting the importance of the TNF pathway in inhibiting tumor growth using network pharmacology methods, we verified the expression of TNF pathway targets via immunohistochemistry and quantitative PCR. Furthermore, a TNF-α inhibitor was able to abrogate the beneficial effects of cordycepin and doxorubicin treatment in MDA-MB-231 cells. This clearly indicates the role of TNF-α, or related molecules, in mediating the therapeutic benefits of the combined treatment in animals carrying TNBC xenografts. The observations reported here may present a new direction for the clinical treatment of TNBC.


Subject(s)
Deoxyadenosines , Doxorubicin , Mice, Nude , Triple Negative Breast Neoplasms , Xenograft Model Antitumor Assays , Doxorubicin/pharmacology , Doxorubicin/therapeutic use , Triple Negative Breast Neoplasms/drug therapy , Triple Negative Breast Neoplasms/metabolism , Triple Negative Breast Neoplasms/pathology , Deoxyadenosines/pharmacology , Deoxyadenosines/therapeutic use , Animals , Humans , Female , Mice , Cell Line, Tumor , Drug Synergism , Tumor Necrosis Factor-alpha/metabolism , Tumor Necrosis Factor-alpha/genetics , Antineoplastic Combined Chemotherapy Protocols/pharmacology , Antineoplastic Combined Chemotherapy Protocols/therapeutic use , Cell Proliferation/drug effects , Mice, Inbred BALB C
4.
Environ Sci Technol ; 58(28): 12467-12476, 2024 Jul 16.
Article in English | MEDLINE | ID: mdl-38966939

ABSTRACT

The effect of Zn on Cd accumulation in rice varies under flooding and drainage conditions, and the underlying mechanism during uptake and transport from the soil to grains remains unclear. Isotope fractionation and gene expression were investigated using pot experiments under distinct water regimes and with Zn addition to gain a deeper understanding of the molecular effects of Zn on Cd uptake and transport in rice. The higher OsHMA2 expression but constitutively lower expression of zinc-regulated, iron-regulated transporter-like protein (ZIP) family genes in roots under the drainage regime than the flooding regime caused the enrichment of nonheavy Zn isotopes in the shoots relative to roots but minimally affected Cd isotopic fractionation. Drainage regime seem to exert a striking effect on the root-to-shoot translocation of Zn rather than Cd, and increased Zn transport via OsHMA2. The changes in expression patterns in response to Zn addition were similar to those observed upon switching from the flooding to drainage regime, except for OsNRAMP1 and OsNRAMP5. However, soil solution-to-rice plants and root-to-shoot fractionation toward light Zn isotopes with Zn addition (Δ66Znrice plant-soil solution = -0.49 to -0.40‰, Δ66Znshoot-root = -0.36 to -0.27‰) indicated that Zn transport occurred via nonspecific uptake pathways and OsHMA2, respectively. Accordingly, the less pronounced and minimally varied Cd isotope fractionation suggested that OsNRAMP5 and OsHMA2 are crucial for Cd uptake and root-to-shoot transport, respectively, facilitating Cd accumulation in grains. This study demonstrated that a high Zn supply promotes Cd uptake and root-to-shoot transport in rice by sharing distinct pathways, and by utilizing a non-Zn-sensitive pathway with a high affinity for Cd.


Subject(s)
Cadmium , Oryza , Soil , Zinc , Oryza/metabolism , Oryza/genetics , Cadmium/metabolism , Zinc/metabolism , Soil/chemistry , Plant Roots/metabolism , Biological Transport , Soil Pollutants/metabolism
5.
J Am Chem Soc ; 146(30): 20857-20867, 2024 Jul 31.
Article in English | MEDLINE | ID: mdl-39025826

