Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 5.181
Filter
1.
J Gene Med ; 26(7): e3715, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38962887

ABSTRACT

BACKGROUND: The present study aimed to dissect the cellular complexity of Crohn's disease (CD) using single-cell RNA sequencing, focusing on identifying key cell populations and their transcriptional profiles in inflamed tissue. METHODS: We applied scRNA-sequencing to compare the cellular composition of CD patients with healthy controls, utilizing Seurat for clustering and annotation. Differential gene expression analysis and protein-protein interaction networks were constructed to identify crucial genes and pathways. RESULTS: Our study identified eight distinct cell types in CD, highlighting crucial fibroblast and T cell interactions. The analysis revealed key cellular communications and identified significant genes and pathways involved in the disease's pathology. The role of fibroblasts was underscored by elevated expression in diseased samples, offering insights into disease mechanisms and potential therapeutic targets, including responses to ustekinumab treatment, thus enriching our understanding of CD at a molecular level. CONCLUSIONS: Our findings highlight the complex cellular and molecular interplay in CD, suggesting new biomarkers and therapeutic targets, offering insights into disease mechanisms and treatment implications.


Subject(s)
Crohn Disease , Single-Cell Analysis , Ustekinumab , Crohn Disease/genetics , Crohn Disease/drug therapy , Humans , Ustekinumab/therapeutic use , Single-Cell Analysis/methods , Gene Expression Profiling/methods , Protein Interaction Maps , Fibroblasts/metabolism , Biomarkers , Female , Transcriptome , Adult , Male , T-Lymphocytes/metabolism , T-Lymphocytes/immunology , Treatment Outcome , Sequence Analysis, RNA/methods , Gene Regulatory Networks
2.
J Biotechnol ; 392: 96-102, 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38960098

ABSTRACT

In eukaryotes, the localization of small ribosomal subunits to mRNA transcripts requires the translation of Kozak elements at the starting site. The sequence of Kozak elements affects the translation efficiency of protein synthesis. However, whether the upstream nucleotide of Kozak sequence affects the expression of recombinant proteins in Chinese hamster ovary (CHO) cells remains unclear. In order to find the optimal sequence to enhance recombinant proteins expression in CHO cells, -10 to +4 sequences around ATG in 100 CHO genes were compared, and the extended Kozak elements with different translation intensities were constructed. Using the classic Kozak element as control, the effects of optimized extended Kozak elements on the secreted alkaline phosphatase (SEAP) and human serum albumin (HSA) gene were studied. The results showed that the optimized extended Kozak sequence can enhance the stable expression level of recombinant proteins in CHO cells. Furthermore, it was found that the increased expression level of the recombinant protein was not related with higher transcription level. In summary, optimizing extended Kozak elements can enhance the expression of recombinant proteins in CHO cells, which contributes to the construction of an efficient expression system for CHO cells.

3.
Mol Pharm ; 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38949095

ABSTRACT

Claudin18.2 (CLDN18.2), due to its high expression in various gastric cancer tissues, is considered an optimal target for antitumor drug molecules. In this study, we obtained the labeled compounds of [125I]I-zolbetuximab using the Iodogen method. Under the optimum labeling conditions, the molar activity of [125I]I-zolbetuximab was 1.75 × 102 GBq/µmol, and the labeling efficiency was more than 99%. The labeled compounds exhibited excellent in vitro stability in both phosphate buffer saline (PBS, pH = 7.4) and fetal bovine serum systems (FBS) (radiochemical purity >90% at 72 h). The uptake percentage of [125I]I-zolbetuximab in MKN45-CLDN18.2 cells is 24.69 ± 0.84% after 6 h. The saturation binding assay and specificity assay further demonstrated the high specificity of [125I]I-zolbetuximab for CLDN18.2. The long retention at the tumor site and rapid metabolic clearance at other organ sites of [125I]I-zolbetuximab were observed in small-animal SPECT-CT imaging. The same trend was also observed in the biodistribution study. Due to the excellent targeting ability of zolbetuximab for CLDN18.2, [125I]I-zolbetuximab exhibits strong specific binding and retention with cells and tumors highly expressing CLDN18.2. However, the balance between mAb's longer cycle time in vivo and targeting binding and retention ability should be intensively considered for using this kind of radiopharmaceutical in the diagnosis and treatment of CLDN18.2-positive gastric cancer.

