Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 108
1.
Front Pharmacol ; 15: 1294668, 2024.
Article En | MEDLINE | ID: mdl-38828446

Introduction: FLT3 mutations are closely associated with the occurrence of hematological and solid malignancies, especially with acute myeloid leukemia. Currently, several FLT3 inhibitors are in clinical trials, and some have been applied in clinic. However, the safety, efficacy and pharmacodynamics of these FLT3 inhibitors have not been systemically analyzed before. Methods: We searched and reviewed clinical trial reports on the monotherapy of 13 FLT3 inhibitors, including sorafenib, lestaurtinib, midostaurin, gilteritinib, quizartinib, sunitinib, crenolanib, tandutinib, cabozantinib, pexidartinib, pacritinib, famitinib, and TAK-659 in patients with hematological and solid malignancies before May 31, 2023. Results: Our results showed the most common adverse events (AEs) were gastrointestinal adverse reactions, including diarrhea, hand-foot syndrome and nausea, while the most common hematological AEs were febrile neutropenia, anemia, and thrombocytopenia. Based on the published data, the mean overall survival (OS) and the mean progression-free survival (PFS) were 9.639 and 5.905 months, respectively. The incidence of overall response rate (ORR), complete remission (CR), partial response (PR), and stable disease (SD) for all these FLT3 inhibitors was 29.0%, 8.7%, 16.0%, and 42.3%, respectively. The ORRs of FLT3 inhibitors in hematologic malignancies and solid tumors were 40.8% and 18.8%, respectively, indicating FLT3 inhibitors were more effective for hematologic malignancies than for solid tumors. In addition, time to maximum plasma concentration (Tmax) in these FLT3 inhibitors ranged from 0.7-12.0 hours, but the elimination half-life (T1/2) range was highly variable, from 6.8 to 151.8 h. Discussion: FLT3 inhibitors monotherapy has shown significant anti-tumor effect in clinic, and the effectiveness may be further improved through combination medication.

2.
Nat Food ; 5(5): 413-422, 2024 May.
Article En | MEDLINE | ID: mdl-38724686

Salmonella enterica causes severe food-borne infections through contamination of the food supply chain. Its evolution has been associated with human activities, especially animal husbandry. Advances in intensive farming and global transportation have substantially reshaped the pig industry, but their impact on the evolution of associated zoonotic pathogens such as S. enterica remains unresolved. Here we investigated the population fluctuation, accumulation of antimicrobial resistance genes and international serovar Choleraesuis transmission of nine pig-enriched S. enterica populations comprising more than 9,000 genomes. Most changes were found to be attributable to the developments of the modern pig industry. All pig-enriched salmonellae experienced host transfers in pigs and/or population expansions over the past century, with pigs and pork having become the main sources of S. enterica transmissions to other hosts. Overall, our analysis revealed strong associations between the transmission of pig-enriched salmonellae and the global pork trade.


Salmonella enterica , Animals , Salmonella enterica/genetics , Salmonella enterica/isolation & purification , Swine , Europe/epidemiology , Humans , Salmonella Infections, Animal/epidemiology , Salmonella Infections, Animal/transmission , Salmonella Infections, Animal/microbiology , Swine Diseases/microbiology , Swine Diseases/transmission , Swine Diseases/epidemiology , Animal Husbandry/methods , Pork Meat/microbiology , Americas/epidemiology , Food Microbiology
3.
Microorganisms ; 12(5)2024 Apr 30.
Article En | MEDLINE | ID: mdl-38792738

Microbial communities inhabiting sedimentary environments in river source regions serve as pivotal indicators of pristine river ecosystems. While the correlation between antibiotic resistome and pathogenicity with core gut bacteria in humans is well established, there exists a significant knowledge gap concerning the interaction of antibiotic resistance genes (ARGs) and human pathogenic bacteria (HPB) with specific microbes in river source basins, often referred to as "terrestrial gut". Understanding the microbial composition, including bacteria and resident genetic elements such as ARGs, HPB, Mobile Genetic Elements (MGEs), and Virulence Factors (VFs), within natural habitats against the backdrop of global change, is imperative. To address this gap, an enrichment-based culturomics complementary along with metagenomics was conducted in this study to characterize the microbial biobank and provide preliminary ecological insights into profiling the dissemination of ARGs in the Lancang River Source Basin. Based on our findings, in the main stream of the Lancang River Source Basin, 674 strains of bacteria, comprising 540 strains under anaerobic conditions and 124 under aerobic conditions, were successfully isolated. Among these, 98 species were identified as known species, while 4 were potential novel species. Of these 98 species, 30 were HPB relevant to human health. Additionally, bacA and bacitracin emerged as the most abundant ARGs and antibiotics in this river, respectively. Furthermore, the risk assessment of ARGs predominantly indicated the lowest risk rank (Rank Ⅳ) in terms of endangering human health. In summary, enrichment-based culturomics proved effective in isolating rare and unknown bacteria, particularly under anaerobic conditions. The emergence of ARGs showed limited correlation with MGEs, indicating minimal threats to human health within the main stream of the Lancang River Source Basin.