ABSTRACT

Asymmetric soft-stiff patch nanohybrids with small size, spatially separated organics and inorganics, controllable configuration, and appealing functionality are important in applications, while the synthesis remains a great challenge. Herein, based on polymeric single micelles (the smallest assembly subunit of mesoporous materials), we report a dynamic surface-mediated anisotropic assembly approach to fabricate a new type of small asymmetric organic/inorganic patch nanohybrid for the first time. The size of this asymmetric organic/inorganic nanohybrid is ∼20 nm, which contains dual distinct subunits of a soft organic PS-PVP-PEO single micelle nanosphere (12 nm in size and 632 MPa in Young' modulus) and stiff inorganic SiO2 nanobulge (∼8 nm, 2275 MPa). Moreover, the number of SiO2 nanobulges anchored on each micelle can be quantitatively controlled (from 1 to 6) by dynamically tuning the density (fluffy or dense state) of the surface cap organic groups. This small asymmetric patch nanohybrid also exhibits a dramatically enhanced uptake level of which the total amount of intracellular endocytosis is about three times higher than that of the conventional nanohybrids.

6.
Appl Environ Microbiol ; : e0096824, 2024 Jul 31.
Article in English | MEDLINE | ID: mdl-39082808

ABSTRACT

Hyperosmotic stress tolerance is crucial for Saccharomyces cerevisiae in producing value-added products from renewable feedstock. The limited understanding of its tolerance mechanism has impeded the application of these microbial cell factories. Previous studies have shown that Med3 plays a role in hyperosmotic stress in S. cerevisiae. However, the specific function of Med3 in hyperosmotic stress tolerance remains unclear. In this study, we showed that the deletion of the mediator Med3 impairs S. cerevisiae growth under hyperosmotic stress. Phenotypic analyses and yeast two-hybrid assays revealed that Med3 interacts with the transcription factor Stb5 to regulate the expression of the genes gnd1 and ald6, which are involved in NADPH production under hyperosmotic stress conditions. The deletion of med3 resulted in a decrease in intracellular NADPH content, leading to increased oxidative stress and elevated levels of intracellular reactive oxygen species under hyperosmotic stress, thereby impacting bud formation. These findings highlight the significant role of Med3 as a regulator in maintaining NADPH generation and redox homeostasis in S. cerevisiae during hyperosmotic stress.IMPORTANCEHyperosmotic stress tolerance in the host strain is a significant challenge for fermentation performance in industrial production. In this study, we showed that the S. cerevisiae mediator Med3 is essential for yeast growth under hyperosmotic conditions. Med3 interacts with the transcription factor Stb5 to regulate the expression of genes involved in the NADPH-generation system during hyperosmotic stress. Adequate NADPH ensures the timely removal of excess reactive oxygen species and supports bud formation under these conditions. This work highlights the crucial role of Med3 as a regulator in maintaining NADPH generation and redox homeostasis in S. cerevisiae during hyperosmotic stress.

7.
Adv Healthc Mater ; : e2401406, 2024 Jul 15.
Article in English | MEDLINE | ID: mdl-39007245

ABSTRACT

Tissue engineering for penile corpora cavernosa defects requires microvascular system reconstruction.GelMA hydrogels show promise for tissue regeneration. However, using stem cells faces challenges such as immune rejection, limited proliferation and differentiation, and biosafety concerns. Therefore, acellular tissue regeneration may avoid these issues. Exosomes are used from muscle-derived stem cells (MDSCs) to modify 3D-printed hydrogel scaffolds for acellular tissue regeneration. Hypoxia-preconditioned MDSC-derived exosomes are obtained to enhance the therapeutic effect. In contrast to normoxic exosomes (N-Exos), hypoxic exosomes (H-Exos) are found to markedly enhance the proliferation, migration, and capillary-like tube formation of human umbilical vein endothelial cells (HUVECs). High-throughput sequencing analysis of miRNAs isolated from both N-Exos and H-Exos revealed a significant upregulation of miR-21-5p in H-Exos following hypoxic preconditioning. Further validation demonstrated that the miR-21-5p/PDCD4 pathway promoted the proliferation of HUVECs. Epigallocatechin gallate (EGCG) is introduced to improve the mechanical properties and biocompatibility of GelMA hydrogels. EGCG-GelMA scaffolds loaded with different types of Exos are transplanted to repair rabbit penile corpora cavernosa defects, observed the blood flow and repair status of the defect site through color Doppler ultrasound and magnetic resonance imaging, and ultimately restored the rabbit penile erection function and successfully bred offspring. Thus, acellular hydrogel scaffolds offer an effective treatment for penile corpora cavernosa defects.

