Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 86
Filter
1.
J Biophotonics ; 17(7): e202400012, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38659122

ABSTRACT

Focal damage due to stroke causes widespread abnormal changes in brain function and hemispheric asymmetry. In this study, functional near-infrared spectroscopy (fNIRS) was used to collect resting-state hemoglobin data from 85 patients with subacute stroke and 26 healthy controls, to comparatively analyze the characteristics of lateralization after stroke in terms of cortical activity, functional networks, and hemodynamic lags. Higher intensity of motor cortical activity, lower hemispheric autonomy, and more abnormal hemodynamic leads or lags were found in the affected hemisphere. Lateralization metrics of the three aspects were all associated with the Fugl-Meyer score. The results of this study prove that three lateralization metrics may provide clinical reference for stroke rehabilitation. Meanwhile, the present study piloted the use of resting-state fNIRS for analyzing hemodynamic lag, demonstrating the potential of fNIRS to assess hemodynamic abnormalities in addition to the study of cortical neurological function after stroke.


Subject(s)
Hemodynamics , Rest , Spectroscopy, Near-Infrared , Stroke , Humans , Male , Female , Middle Aged , Stroke/physiopathology , Stroke/diagnostic imaging , Aged , Cerebral Cortex/diagnostic imaging , Cerebral Cortex/physiopathology , Cerebral Cortex/blood supply , Adult , Case-Control Studies
2.
J Biophotonics ; 17(5): e202300427, 2024 May.
Article in English | MEDLINE | ID: mdl-38303080

ABSTRACT

The objective of this study was to investigate brain activation and functional network patterns during musical interventions in different frequency bands using functional near-infrared spectroscopy, and to provide a basis for more effective music therapy strategy selection for patients in minimally conscious state (MCS). Twenty six MCS patients and 20 healthy people were given music intervention with low frequency (31-180 Hz), medium frequency (180-4k Hz), and high frequency (4k-22k Hz) audio. In MCS patients, low frequency music intervention induced activation of left prefrontal cortex and left primary sensory cortex (S1), also a left-hemisphere lateralization effect of dorsolateral prefrontal cortex (DLPFC). And the functional connectivity of right DLPFC-right S1 was significantly improved by high frequency music intervention. The low frequency and high frequency music may contribute more than medium frequency music to the recovery of consciousness. This study also validated the effectiveness of fNIRS in studies of brain function in MCS patients.


Subject(s)
Music , Persistent Vegetative State , Spectroscopy, Near-Infrared , Humans , Male , Female , Middle Aged , Adult , Persistent Vegetative State/physiopathology , Persistent Vegetative State/diagnostic imaging , Music Therapy , Aged
3.
Biomed Opt Express ; 15(1): 77-94, 2024 Jan 01.
Article in English | MEDLINE | ID: mdl-38223191

ABSTRACT

Virtual reality (VR) technology has been demonstrated to be effective in rehabilitation training with the assistance of VR games, but its impact on brain functional networks remains unclear. In this study, we used functional near-infrared spectroscopy imaging to examine the brain hemodynamic signals from 18 healthy participants during rest and grasping tasks with and without VR game intervention. We calculated and compared the graph theory-based topological properties of the brain networks using phase locking values (PLV). The results revealed significant differences in the brain network properties when VR games were introduced compared to the resting state. Specifically, for the VR-guided grasping task, the modularity of the brain network was significantly higher than the resting state, and the average clustering coefficient of the motor cortex was significantly lower compared to that of the resting state and the simple grasping task. Correlation analyses showed that a higher clustering coefficient, local efficiency, and modularity were associated with better game performance during VR game participation. This study demonstrates that a VR game task intervention can better modulate the brain functional network compared to simple grasping movements and may be more beneficial for the recovery of grasping abilities in post-stroke patients with hand paralysis.

4.
J Biophotonics ; 17(2): e202300318, 2024 Feb.
Article in English | MEDLINE | ID: mdl-37795638

ABSTRACT

Stroke is a major cause of death and disability worldwide, but predicting its risk remains challenging. This study aimed to evaluate the cerebral blood flow autoregulation function of subjects with different stroke risk levels and predict their stroke risk. The coupling strength between cerebral oxygen and blood pressure signals was calculated by wavelet analysis and dynamic Bayesian inference and used as a quantitative index of cerebral blood flow autoregulation. A stroke prediction model based on the extreme random tree was constructed using the coupling strength and other data as input features. The results showed that the coupling strength was significantly higher in the high-risk group than the other groups. Moreover, the prediction model achieved an average accuracy of 0.80 across the three groups. The coupling strength of cerebral oxygen and blood pressure can be used as an objective index to predict stroke risk, which has implications for stroke prevention and intervention.


