Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 4.436
Filter
1.
Eur J Neurol ; : e16441, 2024 Aug 17.
Article in English | MEDLINE | ID: mdl-39152783

ABSTRACT

BACKGROUND AND PURPOSE: Multiple system atrophy (MSA) is a progressive, adult-onset neurodegenerative disorder clinically characterized by combinations of autonomic failure, parkinsonism, cerebellar ataxia and pyramidal signs. Although a few genetic factors have been reported to contribute to the disease, its mutational profiles have not been systemically studied. METHODS: To address the genetic profiles of clinically diagnosed MSA patients, exome sequencing and triplet repeat detection was conducted in 205 MSA patients, including one familial case. The pathogenicity of variants was determined according to the American College of Medical Genetics and Genomics and the Association for Molecular Pathology guidelines. RESULTS: In the familial patient, a novel heterozygous COQ2 pathogenic variant (p.Ala351Thr) was identified in the MSA pedigree. In the sporadic patients, 29 pathogenic variants were revealed in 21 genes, and the PARK7 p.Ala104Thr variant was significantly associated with MSA (p = 0.0018). Moreover, burden tests demonstrated that the pathogenic variants were enriched in cerebellar ataxia-related genes in patients. Furthermore, repeat expansion analyses revealed that two patients carried the pathogenic CAG repeat expansion in the CACNA1A gene (SCA6), one patient carried the (ACAGG)exp/(ACAGG)exp expansion in RFC1 and one carried the GAA-pure expansion in FGF14 gene. CONCLUSION: In conclusion, a novel COQ2 pathogenic variant was identified in a familial MSA patient, and repeat expansions in CACNA1A, RFC1 and FGF14 gene were detected in four sporadic patients. Moreover, a PARK7 variant and the burden of pathogenic variants in cerebellar ataxia-related genes were associated with MSA.

2.
Bioresour Technol ; 410: 131292, 2024 Aug 15.
Article in English | MEDLINE | ID: mdl-39153701

ABSTRACT

Due to high humification, hyperthermophilic composting products (HP) show potential for remediating heavy metal pollution. However, the interaction between HP and heavy metals remains unclear. This study investigated the adsorption mechanism and soil remediation effect of HP on heavy metals. The results showed that the maximum adsorption capacity of HP increased by an average of 30.74 % compared to conventional composting products. HP transformed 34.87 % of copper, 42.55 % of zinc, and 35.63 % of lead from exchangeable and reducible forms into residual and oxidizable forms, thus reducing the soil risk level. In conclusion, HP significantly enhanced the adsorption of heavy metals and their transformation from unstable to stable forms, primarily due to the higher content of hydroxyl and carboxyl groups. This study aims to demonstrate the effectiveness of HP for remediating heavy metal pollution and to enhance the understanding of the underlying mechanism, which lays a foundation for waste utilization.

3.
Heliyon ; 10(15): e35049, 2024 Aug 15.
Article in English | MEDLINE | ID: mdl-39157406

ABSTRACT

Anti-glomerular basement membrane (GBM) nephritis is a rare autoimmune disorder characterized by acute and rapidly progressive glomerulonephritis. In this report, we present the case of a 52-year-old woman with anti-GBM nephritis who was treated with Staphylococcus Protein A immunoadsorption in combination with glucocorticoids and cyclophosphamide. After 8 cycles of immunoadsorption, the patient's anti-GBM antibodies decreased from 363 AU/mL to less than 20 AU/mL, accompanied by a dropped immunoglobin G level, although renal impairment persisted. We reviewed the therapeutic options for anti-GBM nephritis and compared plasma exchange, double filtration plasmapheresis, and immunoadsorption with regard to plasma consumption, allergic events, and plasma components loss. Protein A immunoadsorption appears to be a promising treatment modality for anti-GBM nephritis.