4.
Phys Rev Lett ; 132(24): 240801, 2024 Jun 14.
Article in English | MEDLINE | ID: mdl-38949366

ABSTRACT

Quantum networks promise unprecedented advantages in information processing and open up intriguing new opportunities in fundamental research, where network topology and network nonlocality fundamentally underlie these applications. Hence, the detections of network topology and nonlocality are crucial, which, however, remain an open problem. Here, we conceive and experimentally demonstrate to determine the network topology and network nonlocality hosted by a triangle quantum network comprising three parties, within and beyond Bell theorem, with a general witness operator for the first time. We anticipate that this unique approach may stimulate further studies toward the efficient characterization of large complex quantum networks so as to better harness the advantage of quantum networks for quantum information applications.

5.
Front Med (Lausanne) ; 11: 1378846, 2024.
Article in English | MEDLINE | ID: mdl-38978778

ABSTRACT

Sarcopenia is a condition characterized by age-related loss of muscle mass and strength. Increasing evidence suggests that patients with sarcopenia have higher rates of coronavirus 2019 (COVID-19) infection and poorer post-infection outcomes. However, the exact mechanism and connections between the two is unknown. In this study, we used high-throughput data from the GEO database for sarcopenia (GSE111016) and COVID-19 (GSE171110) to identify common differentially expressed genes (DEGs). We conducted GO and KEGG pathway analyses, as well as PPI network analysis on these DEGs. Using seven algorithms from the Cytoscape plug-in cytoHubba, we identified 15 common hub genes. Further analyses included enrichment, PPI interaction, TF-gene and miRNA-gene regulatory networks, gene-disease associations, and drug prediction. Additionally, we evaluated immune cell infiltration with CIBERSORT and assessed the diagnostic accuracy of hub genes for sarcopenia and COVID-19 using ROC curves. In total, we identified 66 DEGs (34 up-regulated and 32 down-regulated) and 15 hub genes associated with sarcopenia and COVID-19. GO and KEGG analyses revealed functions and pathways between the two diseases. TF-genes and TF-miRNA regulatory network suggest that FOXOC1 and hsa-mir-155-5p may be identified as key regulators, while gene-disease analysis showed strong correlations with hub genes in schizophrenia and bipolar disorder. Immune infiltration showed a correlation between the degree of immune infiltration and the level of infiltration of different immune cell subpopulations of hub genes in different datasets. The ROC curves for ALDH1L2 and KLF5 genes demonstrated their potential as diagnostic markers for both sarcopenia and COVID-19. This study suggests that sarcopenia and COVID-19 may share pathogenic pathways, and these pathways and hub genes offer new targets and strategies for early diagnosis, effective treatment, and tailored therapies for sarcopenia patients with COVID-19.

6.
RSC Adv ; 14(30): 21307-21317, 2024 Jul 05.
Article in English | MEDLINE | ID: mdl-38979459

ABSTRACT

Lithium extraction from salt lake brine is still challenging due to the existence of similar elements, e.g. sodium. In the present work, polysulfone (PSF) microcapsules containing 1-phenylazo-2-naphthol (HS) and trioctylphosphine oxide (TOPO) as extractants were successfully prepared by microfluidic technology for the separation of Li+ from brine with Li+ and Na+. The morphology, composition, and structure of HS-TOPO-based microcapsules were characterized systematically. The results showed that microcapsules consisting of 20 wt% (m m-1) polysulfone and 80 wt% (m m-1) 1-phenylazo-2-naphthol-trioctylphosphine oxide as the extractant, which was labeled as PSF/HS-TOPO-2/8, exhibited the best performance for Li+ adsorption. The separation factor (SF) of Li+ over Na+ is up to 653 and the adsorption capacity for Li+ in the simulated brine could reach 3.67 mg g-1 for microcapsules PSF/HS-TOPO-2/8, which demonstrated that Li+ can be separated with high selectivity. Besides, the kinetic results demonstrated that the adsorption followed quasi-secondary adsorption kinetic models, indicating that the adsorption mechanism of lithium by microcapsules involved chemisorption. After ten cycles of adsorption-elution, the maximum equilibrium adsorption capacity still remained at 87%. All these results demonstrate that PSF/HS-TOPO-2/8 microcapsules can be used as an efficient adsorber for the adsorption of Li+ from brine with high selectivity and stability.