8.
Adv Med Sci ; 69(2): 303-311, 2024 Jul 08.
Article in English | MEDLINE | ID: mdl-38986767

ABSTRACT

PURPOSE: Idiopathic pulmonary fibrosis (IPF), a chronic and progressively worsening condition characterized by interstitial lung inflammation and fibrosis of unknown etiology, has a grim prognosis. The treatment options for IPF are limited and new therapeutic strategies are urgently needed. Dietary restriction can improve various inflammatory diseases, but its therapeutic effect on bleomycin (BLM)-induced pulmonary fibrosis mouse model remains unclear. This study aims to investigate whether intermittent fasting (IF) can alleviate BLM-induced pulmonary inflammation and fibrosis. METHODS: Pulmonary fibrosis mouse models were induced by BLM. The IF group underwent 24-h fasting cycles for one week prior and three weeks following BLM administration. Meanwhile, the ad libitum feeding group had unrestricted access to food throughout the experiment. The evaluation focused on lung pathology via histological staining, qPCR analysis of collagen markers, and immune cell profiling through flow cytometry. RESULTS: IF group significantly reduced inflammation and fibrosis in lung tissues of BLM-induced mice compared to ad libitum feeding group. qPCR results showed IF remarkably decreased the mRNA expression of Col 1a and Col 3a in the lungs of BLM-induced mouse models. IF also reduced the numbers of regulatory T cells (Tregs), T helper 17 (Th17) cells, monocytes, and monocyte-derived alveolar macrophages (MoAMs) in the lung tissues. CONCLUSIONS: IF may improve BLM-induced pulmonary fibrosis by decreasing numbers of immune cells including Treg cells, Th17 â€‹cells, monocytes, and MoAMs in the lungs. This study offers experimental validation for dietary intervention as a viable treatment modality in IPF management.

9.
Nat Commun ; 15(1): 5737, 2024 Jul 09.
Article in English | MEDLINE | ID: mdl-38982157

ABSTRACT

Exploring the promiscuity of native enzymes presents a promising strategy for expanding their synthetic applications, particularly for catalyzing challenging reactions in non-native contexts. In this study, we explore the promiscuous potential of old yellow enzymes (OYEs) to facilitate the Morita-Baylis-Hillman reaction (MBH reaction), leveraging substrate similarities between MBH reaction and reduction reaction. Using mass spectrometry and spectroscopic techniques, we confirm promiscuity of GkOYE in both MBH and reduction reactions. By blocking H- and H+ transfer pathways, we engineer GkOYE.8, which loses its reduction ability but enhances its MBH activity. The structural basis of MBH reaction catalyzed by GkOYE.8 is obtained through mutation studies and kinetic simulations. Furthermore, enantiocomplementary mutants GkOYE.11 and GkOYE.13 are obtained by directed evolution, exhibiting the ability to accept various aromatic aldehydes and alkenes as substrates. This study demonstrates the potential of leveraging substrate similarities to unlock enzyme functionalities, enabling the catalysis of new-to-nature reactions.


Subject(s)
Biocatalysis , Substrate Specificity , Kinetics , Aldehydes/metabolism , Aldehydes/chemistry , Catalysis , Mutation , Alkenes/metabolism , Alkenes/chemistry , Bacterial Proteins/metabolism , Bacterial Proteins/genetics , Bacterial Proteins/chemistry , Protein Engineering
10.
Nat Commun ; 15(1): 5961, 2024 Jul 16.
Article in English | MEDLINE | ID: mdl-39013878