4.
Front Plant Sci ; 15: 1444234, 2024.
Article in English | MEDLINE | ID: mdl-39157518

ABSTRACT

Lamiales, comprising over 23,755 species across 24 families, stands as a highly diverse and prolific plant group, playing a significant role in the cultivation of horticultural, ornamental, and medicinal plant varieties. Whole-genome duplication (WGD) and its subsequent post-polyploid diploidization (PPD) process represent the most drastic type of karyotype evolution, injecting significant potential for promoting the diversity of this lineage. However, polyploidization histories, as well as genome and subgenome fractionation following WGD events in Lamiales species, are still not well investigated. In this study, we constructed a chromosome-level genome assembly of Lindenbergia philippensis (Orobanchaceae) and conducted comparative genomic analyses with 14 other Lamiales species. L. philippensis is positioned closest to the parasitic lineage within Orobanchaceae and has a conserved karyotype. Through a combination of Ks analysis and syntenic depth analysis, we reconstructed and validated polyploidization histories of Lamiales species. Our results indicated that Primulina huaijiensis underwent three rounds of diploidization events following the γ-WGT event, rather than two rounds as reported. Besides, we reconfirmed that most Lamiales species shared a common diploidization event (L-WGD). Subsequently, we constructed the Lamiales Ancestral Karyotype (LAK), comprising 11 proto-chromosomes, and elucidated its evolutionary trajectory, highlighting the highly flexible reshuffling of the Lamiales paleogenome. We identified biased fractionation of subgenomes following the L-WGD event across eight species, and highlighted the positive impacts of non-WGD genes on gene family expansion. This study provides novel genomic resources and insights into polyploidy and karyotype remodeling of Lamiales species, essential for advancing our understanding of species diversification and genome evolution.

5.
ACS Nano ; 2024 Aug 20.
Article in English | MEDLINE | ID: mdl-39162692

ABSTRACT

Although the past decade has witnessed a rapid development of oxidoreductase-mimicking nanozymes, the mimicry of cofactors that play key roles in mediating electron and proton transfer remains limited. This study explores how surface Au-H species conjugated to Au nanoparticles (NPs) that imitate formate dehydrogenase (FDH) can serve as cofactors, analogous to NADH in natural enzymes, offering diverse possibilities for FDH-mimicking Au nanozymes to mimic various enzymes. Once O2 is present, Au-H species assist Au NPs to complete the on-demand H2O2 generation for cascade reactions. Alternatively, when oxidizing organic molecules are introduced as substrates, Au-H species confer nitro reductase- and aldehyde reductase-like activities on Au NPs under anaerobic conditions. Furthermore, similar to the dehydrogenase-NADH complex, Au NPs possessing Au-H species are gifted with esterase-like activity for ester hydrolysis. By revealing that Au-H species are prosthetic groups for FDH-mimicking Au nanozymes, this work may inspire explorations into future self-generated cofactor mimics for nanozymes, thereby circumventing the need for exogenous cofactors.

6.
Nanoscale Adv ; 6(16): 4071-4074, 2024 Aug 06.
Article in English | MEDLINE | ID: mdl-39114144

ABSTRACT

Electrochemically synthesizing NH3 via N2 is a facile and sustainable approach that involves multistep electron and proton transfer processes. Thus, consecutive electron and proton transfer is necessary. Here, a universal method with the assistance of magnetic stirring that can assemble Fe, Co, and Ni nanoparticles into nanochains is developed. Notably, the Fe nanochain, composed of amorphous Fe nanoparticles, facilitates electron and proton transfer, resulting in an enhanced NH3 yield (92.42 µg h-1 mg-1) and faradaic efficiency (20.02%) at -0.4 V vs. RHE during the electrochemical reduction of N2. This work offers new insight into designing tandem electrocatalysts.

