Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 1.027
Filter
1.
Int Immunopharmacol ; 138: 112599, 2024 Jul 02.
Article in English | MEDLINE | ID: mdl-38959543

ABSTRACT

BACKGROUND: Prostate cancer remains a prominent challenge in oncology, with advanced stages showing poor prognosis. The tumor microenvironment (TME), and particularly tumor-associated macrophages (TAMs), plays a crucial role in disease progression. This study explores the single-cell transcriptomics of prostate cancer, determines macrophage heterogeneity, identifies prognostic gene markers, and assesses the role of PPIF in TAMs. METHODS: Single-cell RNA sequencing data from the GEO database (GSE176031) and transcriptome data from the TCGA were processed to characterize cell populations and identify prognostic genes in prostate cancer. Macrophage subpopulations were examined through clustering, followed by gene set scoring based on migration, activation, and proliferation. PPIF expression in macrophages was investigated using multiplex immunofluorescence staining on matched prostate cancer and adjacent non-tumoral tissues. RESULTS: The single-cell analysis identified 9,178 cells, categorized into 10 principal cell types, with macrophages constituting a significant part of the immune microenvironment. Four macrophage subgroups demonstrated distinct functional pathways: phagocytic, immune-regulatory, and proliferative. A total of 39 genes correlated with prostate cancer prognosis were identified, of which 10 carried the most significant prognostic information. Peptidylprolyl Isomerase F (PPIF) expression was significantly higher in TAMs from tumor tissue than normal tissue, indicating its potential regulatory role in the immune microenvironment. CONCLUSION: The intricate cellular architecture of the prostate cancer TME has been elucidated, with a focus on macrophage heterogeneity and functional specialization. Prognostic genes, including PPIF, were associated with survival outcomes, providing potential therapeutic targets. PPIF's prominent expression in TAMs may serve as a lever in cancer progression, warranting further investigation as a biomarker and a molecule of interest for therapeutic targeting within the prostate cancer milieu.

2.
J Clin Invest ; 134(12)2024 Jun 17.
Article in English | MEDLINE | ID: mdl-38950288

ABSTRACT

Research advances over the past 30 years have confirmed a critical role for genetics in the etiology of dilated cardiomyopathies (DCMs). However, full knowledge of the genetic architecture of DCM remains incomplete. We identified candidate DCM causal gene, C10orf71, in a large family with 8 patients with DCM by whole-exome sequencing. Four loss-of-function variants of C10orf71 were subsequently identified in an additional group of492 patients with sporadic DCM from 2 independent cohorts. C10orf71 was found to be an intrinsically disordered protein specifically expressed in cardiomyocytes. C10orf71-KO mice had abnormal heart morphogenesis during embryonic development and cardiac dysfunction as adults with altered expression and splicing of contractile cardiac genes. C10orf71-null cardiomyocytes exhibited impaired contractile function with unaffected sarcomere structure. Cardiomyocytes and heart organoids derived from human induced pluripotent stem cells with C10orf71 frameshift variants also had contractile defects with normal electrophysiological activity. A rescue study using a cardiac myosin activator, omecamtiv mecarbil, restored contractile function in C10orf71-KO mice. These data support C10orf71 as a causal gene for DCM by contributing to the contractile function of cardiomyocytes. Mutation-specific pathophysiology may suggest therapeutic targets and more individualized therapy.


Subject(s)
Cardiomyopathy, Dilated , Frameshift Mutation , Mice, Knockout , Myocytes, Cardiac , Organoids , Humans , Animals , Cardiomyopathy, Dilated/genetics , Cardiomyopathy, Dilated/pathology , Cardiomyopathy, Dilated/metabolism , Mice , Myocytes, Cardiac/metabolism , Myocytes, Cardiac/pathology , Organoids/metabolism , Organoids/pathology , Male , Female , Myocardial Contraction/genetics , Adult , Disease Models, Animal
3.
Article in English | MEDLINE | ID: mdl-38972502