7.
J Chem Phys ; 161(2)2024 Jul 14.
Article in English | MEDLINE | ID: mdl-38984963

ABSTRACT

Electron-phonon coupling is an important energy transfer mechanism in solids after ultrafast laser excitation. In this study, we present an extreme ultraviolet (EUV) and infrared (IR) pump-probe photoemission experiment to investigate the electron-phonon coupling in nonequilibrium gold. The energy of IR-laser-emitted photoelectrons is shifted due to the EUV photoemission and oscillates with a ∼4THz frequency. Such oscillation is considered as the effective excitation of the longitudinal acoustic phonon mode in gold through the spectral-dependent electron-phonon coupling. Our study showcases the capability of time-resolved photoemission electron microscopy to monitor the non-equilibrium lattice vibrations with ultrahigh spatial and temporal resolution.

8.
Cell Res ; 2024 Jul 11.
Article in English | MEDLINE | ID: mdl-38992287
9.
Int J Biol Sci ; 20(9): 3570-3589, 2024.
Article in English | MEDLINE | ID: mdl-38993556

ABSTRACT

Background: Cisplatin (DDP) based combination chemotherapy is a vital method for the treatment of bladder cancer (BLca). Chemoresistance easily occurs in the course of cisplatin chemotherapy, which is one of the important reasons for the unfavorable prognosis of BLca patients. Circular RNAs (circRNAs) are widely recognized for their role in the development and advancement of BLca. Nevertheless, the precise role of circRNAs in DDP resistance for BLca remains unclear. Methods: To study the properties of circATIC, sanger sequencing, agarose gel electrophoresis and treatment with RNase R/Actinomycin D were utilized. RT-qPCR assay was utilized to assess the expression levels of circRNA, miRNA and mRNA in BLca tissues and cells. Functional experiments were conducted to assess the function of circATIC in BLca progression and chemosensitivity in vitro. Various techniques such as FISH, Dual-luciferase reporter assay, TRAP, RNA digestion assay, RIP and ChIRP assay were used to investigate the relationships between PTBP1, circATIC, miR-1247-5p and RCC2. Orthotopic bladder cancer model, xenograft subcutaneous tumor model and xenograft lung metastasis tumor model were performed to indicate the function and mechanism of circATIC in BLca progression and chemosensitivity in vivo. Results: In our study, we observed that circATIC expression was significantly enhanced in BLca tissues and cells and DDP resistant cells. Patients with higher circATIC expression have larger tumor diameter, higher incidence of postoperative metastasis and lower overall survival rate. Further experiments showed that circATIC accelerated BLca cell growth and metastasis and induced DDP resistance. Mechanistically, alternative splicing enzyme PTBP1 mediated the synthesis of circATIC. circATIC could enhance RCC2 mRNA stability via sponging miR-1247-5p or constructing a circATIC/LIN28A/RCC2 RNA-protein ternary complex. Finally, circATIC promotes RCC2 expression to enhance Epithelial-Mesenchymal Transition (EMT) progression and activate JNK signal pathway, thus strengthening DDP resistance in BLca cells. Conclusion: Our study demonstrated that circATIC promoted BLca progression and DDP resistance, and could serve as a potential target for BLca treatment.