7.
J Chem Inf Model ; 2024 Aug 08.
Article in English | MEDLINE | ID: mdl-39116323

ABSTRACT

Nucleophilic index (NNu) as a significant parameter plays a crucial role in screening of amine catalysts. Indeed, the quantity and variety of amines are extensive. However, only limited amines exhibit an NNu value exceeding 4.0 eV, rendering them potential nucleophiles in chemical reactions. To address this issue, we proposed a computational method to quickly identify amines with high NNu values by using Machine Learning (ML) and high-throughput Density Functional Theory (DFT) calculations. Our approach commenced by training ML models and the exploration of Molecular Fingerprint methods as well as the development of quantitative structure-activity relationship (QSAR) models for the well-known amines based on NNu values derived from DFT calculations. Utilizing explainable Shapley Additive Explanation plots, we were able to determine the five critical substructures that significantly impact the NNu values of amine. The aforementioned conclusion can be applied to produce and cultivate 4920 novel hypothetical amines with high NNu values. The QSAR models were employed to predict the NNu values of 259 well-known and 4920 hypothetical amines, resulting in the identification of five novel hypothetical amines with exceptional NNu values (>4.55 eV). The enhanced NNu values of these novel amines were validated by DFT calculations. One novel hypothetical amine, H1, exhibits an unprecedentedly high NNu value of 5.36 eV, surpassing the maximum value (5.35 eV) observed in well-established amines. Our research strategy efficiently accelerates the discovery of the high nucleophilicity of amines using ML predictions, as well as the DFT calculations.

8.
Sci Data ; 11(1): 885, 2024 Aug 14.
Article in English | MEDLINE | ID: mdl-39143139

ABSTRACT

Red swamp crayfish, Procambarus clarkii, is the most cultured freshwater crayfish species. It attracts significant research attention due to its considerable economic importance. However, the limited availability of genome information has impeded further genetic studies and breeding programs. By utilizing Illumina, PacBio, and Hi-C sequencing technologies, we present a more comprehensive and continuous chromosome-level assembly for P. clarkii than the published one. The final genome size is 4.03 Gb, consisting of 2,358 scaffolds with a N50 of 42.87 Mb. Notably, 3.68 Gb, corresponding to 91.42% of the genome, was anchored to 94 chromosomes. The assembly comprises 70.64% repetitive sequences, including 5.21% tandem repeats and 65.40% transposable elements. Additionally, a total of 4,456 non-coding RNAs and 28,852 protein-coding genes were predicted in the P. clarkii genome, with 96.26% of the genes were annotated. This high-quality genome assembly not only represents a significant improvement for the genome of P. clarkii and provides insights into the unique genome evolution, but also offers valuable information for developing freshwater aquaculture and accelerating genetic breeding.


Subject(s)
Astacoidea , Chromosomes , Genome , Animals , Astacoidea/genetics , DNA Transposable Elements
9.
Heliyon ; 10(14): e34358, 2024 Jul 30.
Article in English | MEDLINE | ID: mdl-39108855

ABSTRACT

Overloaded trucks have long posed a threat to the road safety. To assess truck payload more effectively, this study focus on tire temperature data obtained through infrared thermal imaging. It is feasible to analyse the payload by monitoring one single representative tire. Tire sidewall surface is the best area for data extraction. Truck overload caused significant increase of gas temperature in tires, as well as external temperature. The internal temperature can be calculated with real gas equation of state. By studying the relationship between internal gas temperature of tire and payload, it is demonstrated that monitoring the temperature of tire sidewall surface is an innovative, remote, and real-time method to assess the payload situation of moving trucks.

10.
Neuroscience ; 555: 213-221, 2024 Jul 31.
Article in English | MEDLINE | ID: mdl-39089569

ABSTRACT

Anxiety disorders are prevalent chronic psychological disease with complex pathogenic mechanisms. Current anxiolytics have limited efficacy and numerous side effects in many anxiety patients, highlighting the urgent need for new therapies. Recent research has been focusing on nutritional supplements, particularly amino acids, as potential therapies for anxiety disorders. Among these, L-Cysteine plays a crucial role in various biological processes. L-Cysteine exhibits antioxidant properties that can enhance the antioxidant functions of the central nervous system (CNS). Furthermore, metabolites of L-cysteine, such as glutathione and hydrogen sulfide have been shown to alleviate anxiety through distinct molecular mechanisms. Long-term administration of L-Cysteine has anxiolytic, antidepressant, and memory-improving effects. L-Cysteine depletion can lead to increased oxidative stress in the brain. This review delves into the potential mechanisms of L-Cysteine and its main products, glutathione (GSH) and hydrogen sulfide (H2S) in the management of anxiety and related diseases.