ABSTRACT

As a novel measure, dynamic functional connectivity (dFC) provides insight into the dynamic nature of brain networks and their interactions in resting-state, surpassing traditional static functional connectivity in pathological conditions such as depression. Since a comprehensive review is still lacking, we then reviewed forty-five eligible papers to explore pathological mechanisms of major depressive disorder (MDD) from perspectives including abnormal brain regions and functional networks, brain state, topological properties, relevant recognition, along with longitudinal studies. Though inconsistencies could be found, common findings are: (1) From different perspectives based on dFC, default-mode network (DMN) with its subregions exhibited a close relation to the pathological mechanism of MDD. (2) With a corrupted integrity within large-scale functional networks and imbalance between them, longer fraction time in a relatively weakly-connected state may be a possible property of MDD concerning its relation with DMN. Abnormal transition frequencies between states were correlated to the severity of MDD. (3) Including dynamic properties in topological network metrics enhanced recognition effect. In all, this review summarized its use for clinical diagnosis and treatment, elucidating the non-stationary of MDD patients' aberrant brain activity in the absence of stimuli and bringing new views into its underlying neuro mechanism.

4.
Int Urogynecol J ; 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38951166

ABSTRACT

INTRODUCTION AND HYPOTHESIS: The effects of hysterectomy on pelvic floor function remain uncertain, with the levator ani muscle (LAM) playing a critical role in pelvic support. The levator ani subtended volume (LASV) is an objective measure of the LAM's anatomical volume, derived from magnetic resonance imaging (MRI). This study was aimed at assessing the consistency between MRI and computed tomography (CT) in quantifying LASV, and to investigate the effect of hysterectomy on the LAM. METHODS: This retrospective study analyzed a cohort of 55 hysterectomy patients, utilizing pre-operative pelvic MRI and post-operative CT scans to measure the LASV. To evaluate the consistency between MRI and CT, the study employed the intraclass correlation coefficient and Bland-Altman agreement analysis in a subset of 32 patients with both pre-operative scans. A paired-samplet test was used to analyze LASV changes pre- and post-hysterectomy, and linear regression analysis was performed to account for potential risk factors that may influence post-operative LASV. RESULTS: High consistency between MRI and CT in measuring LASV was found, with an ICC of 0.911. We observed a significant increase in LASV following hysterectomy, with mean volume pre- and post-operatively of 16.66 cm3 and 18.87 cm3 respectively. Age and body mass index were significant predictors of post-hysterectomy LASV, whereas parity and the type of hysterectomy had no significant impact. CONCLUSIONS: Hysterectomy significantly affects the LAM, resulting in an increase in post-operative LASV. Moreover, this study verifies that MRI and CT can be used interchangeably for LASV measurements in clinical practice.

5.
ACS Sens ; 9(6): 3085-3095, 2024 Jun 28.
Article in English | MEDLINE | ID: mdl-38840550

ABSTRACT

Wearable gas sensors have drawn great attention for potential applications in health monitoring, minienvironment detection, and advanced soft electronic noses. However, it still remains a great challenge to simultaneously achieve excellent flexibility, high sensitivity, robustness, and gas permeability, because of the inherent limitation of widely used traditional organic flexible substrates. Herein, an electrospinning polyacrylonitrile (PAN) nanofiber network was designed as a flexible substrate, on which an ultraflexible wearable gas sensor was prepared with in situ assembled polyaniline (PANI) and multiwalled carbon nanotubes (MWCNTs) as a sensitive layer. The unique nanofiber network and strong binding force between substrate and sensing materials endow the wearable gas sensor with excellent robustness, flexibility, and gas permeability. The wearable sensor can maintain stable NH3 sensing performance while sustaining extreme bending and stretching (50% of strain). The Young's modulus of wearable PAN/MWCNTs/PANI sensor is as low as 18.9 MPa, which is several orders of magnitude smaller than those of reported flexible sensors. The water vapor transmission rate of the sensor is 0.38 g/(cm2 24 h), which enables the wearing comfort of the sensor. Most importantly, due to the effective exposure of sensing sites as well as the heterostructure effect between MWCNTs and PANI, the sensor shows high sensitivity to NH3 at room temperature, and the theoretical limit of detection is as low as 300 ppb. This work provides a new avenue for the realization of reliable and high-performance wearable gas sensors.