Subject(s)
Cisplatin , Drug Resistance, Neoplasm , Heterogeneous-Nuclear Ribonucleoproteins , Polypyrimidine Tract-Binding Protein , RNA, Circular , Urinary Bladder Neoplasms , Urinary Bladder Neoplasms/metabolism , Urinary Bladder Neoplasms/drug therapy , Urinary Bladder Neoplasms/pathology , Urinary Bladder Neoplasms/genetics , Humans , RNA, Circular/genetics , RNA, Circular/metabolism , Cisplatin/therapeutic use , Cisplatin/pharmacology , Drug Resistance, Neoplasm/genetics , Heterogeneous-Nuclear Ribonucleoproteins/metabolism , Heterogeneous-Nuclear Ribonucleoproteins/genetics , Polypyrimidine Tract-Binding Protein/metabolism , Polypyrimidine Tract-Binding Protein/genetics , Animals , Cell Line, Tumor , Mice , Mice, Nude , MicroRNAs/metabolism , MicroRNAs/genetics , Male , Female , Disease Progression , Gene Expression Regulation, Neoplastic , Antineoplastic Agents/therapeutic use , Antineoplastic Agents/pharmacology , Mice, Inbred BALB C , Cell Proliferation/drug effects
10.
Ann Hematol ; 2024 Jul 11.
Article in English | MEDLINE | ID: mdl-38990294

ABSTRACT

The MEF2D rearrangement is a recurrent chromosomal abnormality detected in approximately 2.4-5.3% of patients with acute B-cell lymphoblastic leukemia (B-ALL). Currently, MEF2D-rearranged B-ALL is not classified as an independent subtype in the WHO classification. Consequently, the clinical significance of MEF2D rearrangement in B-ALL remains largely unexplored. In this study, we retrospectively screened 260 B-ALL patients with RNA sequencing data collected between November 2018 and December 2022. Among these, 10 patients were identified with MEF2D rearrangements (4 with MEF2D::HNRNPUL1, 3 with MEF2D::BCL9, 1 with MEF2D::ARID1B, 1 with MEF2D::DAZAP1 and 1 with MEF2D::HNRNPM). Notably, HNRNPM and ARID1B are reported as MEF2D fusion partners for the first time. The patient with the MEF2D::HNRNPM fusion was resistant to chemotherapy and chimeric antigen receptor T-cell therapy and relapsed early after allogenic stem cell transplantation. The patient with MEF2D::ARID1B experienced early extramedullary relapse after diagnosis. All 10 patients achieved complete remission after induction chemotherapy. However, 9/10 (90%) of whom experienced relapse. Three of the 9 patients relapsed with aberrant expression of myeloid antigens. The median overall survival of these patients was only 11 months. This small cohort showed a high incidence of early relapse and short survival in patients with MEF2D rearrangements.

11.
Toxicol Lett ; 399: 1-8, 2024 Jul 03.
Article in English | MEDLINE | ID: mdl-38969027

ABSTRACT

2-Methyl-4-nitroaniline (MNA), an intermediate in the synthesis of azo dyes, is widely distributed in various environmental media and organisms. Although there is speculation regarding MNA's potential to be hepatotoxic, the underlying mechanisms of its hepatotoxicity and its definitive diagnostic process remain largely unexplored. In this research. In the present study, we initially predicted the toxicity and possible toxic effect pathways of MNA using ProTox-II, and found that MNA binds to the PPARγ receptor (binding energy -6.118 kcal/mol) with a potential PPARγ agonist effect. Subsequently, in vivo exposure evaluation was conducted on Wistar rats to assess the impact of MNA after a 90-day exposure period, by detecting serum biochemical indexes, hematological indexes, urinary indexes, inflammatory factors, liver histopathological observations and liver tissue PPARγ mRNA expression. The results showed that MNA causes liver function abnormalities, liver histopathological changes and inflammatory response, along with a pronounced increase in PPARγ mRNA levels. This study suggests that the hepatotoxic mechanism of MNA may be related to its possible upregulation of PPARγ expression, increased liver dysfunction and inflammatory responses. Based on these results, the benchmark dose lower limit (BMDL) of 1.503 mg/kg for male Wistar rats was also established, providing a vital benchmark for determining the safety threshold of MNA. Our data highlight the hepatotoxic mechanism of MNA and contribute to a better understanding of its potential etiological diagnosis.