ABSTRACT

Autoreactive CD4+ T helper cells are critical players that orchestrate the immune response both in multiple sclerosis (MS) and in other neuroinflammatory autoimmune diseases. Ubiquitination is a posttranslational protein modification involved in regulating a variety of cellular processes, including CD4+ T cell differentiation and function. However, only a limited number of E3 ubiquitin ligases have been characterized in terms of their biological functions, particularly in CD4+ T cell differentiation and function. In this study, we found that the RING finger protein 213 (RNF213) specifically promoted regulatory T (Treg) cell differentiation in CD4+ T cells and attenuated autoimmune disease development in an FOXO1-dependent manner. Mechanistically, RNF213 interacts with Forkhead Box Protein O1 (FOXO1) and promotes nuclear translocation of FOXO1 by K63-linked ubiquitination. Notably, RNF213 expression in CD4+ T cells was induced by IFN-ß and exerts a crucial role in the therapeutic efficacy of IFN-ß for MS. Together, our study findings collectively emphasize the pivotal role of RNF213 in modulating adaptive immune responses. RNF213 holds potential as a promising therapeutic target for addressing disorders associated with Treg cells.


Subject(s)
Cell Differentiation , Forkhead Box Protein O1 , Interferon-beta , T-Lymphocytes, Regulatory , Ubiquitin-Protein Ligases , Ubiquitination , T-Lymphocytes, Regulatory/immunology , T-Lymphocytes, Regulatory/metabolism , Ubiquitin-Protein Ligases/metabolism , Ubiquitin-Protein Ligases/genetics , Animals , Forkhead Box Protein O1/metabolism , Forkhead Box Protein O1/genetics , Mice , Humans , Interferon-beta/metabolism , Mice, Inbred C57BL , Cell Nucleus/metabolism , Multiple Sclerosis/immunology , Multiple Sclerosis/metabolism , Multiple Sclerosis/genetics , Multiple Sclerosis/pathology , Active Transport, Cell Nucleus , Female , Mice, Knockout , Encephalomyelitis, Autoimmune, Experimental/immunology , Encephalomyelitis, Autoimmune, Experimental/metabolism , Encephalomyelitis, Autoimmune, Experimental/genetics , HEK293 Cells
11.
Sci Rep ; 14(1): 17763, 2024 Aug 01.
Article in English | MEDLINE | ID: mdl-39085629

ABSTRACT

This study aimed to investigate the knowledge, attitude, and practice (KAP) of non-emergency surgical patients toward anesthesia. This cross-sectional study was conducted between May and October 2023 at Zibo Central Hospital among non-emergency surgical patients. A total of 429 valid questionnaires were enrolled (mean age: 42.81 ± 13.17 years old; 227 (52.91%) females). The mean KAP scores were 7.79 ± 3.95 (possible range: 0-18), 32.35 ± 2.80 (possible range: 8-40), and 18.14 ± 3.96 (possible range: 6-24), respectively. Multivariate logistic regression analysis showed that knowledge (OR = 1.095, 95% CI 1.036-1.158, P = 0.001) and previous poor anesthesia experience (OR = 0.081, 95% CI 0.017-0.386, P = 0.002) were independently associated with practice. Non-emergency surgical patients had inadequate knowledge, positive attitude, and proactive practice towards anesthesia. It is crucial for healthcare professionals to implement targeted educational interventions to inform patients about the anesthesia process, potential risks, and benefits.


Subject(s)
Anesthesia , Health Knowledge, Attitudes, Practice , Humans , Female , Male , Adult , Middle Aged , Anesthesia/methods , Cross-Sectional Studies , Surveys and Questionnaires
12.
Biochim Biophys Acta Mol Cell Res ; 1871(7): 119785, 2024 Jun 15.
Article in English | MEDLINE | ID: mdl-38885843

ABSTRACT

We previously reported that integrin alpha 7 (ITGA7) was downregulated in colorectal cancer (CRC) tissues and CRC cell lines and that the lower expression of ITGA7 in CRC tissues was correlated with distant metastasis, suggesting that ITGA7 may function as a suppressor in CRC. The present research was conducted to further investigate the role and mechanisms of ITGA7 in CRC progression. First, bisulfite modification and genomic sequencing (BSP) results showed that the methylation rate of ITGA7 promoter was higher in 10 CRC tissues than in the matched normal tissues. Additionally, 5-Aza-CdR treatment increased ITGA7 expression in CRC cells. Gain-of-function assays revealed the inhibitory role of ITGA7 in CRC cell proliferation and migration. Mechanistically, RNA sequencing, RT-qPCR, and cytoplasm and nuclear separation and rescue assays indicated that knockdown of ITGA7 activated the transcription of MMP9, SETD7, and ADAM15 by enhancing the nuclear translocation of NF-κB. Moreover, CoIP and Western blot suggested a mechanistic model in which ITGA7 binds to CKAP4 to block the interaction of CKAP4 and PI3K p85α and thereby suppress the PI3K/AKT/NF-κB pathway. Accordingly, the current study suggests that ITGA7 functions as a suppressor in CRC progression and that its expression is controlled by promoter methylation.