Subject(s)
Acrylic Resins , Ammonia , Aniline Compounds , Nanofibers , Nanotubes, Carbon , Wearable Electronic Devices , Nanofibers/chemistry , Nanotubes, Carbon/chemistry , Aniline Compounds/chemistry , Acrylic Resins/chemistry , Ammonia/analysis , Humans , Gases/analysis , Gases/chemistry
6.
FASEB J ; 38(13): e23760, 2024 Jul 15.
Article in English | MEDLINE | ID: mdl-38924449

ABSTRACT

Hyponatremia is the most common disorder of electrolyte imbalances. It is necessary to develop new type of diuretics to treat hyponatremia without losing electrolytes. Urea transporters (UT) play an important role in the urine concentrating process and have been proved as a novel diuretic target. In this study, rat and mouse syndromes of inappropriate antidiuretic hormone secretion (SIADH) models were constructed and analyzed to determine if UTs are a promising drug target for treating hyponatremia. Experimental results showed that 100 mg/kg UT inhibitor 25a significantly increased serum osmolality (from 249.83 ± 5.95 to 294.33 ± 3.90 mOsm/kg) and serum sodium (from 114 ± 2.07 to 136.67 ± 3.82 mmol/L) respectively in hyponatremia rats by diuresis. Serum chemical examination showed that 25a neither caused another electrolyte imbalance nor influenced the lipid metabolism. Using UT-A1 and UT-B knockout mouse SIADH model, it was found that serum osmolality and serum sodium were lowered much less in UT-A1 knockout mice than in UT-B knockout mice, which suggest UT-A1 is a better therapeutic target than UT-B to treat hyponatremia. This study provides a proof of concept that UT-A1 is a diuretic target for SIADH-induced hyponatremia and UT-A1 inhibitors might be developed into new diuretics to treat hyponatremia.


Subject(s)
Hyponatremia , Inappropriate ADH Syndrome , Membrane Transport Proteins , Mice, Knockout , Urea Transporters , Animals , Male , Mice , Rats , Disease Models, Animal , Diuretics/pharmacology , Hyponatremia/drug therapy , Hyponatremia/metabolism , Inappropriate ADH Syndrome/drug therapy , Inappropriate ADH Syndrome/metabolism , Membrane Transport Proteins/metabolism , Mice, Inbred C57BL , Osmolar Concentration , Rats, Sprague-Dawley , Sodium/metabolism
7.
Clin Nephrol ; 2024 Jun 05.
Article in English | MEDLINE | ID: mdl-38836366

ABSTRACT

We report a 67-year-old man who presented with poor dietary intake and fatigue. Laboratory tests showed leukopenia, antinuclear antibody (ANA) positivity, anti-dsDNA antibody (A-dsDNA) and anti-Smith antibody (anti-Sm) negativity, decreased C3 and C4, elevated serum immunoglobulin G (IgG), IgG4, and creatinine, and 1.25 g urinary protein at 24 hours. As his condition worsened, re-examination showed thrombocytopenia and A-dsDNA positivity, and renal biopsy pathology showed IgG4-related tubulointerstitial nephritis. The final diagnosis was IgG4-related disease (IgG4-RD) with systemic lupus erythematosus (SLE). His condition improved with glucocorticoid (GC) combined with hydroxychloroquine (HCQ) and mycophenolate mofetil (MMF) treatment. This case highlights that IgG4-RD and SLE may occur successively or co-exist and may convert into each other.

8.
Oncol Lett ; 28(2): 349, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38872862

ABSTRACT

Metadherin (MTDH), initially discovered in primary astrocytes of the human fetus through rapid subtraction hybridization and labeled as astrocyte elevated gene-1, represents a widely recognized oncogene present in multiple types of cancers. However, the role of MTDH in different types of cancer remains unclear. To address this, a comprehensive analysis of MTDH across various types of cancers was conducted by utilizing multiple databases such as The Cancer Genome Atlas. The present analysis discovered that MTDH exhibits differential expression in different types of cancer and is associated with important factors including tumor mutational burden and microsatellite instability. These findings highlighted the significance of MTDH in the tumor microenvironment and its involvement in the development of immune cells in specific cancers. Furthermore, the results of the present study indicated that the expression of MTDH is strongly correlated with clinical prognosis, mutations and immune cell infiltration. MTDH could serve as a potential indicator of patient prognosis and potentially play a role in modulating the immune system. Given its potential as a novel immunological checkpoint, MTDH may be a viable target for tumor immunotherapy.