Subject(s)
Oxygen , Stroke , Humans , Blood Pressure/physiology , Bayes Theorem , Cerebrovascular Circulation
5.
Neural Regen Res ; 19(7): 1517-1522, 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38051894

ABSTRACT

ABSTRACT: Non-invasive cerebral neuromodulation technologies are essential for the reorganization of cerebral neural networks, which have been widely applied in the field of central neurological diseases, such as stroke, Parkinson's disease, and mental disorders. Although significant advances have been made in neuromodulation technologies, the identification of optimal neurostimulation parameters including the cortical target, duration, and inhibition or excitation pattern is still limited due to the lack of guidance for neural circuits. Moreover, the neural mechanism underlying neuromodulation for improved behavioral performance remains poorly understood. Recently, advancements in neuroimaging have provided insight into neuromodulation techniques. Functional near-infrared spectroscopy, as a novel non-invasive optical brain imaging method, can detect brain activity by measuring cerebral hemodynamics with the advantages of portability, high motion tolerance, and anti-electromagnetic interference. Coupling functional near-infrared spectroscopy with neuromodulation technologies offers an opportunity to monitor the cortical response, provide real-time feedback, and establish a closed-loop strategy integrating evaluation, feedback, and intervention for neurostimulation, which provides a theoretical basis for development of individualized precise neurorehabilitation. We aimed to summarize the advantages of functional near-infrared spectroscopy and provide an overview of the current research on functional near-infrared spectroscopy in transcranial magnetic stimulation, transcranial electrical stimulation, neurofeedback, and brain-computer interfaces. Furthermore, the future perspectives and directions for the application of functional near-infrared spectroscopy in neuromodulation are summarized. In conclusion, functional near-infrared spectroscopy combined with neuromodulation may promote the optimization of central neural reorganization to achieve better functional recovery from central nervous system diseases.

6.
Cereb Cortex ; 33(24): 11668-11678, 2023 12 09.
Article in English | MEDLINE | ID: mdl-37885140

ABSTRACT

Studies have shown that there is heterogeneity in the efficacy bewteen the low-frequency (LF) and high-frequency (HF) repetitive transcranial magnetic stimulation (rTMS), but the neural mechanisms underlying the differences in efficacy remain unclear. This study aimed to investigate the specific effects of LF- and HF-rTMS on cortial functional network and the process of neural regulation. A total of sixty-eight patients with hemiplegic motor impairment after stroke were randomly allocated to one of three groups: the LF-rTMS, HF-rTMS, and sham groups. Tissue concentrations of oxyhaemoglobin and deoxyhaemoglobin oscillations in cerebral cortex regions were measured by functional near-infrared spectroscopy (fNIRS) in the resting and rTMS states. Four specific time-windows were divided from the trial duration to observe dynamic changes in cortical haemodynamic responses. Compared with sham, LF-rTMS significantly induced the activation of the contralesional superior frontal cortex and premotor cortex, and continuously regulated ipsilesional hemisphere functional networks in stroke patients. However, HF-rTMS did not induce a significant neurovascular coupling response. Our study provided evidence that LF- and HF-rTMS interventions induced different neurovascular coupling responses and demonstrated the cortical functional network change process of rTMS in specific time-windows. These findings may help to understand the differences in the efficacy of rTMS modalities.


Subject(s)
Motor Cortex , Stroke Rehabilitation , Stroke , Humans , Transcranial Magnetic Stimulation/methods , Spectroscopy, Near-Infrared , Stroke/complications , Stroke/diagnostic imaging , Stroke/therapy , Stroke Rehabilitation/methods , Motor Cortex/physiology , Treatment Outcome
7.
Biomed Opt Express ; 14(8): 4217-4236, 2023 Aug 01.
Article in English | MEDLINE | ID: mdl-37799694