12.
Zhongguo Dang Dai Er Ke Za Zhi ; 26(7): 736-742, 2024 Jul 15.
Article in Chinese | MEDLINE | ID: mdl-39014951

ABSTRACT

OBJECTIVES: To develop effective measures to reduce antibiotic use duration in very low birth weight (VLBW) preterm infants in the neonatal intensive care unit through quality improvement methods. METHODS: The study population consisted of hospitalized VLBW preterm infants, with the percentage of hospitalization time during which antibiotics were used from November 2020 to June 2021 serving as the baseline. The specific quality improvement goal was to reduce the duration of antibiotic use. Factors affecting antibiotic use duration in preterm infants were analyzed using Pareto charts. Key drivers were identified, and specific interventions were formulated based on the stages of antibiotic use. Changes in the percentage of antibiotic use duration were monitored with run charts until the quality improvement target was achieved. RESULTS: From November 2020 to June 2021, the baseline antibiotic use duration percentage was 49%, with a quality improvement target to reduce this by 10% within 12 months. The Pareto analysis indicated that major factors influencing antibiotic duration included non-standard antibiotic use; delayed cessation of antibiotics when no infection evidence was present; prolonged central venous catheter placement; insufficient application of kangaroo care; and delayed progress in enteral nutrition. The interventions implemented included: (1) establishing sepsis evaluation and management standards; (2) educating medical staff on the rational use of antibiotics for preterm infants; (3) supervising the enforcement of antibiotic use standards during ward rounds; (4) for those without clear signs of infection and with negative blood cultures, discontinued the use of antibiotics 36 hours after initiation; (5) reducing the duration of central venous catheterization and parenteral nutrition to lower the risk of infection in preterm infants. The control chart showed that with continuous implementation of interventions, the percentage of antibiotic use duration was reduced from 49% to 32%, a statistically significant decrease. CONCLUSIONS: The application of quality improvement tools based on statistical principles and process control may significantly reduce the antibiotic use duration in VLBW preterm infants. Citation:Chinese Journal of Contemporary Pediatrics, 2024, 26(7): 736-742.


Subject(s)
Anti-Bacterial Agents , Infant, Premature , Infant, Very Low Birth Weight , Intensive Care Units, Neonatal , Quality Improvement , Humans , Infant, Newborn , Anti-Bacterial Agents/administration & dosage , Anti-Bacterial Agents/therapeutic use , Female , Male , Time Factors
14.
Natl Sci Rev ; 11(7): nwae195, 2024 Jul.
Article in English | MEDLINE | ID: mdl-39045468

ABSTRACT

Endogenous opioid antinociception is a self-regulatory mechanism that reduces chronic pain, but its underlying circuit mechanism remains largely unknown. Here, we showed that endogenous opioid antinociception required the activation of mu-opioid receptors (MORs) in GABAergic neurons of the central amygdala nucleus (CEA) in a persistent-hyperalgesia mouse model. Pharmacogenetic suppression of these CEAMOR neurons, which mimics the effect of MOR activation, alleviated the persistent hyperalgesia. Furthermore, single-neuron projection analysis revealed multiple projectome-based subtypes of CEAMOR neurons, each innervating distinct target brain regions. We found that the suppression of axon branches projecting to the parabrachial nucleus (PB) of one subtype of CEAMOR neurons alleviated persistent hyperalgesia, indicating a subtype- and axonal-branch-specific mechanism of action. Further electrophysiological analysis revealed that suppression of a distinct CEA-PB disinhibitory circuit controlled endogenous opioid antinociception. Thus, this study identified the central neural circuit that underlies endogenous opioid antinociception, providing new insight into the endogenous pain modulatory mechanisms.