9.
Front Genet ; 15: 1382128, 2024.
Article in English | MEDLINE | ID: mdl-38873117

ABSTRACT

The Sichuan-Yunnan region is the main production area of yaks in southwestern China, with rich genetic resources of Yaks. Nevertheless, there have been limited study on the genetic characteristics of the entire yak populations in Tibet and southwestern China. In this study, we performed whole-genome resequencing to identify genetic variation information in a total of 198 individuals from six yak breeds (populations) in Sichuan (Muli yak, Jinchuan yak, Changtai yak, Maiwa yak), Yunnan (Zhongdian yak), and Tibet (Tibetan yak). The aim was to investigate the whole-genome genetic diversity, population genetic structure, and genome selection signatures. We observed that all six populations exhibit abundant genetic diversity. Except for Tibetan yaks, which showed low nucleotide diversity (0.00104), the remaining yak populations generally displayed high nucleotide diversity (0.00129-0.00153). Population genetic structure analysis revealed that, among the six yak populations, Muli yak exhibited greater differentiation from other yak populations and formed a distinct cluster independently. The Maiwa yak population displayed a complex genetic structure and exhibited gene exchange with Jinchuan and Changtai yaks. Positive selection signals were detected in candidate genes associated with growth (GNB4, HMGA2, TRPS1, and LTBP1), reproduction (PI4KB, DYNC1I1, and GRIP1), immunity (CD200 and IL1RAP), lactation (SNX13 and CPM), hypoxia adaptation (NDUFB6, PRKN, and MRPS9), hair (KRT24, KRT25, and KRT26), meat quality (SUCLG2), digestion and absorption (CLDN1), and pigment deposition (OCA2) using the integrated Pi and F ST methods. This study provides significant insights into understanding the whole-genome genetic characteristics of yak populations in Tibet and southwestern China.

10.
J Agric Food Chem ; 2024 Jun 14.
Article in English | MEDLINE | ID: mdl-38875493

ABSTRACT

In the context of global population growth expected in the future, enhancing the agri-food yield is crucial. Plant diseases significantly impact crop production and food security. Modern microfluidics offers a compact and convenient approach for detecting these defects. Although this field is still in its infancy and few comprehensive reviews have explored this topic, practical research has great potential. This paper reviews the principles, materials, and applications of microfluidic technology for detecting plant diseases caused by various pathogens. Its performance in realizing the separation, enrichment, and detection of different pathogens is discussed in depth to shed light on its prospects. With its versatile design, microfluidics has been developed for rapid, sensitive, and low-cost monitoring of plant diseases. Incorporating modules for separation, preconcentration, amplification, and detection enables the early detection of trace amounts of pathogens, enhancing crop security. Coupling with imaging systems, smart and digital devices are increasingly being reported as advanced solutions.

11.
Ying Yong Sheng Tai Xue Bao ; 35(4): 909-916, 2024 Apr 18.
Article in Chinese | MEDLINE | ID: mdl-38884225

ABSTRACT

The stoichiometric characteristics of leaves can reflect environmental adaptation of plants, and thus the study of the relationship between them is helpful for exploring plant adaptation strategies. In this study, taking the national second-level key protection species, Ammopiptanthus mongolicus, as the research object, we set up 26 plots to collect samples, and measured the content of carbon (C), nitrogen (N), phosphorus (P) and water use efficiency (WUE) of leaves. We analyzed the relationship between leaf stoichiometric characteristics and WUE, and quantified the contributions of soil, climate, and water use efficiency to the variations of leaf stoichiometry. The results showed that C, N, and P contents in the leaves were (583.99±27.93), (24.31±2.09), and (1.83±0.06) mg·g-1, respectively. The coefficients of variation were 4.8%, 8.6%, and 3.2%, respectively, all belonging to weak variability, indicating that foliar contents of C, N and P tended to a certain stable value. The average value of N:P was 13.3, indicating that the growth of A. mongolicus was mainly limited by N. WUE was not correlated with leaf C content, but was significantly positively correlated with leaf N and P contents and N:P, and significantly negatively correlated with C:N and C:P, indicating that there was a linear synergistic trend between WUE and leaf nutrient content. The main factors influencing leaf C content and C:P were climatic factors, the leaf N content and N:P were mainly affected by soil factors, and the water use efficiency mainly affected leaf P content and C:N, indicating that the driving factors of different stoichiometric characteristics were different. The results could help eva-luate the habitat adaptation of desert plants, which would provide a theoretical basis for the conservation and management of A. mongolicus.