11.
Microbiol Spectr ; : e0012224, 2024 Aug 16.
Article in English | MEDLINE | ID: mdl-39150249

ABSTRACT

Background emergence of multidrug-resistant (MDR) bacterial strains is a public health concern that threatens global and regional security. Efflux pump-overexpressing MDR strains from clinical isolates are the best subjects for studying the mechanisms of MDR caused by bacterial efflux pumps. A Klebsiella pneumoniae strain overexpressing the OqxB-only efflux pump was screened from a clinical strain library to explore reverse OqxB-mediated bacterial resistance strategies. We identified non-repetitive clinical isolated K. pneumoniae strains using a matrix-assisted laser desorption/ionization time-of-flight (TOF) mass spectrometry clinical TOF-II (Clin-TOF-II) and susceptibility test screening against levofloxacin and ciprofloxacin. And the polymorphism analysis was conducted using pulsed-field gel electrophoresis. Efflux pump function of resistant strains is obtained by combined drug sensitivity test of phenylalanine-arginine beta-naphthylamide (PaßN, an efflux pump inhibitor) and detection with ethidium bromide as an indicator. The quantitative reverse transcription PCR was performed to assess whether the oqxB gene was overexpressed in K. pneumoniae isolates. Additional analyses assessed whether the oqxB gene was overexpressed in K. pneumoniae isolates and gene knockout and complementation strains were constructed. The binding mode of PaßN with OqxB was determined using molecular docking modeling. Among the clinical quinolone-resistant K. pneumoniae strains, one mediates resistance almost exclusively through the overexpression of the resistance-nodulation-division efflux pump, OqxB. Crystal structure of OqxB has been reported recently by N. Bharatham, P. Bhowmik, M. Aoki, U. Okada et al. (Nat Commun 12:5400, 2021, https://doi.org/10.1038/s41467-021-25679-0). The discovery of this strain will contribute to a better understanding of the role of the OqxB transporter in K. pneumoniae and builds on the foundation for addressing the threat posed by quinolone resistance.IMPORTANCEThe emergence of antimicrobial resistance is a growing and significant health concern, particularly in the context of K. pneumoniae infections. The upregulation of efflux pump systems is a key factor that contributes to this resistance. Our results indicated that the K. pneumoniae strain GN 172867 exhibited a higher oqxB gene expression compared to the reference strain ATCC 43816. Deletion of oqxB led a decrease in the minimum inhibitory concentration of levofloxacin. Complementation with oqxB rescued antibiotic resistance in the oqxB mutant strain. We demonstrated that the overexpression of the OqxB efflux pump plays an important role in quinolone resistance. The discovery of strain GN 172867 will contribute to a better understanding of the role of the OqxB transporter in K. pneumoniae and promotes further study of antimicrobial resistance.

12.
PLoS One ; 19(8): e0305494, 2024.
Article in English | MEDLINE | ID: mdl-39159165

ABSTRACT

The COVID-19 outbreak led to widespread school closures and the shift to remote teaching, potentially resulting in lasting negative impacts on teachers' psychological well-being due to increased workloads and a perceived lack of administrative support. Despite the significance of these challenges, few studies have delved into the long-term effects of perceived instructional leadership on teachers' psychological health. To bridge this research gap, we utilized longitudinal data from 927 primary and secondary school teachers surveyed in two phases: Time 1 in mid-November 2021 and Time 2 in early January 2022. Using hierarchical linear modeling (HLM), our findings revealed that perceptions of instructional leadership, especially the "perceived school neglect of teaching autonomy" at Time 1 were positively correlated with burnout levels at Time 2. Additionally, burnout at Time 2 was positively associated with psychological distress and acted as a mediator between the "perceived school neglect of teaching autonomy" and psychological distress. In light of these findings, we recommend that schools prioritize teachers' teaching autonomy and take proactive measures to mitigate burnout and psychological distress, aiming for the sustainable well-being of both teachers and students in the post-pandemic era.