13.
Materials (Basel) ; 17(11)2024 May 21.
Article in English | MEDLINE | ID: mdl-38893745

ABSTRACT

Precast ultra-high-performance concrete (UHPC) has emerged as indispensable in the engineering sector due to its cost-effectiveness and superior performance. Currently, precast UHPC grapples with challenges pertaining to slow setting times and insufficient early strength, largely attributed to its high water-reducing agent content. Effective utilization of early strength agents to augment UHPC's early strength is pivotal in addressing this issue. This study investigates the efficacy of two distinct concrete early strength agents, namely calcium formate (Ca(HCO2)2) and aluminum sulfate (Al2(SO4)3). A UHPC system with a water/cement ratio of 0.17 was used; both single and compound doping experiments were conducted using varied dosages of the aforementioned early strength agents. Our results show that both early strength agents significantly reduce setting time and enhance early strength at appropriate dosages. Specifically, the addition of 0.3% Ca(HCO2)2 led to a 33.07% decrease in setting time for UHPC. Moreover, the incorporation of 0.3% Ca(HCO2)2 and 0.5% Al2(SO4)3 resulted in a strength of 81.9 MPa at 1.5 days, representing a remarkable increase of 118.4%. It is noteworthy that excessive use of Ca(HCO2)2 inhibits the hydration process, whereas an abundance of Al2(SO4)3 diminishes the early strength effect. Simultaneously, this article provides recommendations regarding the dosage of two distinct early strength agents, offering a novel solution for expediting the production of prefabricated UHPC with a low water/cement ratio and high water-reducing agent content.

14.
J Mol Cell Cardiol ; 194: 3-15, 2024 Jun 04.
Article in English | MEDLINE | ID: mdl-38844061

ABSTRACT

Diabetic cardiomyopathy (DCM) is a heart failure syndrome, and is one of the major causes of morbidity and mortality in diabetes. DCM is mainly characterized by ventricular dilation, myocardial hypertrophy, myocardial fibrosis and cardiac dysfunction. Clinical studies have found that insulin resistance is an independent risk factor for DCM. However, its specific mechanism of DCM remains unclear. 8-hydroxyguanine DNA glycosylase 1(OGG1)is involved in DNA base repair and the regulation of inflammatory genes. In this study, we show that OGG1 was associated with the occurrence of DCM. for the first time. The expression of OGG1 was increased in the heart tissue of DCM mice, and OGG1 deficiency aggravated the cardiac dysfunction of DCM mice. Metabolomics show that OGG1 deficiency resulted in obstruction of glycolytic pathway. At the molecular level, OGG1 regulated glucose uptake and insulin resistance by interacting with PPAR-γ in vitro. In order to explore the protective effect of exogenous OGG1 on DCM, OGG1 adeno-associated virus was injected into DCM mice through tail vein in the middle stage of the disease. We found that the overexpression of OGG1 could improve cardiac dysfunction of DCM mice, indicating that OGG1 had a certain therapeutic effect on DCM. These results demonstrate that OGG1 is a new molecular target for the treatment of DCM and has certain clinical significance.