Subject(s)
Carbon , Nitrogen , Phosphorus , Plant Leaves , Plant Leaves/chemistry , Plant Leaves/metabolism , Plant Leaves/growth & development , China , Nitrogen/analysis , Nitrogen/metabolism , Phosphorus/analysis , Phosphorus/metabolism , Carbon/analysis , Carbon/metabolism , Ecosystem , Water/analysis , Water/metabolism , Water/chemistry , Adaptation, Physiological , Soil/chemistry
12.
J Oral Microbiol ; 16(1): 2366056, 2024.
Article in English | MEDLINE | ID: mdl-38882240

ABSTRACT

Introduction: Gingivitis is a prevalent complication in adolescents undergoing fixed orthodontic treatments. However, changes in the supragingival microbiome associated with gingivitis and the impact of Candida albicans remain elusive. Therefore, we investigated supragingival microbiome discrepancy and C. albicans colonization in adolescent orthodontic patients with gingivitis. Methods: Dental plaques were collected from 30 gingivitis patients and 24 healthy adolescents, all undergoing fixed orthodontic treatment. The supragingival microbiome composition was analyzed using 16S rRNA sequencing. C. albicans colonization was determined using fungal culture and real-time quantitative polymerase chain reaction. Results: Our analysis revealed significantly heightened microbial diversity in the Gingivitis group. Notably, patients with gingivitis exhibited an enrichment of periodontal pathogens, such as Saccharibacteria (TM7) [G-1], Selenomonas, Actinomyces dentalis, and Selenomonas sputigena. Additionally, 33% of the gingivitis patients tested positive for C. albicans, exhibiting significantly elevated levels of absolute abundance, while all healthy patients tested negative. Significant differences in microbial composition were also noted between C. albicans-positive and -negative samples in the Gingivitis group. Conclusion: Significant disparities were observed in the supragingival microbiome of adolescent orthodontic patients with and without gingivitis. The presence of C. albicans in the supragingival plaque may alter the microbiome composition and potentially contribute to gingivitis pathogenesis.


• Adolescent patients undergoing fixed orthodontic treatment, with and without gingivitis, show significant differences in their marginal supragingival plaque microbiomes. • Adolescent patients with gingivitis exhibit a significantly higher rate of Candida albicans colonization than healthy individuals. • The colonization of C. albicans alters the composition of the marginal supragingival plaque microbiome in patients with gingivitis.