Subject(s)
Burnout, Professional , COVID-19 , Leadership , Psychological Well-Being , School Teachers , Humans , Burnout, Professional/psychology , Burnout, Professional/prevention & control , COVID-19/psychology , COVID-19/epidemiology , COVID-19/prevention & control , Longitudinal Studies , Mental Health , Pandemics , Psychological Distress , SARS-CoV-2 , School Teachers/psychology , Schools , Surveys and Questionnaires
13.
Sci Data ; 11(1): 873, 2024 Aug 13.
Article in English | MEDLINE | ID: mdl-39138230

ABSTRACT

Dracaena cambodiana Pierre ex Gagn. (Asparagaceae) is the source plant of Dragon's blood and has high ornamental values in gardening. Currently, this species is classified as the second-class state-protected species in the National Key Protected Wild Plants (NKPWP) of China. However, limited genomic data has hindered a more comprehensive scientific understanding of the processes involved in the production of Dragon's blood and the related conservation genomics research. In this study, we assembled a haplotype-resolved genome of D. cambodiana. The haploid genomes, haplotype A and haplotype B, are 1,015.22 Mb and 1,003.13 Mb in size, respectively. The completeness of haplotype A and haplotype B genomes was 98.60% and 98.20%, respectively, using the "embryophyta_10" dataset. Haplotype A and haplotype B genomes contained 27,361 and 27,066 protein-coding genes, respectively, with nearly all being functionally annotated. These findings provide new insights into the genomic characteristics of D. cambodiana and will offer additional genomic resources for studying the biosynthesis mechanism of Dragon's blood and the horticultural application of Dragon trees.


Subject(s)
Dracaena , Genome, Plant , Haplotypes , Dracaena/genetics , China , Chromosomes, Plant/genetics , Plant Extracts
14.
J Neurosci ; 2024 Jul 25.
Article in English | MEDLINE | ID: mdl-39054067

ABSTRACT

The anterior cingulate cortex (ACC) is a key cortical region for pain perception and emotion. Different forms of synaptic plasticity, including long-term potentiation (LTP) and long-term depression (LTD), have been reported in the ACC. Synaptic tagging of LTP plays an important role in hippocampus-related associative memory. In this study, we demonstrate that synaptic tagging of LTD is detected in the ACC of adult male and female mice. This form of tagged LTD requires the activation of metabotropic glutamate receptor subtype 1 (mGluR1). The induction of tagged LTD is time-related with the strongest tagged LTD appearing when the interval between two independent stimuli is 30 min. Inhibitors of mGluR1 blocked the induction of tagged LTD, however, blocking N-methyl-d-aspartate (NMDA) receptors did not affect the induction of tagged LTD. Nimodipine, an inhibitor of L-type voltage-gated calcium channels (VGCCs), also blocked tagged LTD. In an animal model of amputation, we found that tagged LTD was either reduced or completely blocked. Together with our previous report of tagged LTP in the ACC, this study strongly suggests that excitatory synapses in the adult ACC are highly plastic. The biphasic tagging of synaptic transmission provides a new form of heterosynaptic plasticity in the ACC which has functional and pathophysiological significance in phantom pain.Significance Statement The anterior cingulate cortex (ACC) is a key cortical region for pain perception and chronic pain. Previous studies have reported a novel form of long-term heterosynaptic potentiation in the ACC. In this study, we discovered a long-term depression (LTD) form of synaptic tagging in the ACC of adult male and female mice. This form of tagged LTD requires the activation of metabotropic glutamate receptors (mGluRs). In an animal model of amputation, tagged LTD is reduced or completely blocked. Our results strongly suggest that brain cortices of adult mice are highly plastic and show biphasic tagging of plasticity. These findings of tagged LTD may provide a new direction for future treatment of phantom pain and amputation-related emotional disorders.