15.
ACS Synth Biol ; 13(6): 1879-1892, 2024 Jun 21.
Article in English | MEDLINE | ID: mdl-38847341

ABSTRACT

Aromatic d-amino acids (d-AAs) play a pivotal role as important chiral building blocks and key intermediates in fine chemical and drug synthesis. Meso-diaminopimelate dehydrogenase (DAPDH) serves as an excellent biocatalyst in the synthesis of d-AAs and their derivatives. However, its strict substrate specificity and the lack of efficient engineering methods have hindered its widespread application. Therefore, this study aims to elucidate the catalytic mechanism underlying DAPDH from Proteus vulgaris (PvDAPDH) through the examination of its crystallographic structure, computational simulations of potential energies and molecular dynamics simulations, and site-directed mutagenesis. Mechanism-guided computational design showed that the optimal mutant PvDAPDH-M3 increased specific activity and catalytic efficiency (kcat/Km) for aromatic keto acids up to 124-fold and 92.4-fold, respectively, compared to that of the wild type. Additionally, it expanded the substrate scope to 10 aromatic keto acid substrates. Finally, six high-value-added aromatic d-AAs and their derivatives were synthesized using a one-pot three-enzyme cascade reaction, exhibiting a good conversion rate ranging from 32 to 84% and excellent stereoselectivity (enantiomeric excess >99%). These findings provide a potential synthetic pathway for the green industrial production of aromatic d-AAs.


Subject(s)
Amino Acid Oxidoreductases , Amino Acids, Aromatic , Molecular Dynamics Simulation , Mutagenesis, Site-Directed , Amino Acid Oxidoreductases/metabolism , Amino Acid Oxidoreductases/genetics , Amino Acid Oxidoreductases/chemistry , Substrate Specificity , Amino Acids, Aromatic/metabolism , Amino Acids, Aromatic/biosynthesis , Proteus vulgaris/enzymology , Proteus vulgaris/genetics , Biocatalysis , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Bacterial Proteins/chemistry
16.
Chem Commun (Camb) ; 60(53): 6777-6780, 2024 Jun 27.
Article in English | MEDLINE | ID: mdl-38868861

ABSTRACT

D-UiO-66-NIM with high proton conductivity has been synthesized through the dual strategy of defect engineering and ligand modification. Moreover, D-UiO-66-NIM exhibits good temperature cycling stability and durability in proton conductivity. This work has developed a new method to obtain efficient MOF-based proton conductors.

17.
Adv Mater ; : e2403881, 2024 Jun 20.
Article in English | MEDLINE | ID: mdl-38899836

ABSTRACT

Xenes, mono-elemental atomic sheets, exhibit Dirac/Dirac-like quantum behavior. When interfaced with other 2D materials such as boron nitride, transition metal dichalcogenides, and metal carbides/nitrides/carbonitrides, it enables them with unique physicochemical properties, including structural stability, desirable bandgap, efficient charge carrier injection, flexibility/breaking stress, thermal conductivity, chemical reactivity, catalytic efficiency, molecular adsorption, and wettability. For example, BN acts as an anti-oxidative shield, MoS2 injects electrons upon laser excitation, and MXene provides mechanical flexibility. Beyond precise compositional modulations, stacking sequences, and inter-layer coupling controlled by parameters, achieving scalability and reproducibility in hybridization is crucial for implementing these quantum materials in consumer applications. However, realizing the full potential of these hybrid materials faces challenges such as air gaps, uneven interfaces, and the formation of defects and functional groups. Advanced synthesis techniques, a deep understanding of quantum behaviors, precise control over interfacial interactions, and awareness of cross-correlations among these factors are essential. Xene-based hybrids show immense promise for groundbreaking applications in quantum computing, flexible electronics, energy storage, and catalysis. In this timely perspective, recent discoveries of novel Xenes and their hybrids are highlighted, emphasizing correlations among synthetic parameters, structure, properties, and applications. It is anticipated that these insights will revolutionize diverse industries and technologies.