4.
BMC Infect Dis ; 24(1): 412, 2024 Apr 19.
Article En | MEDLINE | ID: mdl-38641583

BACKGROUND: Vibrio furnissii is an emerging human pathogen closely related to V. fluvialis that causes acute gastroenteritis. V. furnissii infection has been reported to be rarer than V. fluvialis, but a multi-drug resistance plasmid has recently been discovered in V. furnissii. METHODS: During daily monitoring at a general hospital in Beijing, China, seven V. furnissii strains were collected from patients aged over 14 years who presented with acute diarrhoea between April and October 2018. Genome analysis and comparison were performed for virulence and antimicrobial resistance genes, plasmids and transposon islands, together with phylogenetic analysis. Antimicrobial resistance to 19 antibiotics was investigated using the microbroth dilution method. Virulence phenotypes were investigated based on type VI secretion system (T6SS) expression and using a bacterial killing assay and a haemolysin assay. RESULTS: Phylogenetic analysis based on single-nucleotide polymorphisms revealed a closer relationship between V. furnissii and V. fluvialis than between other Vibrio spp. The seven V. furnissii isolates were in different monophyletic clades in the phylogenetic tree, suggesting that the seven cases of gastroenteritis were independent. High resistance to cefazolin, tetracycline and streptomycin was found in the V. furnissii isolates at respective rates of 100.0%, 57.1% and 42.9%, and intermediate resistance to ampicillin/sulbactam and imipenem was observed at respective rates of 85.7% and 85.7%. Of the tested strains, VFBJ02 was resistant to both imipenem and meropenem, while VFBJ01, VFBJ02, VFBJ05 and VFBJ07 were multi-drug resistant. Transposon islands containing antibiotic resistance genes were found on the multi-drug resistance plasmid in VFBJ05. Such transposon islands also occurred in VFBJ07 but were located on the chromosome. The virulence-related genes T6SS, vfh, hupO, vfp and ilpA were widespread in V. furnissii. The results of the virulence phenotype assays demonstrated that our isolated V. furnissii strains encoded an activated T6SS and grew in large colonies with strong beta-haemolysis on blood agar. CONCLUSION: This study showed that diarrhoea associated with V. furnissii occurred sporadically and was more common than expected in the summer in Beijing, China. The antibiotic resistance of V. furnissii has unique characteristics compared with that of V. fluvialis. Fluoroquinolones and third-generation cephalosporins, such as ceftazidime and doxycycline, were effective at treating V. furnissii infection. Continua laboratory-based surveillance is needed for the prevention and control of V. furnissii infection, especially the dissemination of the antibiotic resistance genes in this pathogen.


Gastroenteritis , Vibrio , Humans , Aged , Virulence/genetics , Phylogeny , Vibrio/genetics , Anti-Bacterial Agents/pharmacology , Drug Resistance, Microbial , Diarrhea/microbiology , Imipenem/pharmacology
5.
J Environ Sci (China) ; 143: 47-59, 2024 Sep.
Article En | MEDLINE | ID: mdl-38644023

Chinese forest musk deer (FMD), an endangered species, have exhibited low reproductive rates even in captivity due to stress conditions. Investigation revealed the presence of di(2-ethylhexyl) phthalate (DEHP), an environmental endocrine disruptor, in the serum and skin of captive FMDs. Feeding FMDs with maslinic acid (MA) has been observed to alleviate the stress response and improve reproductive rates, although the precise molecular mechanisms remain unclear. Therefore, this study aims to investigate the molecular mechanisms underlying the alleviation of DEHP-induced oxidative stress and cell apoptosis in primary peritubular myoid cells (PMCs) through MA intake. Primary PMCs were isolated and exposed to DEHP in vitro. The results demonstrated that DEHP significantly suppressed antioxidant levels and promoted cell apoptosis in primary PMCs. Moreover, interfering with the expression of PRDX6 was found to induce excessive reactive oxygen species (ROS) production and cell apoptosis in primary PMCs. Supplementation with MA significantly upregulated the expression of PRDX6, thereby attenuating DEHP-induced oxidative stress and cell apoptosis in primary PMCs. These findings provide a theoretical foundation for mitigating stress levels and enhancing reproductive capacity of in captive FMDs.