16.
Am J Med Genet A ; : e63828, 2024 Jul 26.
Article in English | MEDLINE | ID: mdl-39058251

ABSTRACT

Autosomal recessive spinocerebellar ataxias (SCARs) are a heterogeneous group of neurodegenerative disorders. VPS13D gene is currently the only gene associated with autosomal recessive spinocerebellar ataxia type 4 (SCAR4), also known as VPS13D dyskinesia. SCAR4 is a rare inherited disease, with only 34 reported cases reported worldwide. In this study, we reported three independent SCAR4 cases with adolescent onsets caused by five novel variants of the VPS13D gene. Each patient carried one frameshift and one missense variant: Patient 1 with c.10474del and c.9734C > A (p.Leu3492Tyrfs*43 and p.Thr3245Asn), Patient 2 with c.6094_6107delGTTCTCTTGATCCC and c.9734C > A (p.Val2032Argfs*7 and p.Thr3245Asn), and Patient 3 with c.11954_11963del and c.9833 T > G (p.Phe3985Serfs*10 and p.Ile3278Ser). Two of the three patients shared nystagmus with an identical variant c.9734C > A. Magnetic resonance imaging indicated thoracic spinal atrophy in all three patients and corpus callosum atrophy in one patient, along with other typical manifestations of white matter degradation, cerebral atrophy, and cerebellar atrophy. These findings expanded the genetic, clinical, and neuroimaging spectrum of SCAR4, and provided new insights into the genetic counseling, molecular mechanisms, and differential diagnosis of the disease.

17.
J Mater Chem B ; 12(30): 7401-7419, 2024 Jul 31.
Article in English | MEDLINE | ID: mdl-38958038

ABSTRACT

Surgical site infection (SSI) caused by pathogenic bacteria leads to delayed wound healing and extended hospitalization. Inappropriate uses of antibiotics have caused a surge in SSI and common antibiotics are proving to be ineffective against SSI. Antimicrobial peptides (AMPs) can be a potential solution to prevent SSI because of their broad spectrum of antimicrobial activities. In this study, naturally sourced AMPs were studied along with microfibers, fabricated by a novel wet-spinning method using sodium alginate and polycaprolactone. Afterward, fibers were functionalized by the catechol groups of dopamine immobilizing nucleophilic AMPs on the surface. Conjugation between PCL and alginate resulted in fibers with smooth surfaces improving their mechanical strength via hydrogen bonds. Having an average diameter of 220 µm, the mechanical properties of the fiber complied with USP standards for suture size 3-0. Engineered microfibers were able to hinder the growth of Proteus spp., a pathogenic bacterium for at least 60 hours whereas antibiotic ceftazidime failed. When subjected to a linear incisional wound model study, accelerated healing was observed when the wound was closed using the engineered fiber compared to Vicryl. The microfibers promoted faster re-epithelialization compared to Vicryl proving their higher wound healing capacity.


Subject(s)
Alginates , Anti-Bacterial Agents , Catechols , Polyesters , Surgical Wound Infection , Alginates/chemistry , Alginates/pharmacology , Polyesters/chemistry , Polyesters/pharmacology , Surgical Wound Infection/prevention & control , Surgical Wound Infection/drug therapy , Catechols/chemistry , Catechols/pharmacology , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Animals , Antimicrobial Peptides/chemistry , Antimicrobial Peptides/pharmacology , Microbial Sensitivity Tests , Wound Healing/drug effects , Surface Properties
18.
J Appl Microbiol ; 135(7)2024 Jul 02.
Article in English | MEDLINE | ID: mdl-39003242

ABSTRACT

AIMS: Developing energy-saving and ecofriendly strategies for treating harvested Microcystis biomass. METHODS AND RESULTS: Streptomyces amritsarensis HG-16 was first reported to effectively kill various morphotypes of natural Microcystis colonies at very high cell densities. Concurrently, HG-16 grown on lysed Microcystis maintained its antagonistic activity against plant pathogenic fungus Fusarium graminearum. It could completely inhibit spore germination and destroy mycelial structure of F. graminearum. Transcriptomic analysis revealed that HG-16 attacked F. graminearum in a comprehensive way: interfering with replication, transcription, and translation processes, inhibiting primary metabolisms, hindering energy production and simultaneously destroying stress-resistant systems of F. graminearum. CONCLUSIONS: The findings of this study provide a sustainable and economical option for resource reclamation from Microcystis biomass: utilizing Microcystis slurry to propagate HG-16, which can subsequently be employed as a biocontrol agent for managing F. graminearum.