13.
Helicobacter ; 29(3): e13098, 2024.
Article in English | MEDLINE | ID: mdl-38853394

ABSTRACT

BACKGROUND: Potassium-competitive acid blockers have demonstrated enormous potential in the eradication treatment of Helicobacter pylori infection, with tegoprazan being one of the representatives. The available data on the safety and efficacy of tegoprazan in dual therapy are limited. MATERIALS AND METHODS: The multicenter, noninferiority, randomized-controlled trial was conducted from May 2023 to March 2024. Treatment-naive subjects were randomly assigned (1:1) to enter either the tegoprazan-amoxicillin (TA) group (tegoprazan 50 mg twice daily and amoxicillin 750 mg four times daily) or the esomeprazole-amoxicillin (EA) group (esomeprazole 20 mg and amoxicillin 750 mg all four times daily), with a duration for 14 days. The primary outcome was eradication rate as determined by 13C-urea breath test, including per-protocol (PP) analysis and intention-to-treat (ITT) analysis. Secondary outcomes were adverse events and compliance. RESULTS: A total of 368 individuals were included in the randomization. The eradication rates in the EA group and the TA group were 84.2% and 85.8%, respectively, according to an ITT analysis (p = 0.77), and 88.5% and 88.2%, respectively, according to PP analysis (p = 1.00). The eradication rates for the TA group were not inferior to those of the EA group in both PP (p = 0.0023) and ITT analyses (p = 0.0009). There were no significant statistical differences in the incidence of adverse events and compliance between the two groups. The multivariate logistic regression analysis revealed that poor compliance increased the risk of eradication failure (p < 0.001). CONCLUSIONS: Dual therapy containing tegoprazan is safe and effective to be considered as a clinical first-line treatment option, but further optimization involving antimicrobial susceptibility testing and adjustments in dosage and frequency is warranted. TRIAL REGISTRATION: ClinicalTrials.gov ID: NCT05870683.


Subject(s)
Amoxicillin , Anti-Bacterial Agents , Drug Therapy, Combination , Helicobacter Infections , Helicobacter pylori , Humans , Helicobacter Infections/drug therapy , Male , Female , Amoxicillin/therapeutic use , Amoxicillin/administration & dosage , Middle Aged , Helicobacter pylori/drug effects , Anti-Bacterial Agents/therapeutic use , Anti-Bacterial Agents/administration & dosage , Anti-Bacterial Agents/adverse effects , Adult , Treatment Outcome , Proton Pump Inhibitors/therapeutic use , Proton Pump Inhibitors/administration & dosage , Proton Pump Inhibitors/adverse effects , Aged , Breath Tests , Esomeprazole/therapeutic use , Esomeprazole/administration & dosage , Pyrroles , Sulfonamides
14.
Cell Metab ; 2024 Jun 04.
Article in English | MEDLINE | ID: mdl-38851189

ABSTRACT

Impaired self-renewal of Kupffer cells (KCs) leads to inflammation in metabolic dysfunction-associated steatohepatitis (MASH). Here, we identify neutrophil cytosolic factor 1 (NCF1) as a critical regulator of iron homeostasis in KCs. NCF1 is upregulated in liver macrophages and dendritic cells in humans with metabolic dysfunction-associated steatotic liver disease and in MASH mice. Macrophage NCF1, but not dendritic cell NCF1, triggers KC iron overload, ferroptosis, and monocyte-derived macrophage infiltration, thus aggravating MASH progression. Mechanistically, elevated oxidized phospholipids induced by macrophage NCF1 promote Toll-like receptor (TLR4)-dependent hepatocyte hepcidin production, leading to increased KC iron deposition and subsequent KC ferroptosis. Importantly, the human low-functional polymorphic variant NCF190H alleviates KC ferroptosis and MASH in mice. In conclusion, macrophage NCF1 impairs iron homeostasis in KCs by oxidizing phospholipids, triggering hepatocyte hepcidin release and KC ferroptosis in MASH, highlighting NCF1 as a therapeutic target for improving KC fate and limiting MASH progression.

15.
Sci Rep ; 14(1): 12763, 2024 06 04.
Article in English | MEDLINE | ID: mdl-38834661

ABSTRACT

With the continuous progress of technology, the subject of life science plays an increasingly important role, among which the application of artificial intelligence in the medical field has attracted more and more attention. Bell facial palsy, a neurological ailment characterized by facial muscle weakness or paralysis, exerts a profound impact on patients' facial expressions and masticatory abilities, thereby inflicting considerable distress upon their overall quality of life and mental well-being. In this study, we designed a facial attribute recognition model specifically for individuals with Bell's facial palsy. The model utilizes an enhanced SSD network and scientific computing to perform a graded assessment of the patients' condition. By replacing the VGG network with a more efficient backbone, we improved the model's accuracy and significantly reduced its computational burden. The results show that the improved SSD network has an average precision of 87.9% in the classification of light, middle and severe facial palsy, and effectively performs the classification of patients with facial palsy, where scientific calculations also increase the precision of the classification. This is also one of the most significant contributions of this article, which provides intelligent means and objective data for future research on intelligent diagnosis and treatment as well as progressive rehabilitation.