15.
Anal Methods ; 2024 Jul 24.
Article in English | MEDLINE | ID: mdl-39046279

ABSTRACT

Nuclear matrix protein 22 (NMP22) is one of the most important tumor markers of bladder cancer and is significantly elevated in the urine of bladder cancer patients. Therefore, in this work, a highly sensitive ratiometric electrochemical immunosensor was constructed to detect NMP22 based on ZIF-8@MWCNTs@Chit@Fc@AuNPs composites. ZIF-8 had a large surface area and good adsorption ability. Multi-Walled Carbon Nanotubes (MWCNTs) can optimize the electrical conductivity of ZIF-8, so that the electrode surface of ferrocene (Fc) obtains a stable and strong electrochemical signal. In addition, AuPt-MB provided another strong detection signal methylene blue (MB) while immobilizing the secondary antibody (Ab2) through Au-N and Pt-N bonds. A ratiometric electrochemical sensor was formed based on ZIF-8@MWCNTs@Chit@Fc@AuNPs and AuPt-MB, which showed a great linear connection between IMB/IFc and the logarithmic concentration of NMP22 with a detection limit of 3.33 fg mL-1 (S/N = 3) under optimized specifications in the concentration interval of 0.01 pg mL-1 to 1000 ng mL-1. In addition, the ratiometric immunosensor showed good selectivity and stability.

17.
ACS Omega ; 9(28): 30492-30507, 2024 Jul 16.
Article in English | MEDLINE | ID: mdl-39035980

ABSTRACT

Pipeline risk assessment is crucial for pipeline safety management and operation. The aim of this study is to develop a comprehensive assessment model that accurately evaluates pipeline risks and ensures the safe and reliable operation of the pipeline system. The model is based on multisource spatial data and is primarily applicable to long-distance oil and gas pipelines that traverse complex geological conditions in mountainous areas. The research is conducted using the example of the Jinliwen natural gas pipeline in Zhejiang Province, China. By analyzing the geological data of the study area and the potential risks that the pipeline may encounter, a comprehensive risk assessment indicator system for the pipeline was developed using slope units to divide pipeline sections. The pipeline risk levels are classified using the K-means clustering-entropy weighted-random forest algorithm. The model is evaluated using accuracy (Acc), precision (Pre), recall (R), F1-score, and the ROC curve. The results show that the model has an accuracy of 0.917, a precision of 0.92, a recall of 0.916, an F1-score of 0.914, and an AUC (Area Under Curve) of 0.93, indicating its strong predictive capability. The risk assessment results demonstrate a strong consistency when compared with actual incident events. This indicates that the constructed model effectively reflects the influencing factors of pipeline risk, providing a basis for pipeline risk assessment and disaster prevention and mitigation efforts in similar regions.

18.
Med Phys ; 2024 Jul 23.
Article in English | MEDLINE | ID: mdl-39042373

ABSTRACT

BACKGROUND: Deep learning technology has made remarkable progress in pancreatic image segmentation tasks. However, annotating 3D medical images is time-consuming and requires expertise, and existing semi-supervised segmentation methods perform poorly in the segmentation task of organs with blurred edges in enhanced CT such as the pancreas. PURPOSE: To address the challenges of limited labeled data and indistinct boundaries of regions of interest (ROI). METHODS: We propose Edge-Biased Consistency Regularization (EBC-Net). 3D edge detection is employed to construct edge perturbations and integrate edge prior information into limited data, aiding the network in learning from unlabeled data. Additionally, due to the one-sidedness of a single perturbation space, we expand the dual-level perturbation space of both images and features to more efficiently focus the model's attention on the edges of the ROI. Finally, inspired by the clinical habits of doctors, we propose a 3D Anatomical Invariance Extraction Module and Anatomical Attention to capture anatomy-invariant features. RESULTS: Extensive experiments have demonstrated that our method outperforms state-of-the-art methods in semi-supervised pancreas image segmentation. Moreover, it can better preserve the morphology of pancreatic organs and excel at edges region accuracy. CONCLUSIONS: Incorporated with edge prior knowledge, our method mixes disturbances in dual-perturbation space, which shifts the network's attention to the fuzzy edge region using a few labeled samples. These ideas have been verified on the pancreas segmentation dataset.