Subject(s)
Fusarium , Microcystis , Spores, Fungal , Streptomyces , Fusarium/growth & development , Fusarium/physiology , Streptomyces/genetics , Streptomyces/physiology , Streptomyces/growth & development , Streptomyces/metabolism , Microcystis/growth & development , Microcystis/genetics , Microcystis/physiology , Spores, Fungal/growth & development , Antibiosis
19.
J Med Chem ; 67(14): 12248-12260, 2024 Jul 25.
Article in English | MEDLINE | ID: mdl-38959374

ABSTRACT

Cembranolides are characteristic metabolites in marine soft corals, with complex structures and widespread biological activities. However, seldom has an intensive pharmacological study been done for these intriguing marine natural products. In this work, systematic chemical investigation was performed on Sinularia pedunculata by HSQC-based small molecule accurate recognition technology (SMART), resulting in the isolation and identification of 31 cembrane-type diterpenoids, including six new ones. In the bioassay, several compounds showed significant anti-inflammatory activities on the inhibition of NO production. The structure-activity relationship (SAR) was comprehensively analyzed, and two most bioactive and less toxic compounds 8 and 9 could inhibit inflammation through suppressing NF-κB and MAPK signaling pathways, and reduce the secretion of inflammatory cytokines. In a mouse model of dextran sodium sulfate (DSS)-induced acute colitis, 8 and 9 exhibited good anti-inflammatory effects and the ability to repair the colon epithelium, giving insight into the application of cembranolides as potential ulcerative colitis (UC) agents.


Subject(s)
Anthozoa , Colitis, Ulcerative , Dextran Sulfate , Diterpenes , Animals , Colitis, Ulcerative/drug therapy , Diterpenes/pharmacology , Diterpenes/chemistry , Diterpenes/therapeutic use , Diterpenes/isolation & purification , Mice , Structure-Activity Relationship , Anthozoa/chemistry , Anti-Inflammatory Agents/pharmacology , Anti-Inflammatory Agents/chemistry , Anti-Inflammatory Agents/therapeutic use , Anti-Inflammatory Agents/isolation & purification , RAW 264.7 Cells , NF-kappa B/metabolism , NF-kappa B/antagonists & inhibitors , Drug Discovery , Mice, Inbred C57BL , Humans , Male , Nitric Oxide/metabolism
20.
Insights Imaging ; 15(1): 169, 2024 Jul 06.
Article in English | MEDLINE | ID: mdl-38971944

ABSTRACT

MRI offers new opportunities for detailed visualization of the different layers of the esophageal wall, as well as early detection and accurate characterization of esophageal lesions. Staging of esophageal tumors including extramural extent of disease, and status of the adjacent organ can also be performed by MRI with higher accuracy compared to other imaging modalities including CT and esophageal endoscopy. Although MDCT appears to be the primary imaging modality that is indicated for preoperative staging of esophageal cancer to assess tumor resectability, MDCT is considered less accurate in T staging. This review aims to update radiologists about emerging imaging techniques and the imaging features of various esophageal masses, emphasizing the imaging features that differentiate between esophageal masses, demonstrating the critical role of MRI in esophageal masses. CRITICAL RELEVANCE STATEMENT: MRI features may help differentiate mucosal high-grade neoplasia from early invasive squamous cell cancer of the esophagus, also esophageal GISTs from leiomyomas, and esophageal malignant melanoma has typical MR features. KEY POINTS: MRI can accurately visualize different layers of the esophagus potentially has a role in T staging. MR may accurately delineate esophageal fistulae, especially small mediastinal fistulae. MRI features of various esophageal masses are helpful in the differentiation.

SELECTION OF CITATIONS
SEARCH DETAIL