Subject(s)
Bell Palsy , Humans , Bell Palsy/diagnosis , Bell Palsy/physiopathology , Neural Networks, Computer , Female , Male , Facial Expression , Adult , Artificial Intelligence , Middle Aged , Facial Paralysis/diagnosis , Facial Paralysis/physiopathology , Facial Paralysis/psychology , Facial Recognition , Automated Facial Recognition/methods
16.
Am J Cancer Res ; 14(5): 2661-2664, 2024.
Article in English | MEDLINE | ID: mdl-38859840

ABSTRACT

[This corrects the article on p. 3947 in vol. 12, PMID: 36119838.].

17.
Front Mol Biosci ; 11: 1408503, 2024.
Article in English | MEDLINE | ID: mdl-38939508

ABSTRACT

Objectives: This study aimed to evaluate 10 estimating glomerular filtration rate (eGFR) equations in central China population and construct a diagnostic prediction model for assessing the kidney damage severity. Methods: The concordance of 10 eGFR equations was investigated in healthy individuals from central China, and their clinical effectiveness in diagnosing kidney injury was evaluated. Subsequently, relevant clinical indicators were selected to develop a clinical prediction model for kidney damage. Results: The overall concordance between CKD-EPIASR-Scr and CKD-EPI2021-Scr was the highest (weightedκ = 0.964) in healthy population. The CG formula, CKD-EPIASR-Scr and CKD-EPI2021-Scr performed better than others in terms of concordance with referenced GFR (rGFR), but had poor ability to distinguish between rGFR < 90 or < 60 mL/min·1.73 m2. This finding was basically consistent across subgroups. Finally, two logistic regression prediction models were constructed based on rGFR < 90 or 60 mL/min·1.73 m2. The area under the curve of receiver operating characteristic values of two prediction models were 0.811 vs 0.846 in training set and 0.812 vs 0.800 in testing set. Conclusion: The concordance of CKD-EPIASR-Scr and CKD-EPI2021-Scr was the highest in the central China population. The Cockcroft-Gault formula, CKD-EPIASR-Scr, and CKD-EPI2021-Scr more accurately reflected true kidney function, while performed poorly in the staging diagnosis of CKD. The diagnostic prediction models showed the good clinical application performance in identifying mild or moderate kidney injury. These findings lay a solid foundation for future research on renal function assessment and predictive equations.

18.
J Colloid Interface Sci ; 674: 361-369, 2024 Jun 24.
Article in English | MEDLINE | ID: mdl-38941930

ABSTRACT

To achieve high-performance Zn-air batteries (ZABs), the development of bifunctional air electrodes capable of efficiently mediating both the oxygen reduction reaction (ORR) and the oxygen evolution reaction (OER) is imperative. In this study, we present an N-doped carbon hollow nanorod encapsulating a semi-coherent Co-Ni/Co6Mo6C heterojunction, tailored for reversible oxygen catalysis. This nanohybrid demonstrated an ORR half-wave potential of 0.907 V alongside an OER overpotential of η10 = 352 mV. When incorporated into ZABs, this catalyst exhibited extraordinary performance metrics, including a high-power density of 343.7 mW/cm2, a specific capacity of 681 mAh/gZn, and enhanced durability. The distinctive electric field within the heterojunction facilitated electron transfer across the semi-coherent interface during reversible oxygen electrocatalysis, enhancing the adsorption and release of active intermediates. Thus, this heightened ORR-OER catalytic efficiency culminated in superior ZABs performance. Our findings afford a pivotal design paradigm for the advancement of productive bifunctional catalysts within the field of energy conversion technologies.