19.
World J Gastrointest Surg ; 16(6): 1618-1628, 2024 Jun 27.
Article in English | MEDLINE | ID: mdl-38983338

ABSTRACT

BACKGROUND: Patients with resectable gastric adenocarcinoma accompanied by vascular cancer thrombus (RGAVCT) have a poor prognosis, with a 5-year survival rate ranging from 18.42%-53.57%. These patients need a reasonable postoperative treatment plan to improve their prognosis. AIM: To determine the most effective postoperative chemotherapy regimen for patients with RGAVCT. METHODS: We retrospectively collected the clinicopathological data of 530 patients who underwent radical resection for gastric cancer between January 2017 and January 2022 and who were pathologically diagnosed with gastric adenocarcinoma with a choroidal cancer embolus. Furthermore, we identified the high-risk variables that can influence the prognosis of patients with RGAVCT by assessing the clinical and pathological features of the patients who met the inclusion criteria. We also assessed the significance of survival outcomes using Mantel-Cox univariate and multivariate analyses. The subgroups of patients with stages I, II, and III disease who received single-, dual-, or triple-drug regimens following surgery were analyzed using SPSS 25.0 and the ggplot2 package in R 4.3.0. RESULTS: In all, 530 eligible individuals with RGAVCT were enrolled in this study. The median overall survival (OS) of patients with RGAVCT was 24 months, and the survival rates were 80.2%, 62.5%, and 42.3% at 12, 24, and 59 months, respectively. Preoperative complications, tumor size, T stage, and postoperative chemotherapy were identified as independent factors that influenced OS in patients with RGAVCT according to the Cox multivariate analysis model. A Kaplan-Meier analysis revealed that chemotherapy had no effect on OS of patients with stage I or II RGAVCT; however, chemotherapy did have an effect on OS of stage III patients. Stage III patients who were treated with chemotherapy consisting of dual- or triple-agent regimens had better survival than those treated with single-agent regimens, and no significant difference was observed in the survival of patients treated with chemotherapy consisting of dual- or triple-agent regimens. CONCLUSION: For patients with stage III RGAVCT, a dual-agent regimen of postoperative chemotherapy should be recommended rather than a triple-agent treatment, as the latter is associated with increased frequency of adverse events.

20.
Int J Biol Macromol ; 276(Pt 1): 133751, 2024 Jul 14.
Article in English | MEDLINE | ID: mdl-39009269

ABSTRACT

Deep eutectic solvent (DES) is an ideal solvent for extracting lignin in biomass pretreatment process. However, excessive breakage of the ß-O-4 bonds of lignin remained a challenge for DES-pretreated biomass. In this study, a novel pretreatment system of choline chloride-citrate acid DES combined with ethanol for the pretreatment of bamboo was developed. The chemical characteristics of extracted lignin of bamboo before and after pretreatment were analyzed by gel permeation chromatography (GPC) and nuclear magnetic resonance spectroscopy (NMR). The results showed that the lignin extracted by ethanol/DES had moderate and uniform molecular weight (Mn: 3081-4314 Da, Mw: 3130-5399 Da), and was structurally intact (maintaining 40.29 % ß-O-4 content), which was about five times higher than DES-extracted lignin, and contained a high number of S units (up to 80 %). Ethanol/DES system resulted in high removal of lignin up to 78.81 % and the highest enzymatic digestibility of glucose (72.68 %) and xylan (92.95 %), respectively. In addition, recovered DES provided similar glucose digestibility yields and delignification performance. The Ethanol/DES pretreatment developed herein provided a viable method for maintaining the structural integrity of lignin and preparing lignin with high ß-O-4 content whilst with a relatively high components recovery.

SELECTION OF CITATIONS
SEARCH DETAIL