18.
Shock ; 62(2): 217-226, 2024 Aug 01.
Article in English | MEDLINE | ID: mdl-38899838

ABSTRACT

ABSTRACT: Sepsis is a highly prevalent and deadly disease. Currently, there is a lack of ideal biomarker prognostis models for sepsis. We attempt to construct a model capable of predicting the prognosis of sepsis patients by integrating transcriptomic and proteomic data. Through analysis of proteomic and transcriptomic data, we identified 25 differentially expressed genes (DEGs). Single-factor Cox-Lasso regression analysis identified 16 DEGs (overall survival-DEGs) associated with patient prognosis. Through multifactor Cox-Lasso regression analysis, a prognostic model based on these 16 genes was constructed. Kaplan-Meier survival analysis and receiver operating characteristic curve analysis were used to further validate the high stability and good predictive ability of this prognostic model with internal and external data. Gene Ontology and Kyoto Encyclopedia of Genes and Genomes pathway enrichment analysis of overall survival-DEGs and differentially expressed genes between high and low-risk groups based on the prognostic model revealed significant enrichment in immune-related pathways, particularly those associated with viral regulation.


Subject(s)
Proteome , Sepsis , Transcriptome , Humans , Sepsis/genetics , Sepsis/metabolism , Prognosis , Proteome/metabolism , Gene Expression Profiling , Proteomics/methods , Male , Female
19.
ACS Nano ; 18(25): 16113-16125, 2024 Jun 25.
Article in English | MEDLINE | ID: mdl-38857428

ABSTRACT

Urinary extracellular vesicles (uEVs) are regarded as highly promising liquid-biopsy biomarkers for the early diagnosis and prognosis of bladder cancer (BC). However, detection of uEVs remains technically challenging owing to their huge heterogeneity and ultralow abundance in real samples. We herein present a choline phosphate-grafted platinum nanozyme (Pt@CP) that acts as a universal EV probe for the construction of a high-throughput and high-sensitivity immunoassay, which allowed multiplex profiling of uEV protein markers for BC detection. With the Pt@CP-based immunoassays, three uEV protein markers (MUC-1, CCDC25, and GLUT1) were identified for BC, by which the BC cases (n = 48), cystitis patients (n = 27), and healthy donors (n = 24) were discriminated with high clinical sensitivity and specificity (area under curve = 98.3%). For the BC cases (n = 9) after surgery, the Pt@CP-based immunoassay could report the postoperative residual tumor that cannot be observed by cystoscopy, which is clinically significant for assessing BC recurrence. This work provides generally high sensitivity for EV detection, facilitating the discovery and clinical use of EV-based biomarkers.


Subject(s)
Biomarkers, Tumor , Extracellular Vesicles , Urinary Bladder Neoplasms , Urinary Bladder Neoplasms/diagnosis , Urinary Bladder Neoplasms/pathology , Humans , Extracellular Vesicles/chemistry , Biomarkers, Tumor/analysis , Phosphorylcholine/chemistry , Immunoassay/methods , Platinum/chemistry , Female
20.
Cell Res ; 2024 Jun 19.
Article in English | MEDLINE | ID: mdl-38898113

ABSTRACT

The shift of carbon utilization from primarily glucose to other nutrients is a fundamental metabolic adaptation to cope with decreased blood glucose levels and the consequent decline in glucose oxidation. AMP-activated protein kinase (AMPK) plays crucial roles in this metabolic adaptation. However, the underlying mechanism is not fully understood. Here, we show that PDZ domain containing 8 (PDZD8), which we identify as a new substrate of AMPK activated in low glucose, is required for the low glucose-promoted glutaminolysis. AMPK phosphorylates PDZD8 at threonine 527 (T527) and promotes the interaction of PDZD8 with and activation of glutaminase 1 (GLS1), a rate-limiting enzyme of glutaminolysis. In vivo, the AMPK-PDZD8-GLS1 axis is required for the enhancement of glutaminolysis as tested in the skeletal muscle tissues, which occurs earlier than the increase in fatty acid utilization during fasting. The enhanced glutaminolysis is also observed in macrophages in low glucose or under acute lipopolysaccharide (LPS) treatment. Consistent with a requirement of heightened glutaminolysis, the PDZD8-T527A mutation dampens the secretion of pro-inflammatory cytokines in macrophages in mice treated with LPS. Together, we have revealed an AMPK-PDZD8-GLS1 axis that promotes glutaminolysis ahead of increased fatty acid utilization under glucose shortage.

SELECTION OF CITATIONS
SEARCH DETAIL