19.
Clin Chim Acta ; 560: 119748, 2024 Jun 15.
Article in English | MEDLINE | ID: mdl-38796051

ABSTRACT

BACKGROUND: Due to the lack of early symptoms, breast cancer is frequently overlooked, leading to distant metastases and multi-organ lesions that directly threaten patients' lives. We have identified a novel tumor marker, antibodies to endophilin A2 (EA2), to improve early diagnosis of breast cancer. METHODS: Antibody levels of EA2 were analyzed in sera of patients with cancers of different origins and stages by indirect enzyme-linked immunosorbent assay (ELISA). Diagnostic accuracy and reference range were determined by the area under the receiver operating curve and distribution curve. The levels of EA2 antigen in sera were determined by sandwich ELISA. RESULTS: The levels of antibodies against EA2 were higher in sera of patients with breast cancer (P < 0.0001), liver cancer (P = 0.0005), gastric cancer (P = 0.0026), and colon cancer (P = 0.0349) than those in healthy controls, but not in patients with rectal cancer (P = 0.1151), leukemia (P = 0.7508), or lung cancer (P = 0.2247). The highest diagnostic value was for breast cancer, particularly in early cases (AUC = 0.8014) and those with distant metastases (AUC = 0.7885). The titers of EA2 antibodies in sera were correlated with levels of EA2 antigen in breast cancer patients. CONCLUSION: Antibodies to EA2 are novel blood biomarkers for early diagnosis of breast cancer that warrants further study in larger-scale cohort studies.


Subject(s)
Autoantibodies , Biomarkers, Tumor , Breast Neoplasms , Early Detection of Cancer , Humans , Biomarkers, Tumor/blood , Biomarkers, Tumor/immunology , Breast Neoplasms/diagnosis , Breast Neoplasms/blood , Breast Neoplasms/immunology , Autoantibodies/blood , Female , Middle Aged , Adult , Aged , Enzyme-Linked Immunosorbent Assay
20.
J Am Heart Assoc ; 13(9): e033700, 2024 May 07.
Article in English | MEDLINE | ID: mdl-38700005

ABSTRACT

BACKGROUND: The only clinically approved drug that reduces doxorubicin cardiotoxicity is dexrazoxane, but its application is limited due to the risk of secondary malignancies. So, exploring alternative effective molecules to attenuate its cardiotoxicity is crucial. Colchicine is a safe and well-tolerated drug that helps reduce the production of reactive oxygen species. High doses of colchicine have been reported to block the fusion of autophagosomes and lysosomes in cancer cells. However, the impact of colchicine on the autophagy activity within cardiomyocytes remains inadequately elucidated. Recent studies have highlighted the beneficial effects of colchicine on patients with pericarditis, postprocedural atrial fibrillation, and coronary artery disease. It remains ambiguous how colchicine regulates autophagic flux in doxorubicin-induced heart failure. METHODS AND RESULTS: Doxorubicin was administered to establish models of heart failure both in vivo and in vitro. Prior studies have reported that doxorubicin impeded the breakdown of autophagic vacuoles, resulting in damaged mitochondria and the accumulation of reactive oxygen species. Following the administration of a low dose of colchicine (0.1 mg/kg, daily), significant improvements were observed in heart function (left ventricular ejection fraction: doxorubicin group versus treatment group=43.75%±3.614% versus 57.07%±2.968%, P=0.0373). In terms of mechanism, a low dose of colchicine facilitated the degradation of autolysosomes, thereby mitigating doxorubicin-induced cardiotoxicity. CONCLUSIONS: Our research has shown that a low dose of colchicine is pivotal in restoring the autophagy activity, thereby attenuating the cardiotoxicity induced by doxorubicin. Consequently, colchicine emerges as a promising therapeutic candidate to improve doxorubicin cardiotoxicity.


Subject(s)
Autophagy , Cardiotoxicity , Colchicine , Doxorubicin , Lysosomes , Myocytes, Cardiac , Colchicine/toxicity , Colchicine/pharmacology , Doxorubicin/toxicity , Cardiotoxicity/prevention & control , Autophagy/drug effects , Lysosomes/drug effects , Lysosomes/metabolism , Animals , Myocytes, Cardiac/drug effects , Myocytes, Cardiac/metabolism , Myocytes, Cardiac/pathology , Disease Models, Animal , Male , Heart Failure/chemically induced , Heart Failure/drug therapy , Heart Failure/metabolism , Antibiotics, Antineoplastic/toxicity , Reactive Oxygen Species/metabolism , Mice , Mice, Inbred C57BL , Ventricular Function, Left/drug effects
SELECTION OF CITATIONS
SEARCH DETAIL
...