ABSTRACT

Resting-state functional near infrared spectroscopy (fNIRS) scanning has attracted considerable attention in stroke rehabilitation research in recent years. The aim of this study was to quantify the reliability of fNIRS in cortical activity intensity and brain network metrics among resting-state stroke patients, and to comprehensively evaluate the effects of frequency selection, scanning duration, analysis and preprocessing strategies on test-retest reliability. Nineteen patients with stroke underwent two resting fNIRS scanning sessions with an interval of 24 hours. The haemoglobin signals were preprocessed by principal component analysis, common average reference and haemodynamic modality separation (HMS) algorithm respectively. The cortical activity, functional connectivity level, local network metrics (degree, betweenness and local efficiency) and global network metrics were calculated at 25 frequency scales × 16 time windows. The test-retest reliability of each fNIRS metric was quantified by the intraclass correlation coefficient. The results show that (1) the high-frequency band has higher ICC values than the low-frequency band, and the fNIRS metric is more reliable than at the individual channel level when averaged within the brain region channel, (2) the ICC values of the low-frequency band above the 4-minute scan time are generally higher than 0.5, the local efficiency and global network metrics reach high and excellent reliability levels after 4 min (0.5 < ICC < 0.9), with moderate or even poor reliability for degree and betweenness (ICC < 0.5), (3) HMS algorithm performs best in improving the low-frequency band ICC values. The results indicate that a scanning duration of more than 4 minutes can lead to high reliability of most fNIRS metrics when assessing low-frequency resting brain function in stroke patients. It is recommended to use the global correction method of HMS, and the reporting of degree, betweenness and single channel level should be performed with caution. This paper provides the first comprehensive reference for resting-state experimental design and analysis strategies for fNIRS in stroke rehabilitation.

9.
Brain Res ; 1809: 148357, 2023 06 15.
Article in English | MEDLINE | ID: mdl-37011721

ABSTRACT

OBJECTIVE: Neurological evidence for the combinational intervention coupling rTMS with motor training for stroke rehabilitation remains limited. This study aimed to investigate the effects of rTMS combined with bilateral arm training (BAT) on the brain functional reorganization in patients with chronic stroke via functional near-infrared spectroscopy (fNIRS). METHODS: Fifteen stroke patients and fifteen age-matched healthy participants were enrolled and underwent single BAT session (s-BAT) and BAT immediately after 5-Hz rTMS over the ipsilesional M1 (rTMS-BAT), measured cerebral haemodynamics by fNIRS. Functional connectivity (FC), the clustering coefficient (Ccoef), and local efficiency (Eloc) were applied to evaluate the functional response to the training paradigms. RESULTS: The differences in FC responses to the two training paradigms were more pronounced in stroke patients than in healthy controls. In the resting state, stroke patients exhibited significantly lower FC than controls in both hemispheres. rTMS-BAT induced no significant difference in FC between groups. Compared to the resting state, rTMS-BAT induced significant decreases in Ccoef and Eloc of the contralesional M1 and significant increases in Eloc of the ipsilesional M1 in stroke patients. Additionally, these above two network metrics of the ipsilesional motor area were significantly positively correlated with the motor function of stroke patients. CONCLUSIONS: These results suggest that the rTMS-BAT paradigm had additional effects on task-dependent brain functional reorganization. The engagement of the ipsilesional motor area in the functional network was associated with the motor impairment severity of stroke patients. fNIRS-based assessments may provide information about the neural mechanisms underlying combination interventions for stroke rehabilitation.


Subject(s)
Stroke Rehabilitation , Stroke , Humans , Arm , Brain , Transcranial Magnetic Stimulation/methods , Stroke Rehabilitation/methods
10.
J Biophotonics ; 16(5): e202200326, 2023 05.
Article in English | MEDLINE | ID: mdl-36602536

ABSTRACT

Understanding the characteristics of functional brain activity is important for motor rehabilitation of children with cerebral palsy (CP). Using the functional near-infrared spectroscopy (fNIRS) technology, the cortical response and networks of prefrontal (PFC) and motor cortices (MC) were analyzed for children with CP and typical development (CTD). Compared with CTD, the resting cortical response of dominant MC in children with CP increased, and the functional connectivity between cerebral areas decreased. In the motor state of children with CP, the coupling strength started from dominant MC increased compared with resting state, and the hemispherical autonomy index (HAI) of the dominant MC was higher than that in the CTD, which reflected the leading role of dominant MC in brain regulation during motor. The functional connectivity between bilateral MC was positively correlated with motor performance. This study provided effective indices for evaluating the motor function and real-time impact of motor on brain networks.


Subject(s)
Cerebral Palsy , Neurovascular Coupling , Humans , Child , Cerebral Palsy/diagnostic imaging , Brain/diagnostic imaging , Rest , Upper Extremity
SELECTION OF CITATIONS
SEARCH DETAIL