Apoptosis , Deer , Diethylhexyl Phthalate , Oxidative Stress , Animals , Apoptosis/drug effects , Diethylhexyl Phthalate/toxicity , Oxidative Stress/drug effects , Peroxiredoxin VI/metabolism , Reactive Oxygen Species/metabolism , Endocrine Disruptors/toxicity
6.
iScience ; 27(3): 109327, 2024 Mar 15.
Article En | MEDLINE | ID: mdl-38487015

Emerging studies have demonstrated the link between RNA modifications and various cancers, while the predictive value and functional mechanisms of RNA modification-related genes (RMGs) in esophageal squamous cell carcinoma (ESCC) remain unclear. Here we established a prognostic signature for ESCC based on five RMGs. The analysis of ESCC clinical samples further verified the prognostic power of the prognostic signature. Moreover, we found that the knockdown of NSUN6 promotes ESCC progression in vitro and in vivo, whereas the overexpression of NSUN6 inhibits the malignant phenotype of ESCC cells. Mechanically, NSUN6 mediated tRNA m5C modifications selectively enhance the translation efficiency of CDH1 mRNA in a codon dependent manner. Rescue assays revealed that E-cadherin is an essential downstream target that mediates NSUN6's function in the regulation of ESCC progression. These findings offer additional insights into the link between ESCC and RMGs, as well as provide potential strategies for ESCC management and therapy.

7.
J Asian Nat Prod Res ; 26(2): 228-236, 2024 Feb.
Article En | MEDLINE | ID: mdl-38193237

A novel [1, 2, 4]triazolo[5,1-b]quinazoline fluorescent probe (VIi) for Fe3+ was developed, featuring with rapid response (< 5 s) and specific selectivity to Fe3+, low detection limit (1.3 × 10-5 M), as well as the ability to resist interference of chelating agent (e.g. EDTA). VIi-based fluorescent test paper can quickly recognize Fe3+ under irradiation at the wavelength of 365 nm. The fluorescence probe VIi has potential application prospects for the detection of Fe3+ in real circumstance.


Fluorescent Dyes , Quinazolines , Spectrometry, Fluorescence , Ions
8.
Aging (Albany NY) ; 15(21): 12570-12587, 2023 11 09.
Article En | MEDLINE | ID: mdl-37950733

BACKGROUND: Mycobacterium tuberculosis (Mtb) is the bacterial pathogen responsible for causing tuberculosis (TB), a severe public health concern that results in numerous deaths worldwide. Ubiquitination (Ub) is an essential physiological process that aids in maintaining homeostasis and contributes to the development of TB. Therefore, the main objective of our study was to investigate the potential role of Ub-related genes in TB. METHODS: Our research entailed utilizing single sample gene set enrichment analysis (ssGSEA) in combination with several machine learning techniques to discern the Ub-related signature of TB and identify potential diagnostic markers that distinguish TB from healthy controls (HC). RESULTS: In summary, we used the ssGSEA algorithm to determine the score of Ub families (E1, E2, E3, DUB, UBD, and ULD). Notably, the score of E1, E3, and UBD were lower in TB patients than in HC individuals, and we identified 96 Ub-related differentially expressed genes (UbDEGs). Employing machine learning algorithms, we identified 11 Ub-related hub genes and defined two distinct Ub-related subclusters. Notably, through GSVA and functional analysis, it was determined that these subclusters were implicated in numerous immune-related processes. We further investigated these Ub-related hub genes in four TB-related diseases and found that TRIM68 exhibited higher correlations with various immune cells in different conditions, indicating that it may play a crucial role in the immune process of these diseases. CONCLUSION: The observed enrichment of Ub-related gene expression in TB patients emphasizes the potential involvement of ubiquitination in the progression of TB. These significant findings establish a basis for future investigations to elucidate the molecular mechanisms associated with TB, select suitable diagnostic biomarkers, and design innovative therapeutic interventions for combating this fatal infectious disease.


Mycobacterium tuberculosis , Tuberculosis , Humans , Tuberculosis/genetics , Tuberculosis/microbiology , Ubiquitination , Algorithms , Tripartite Motif Proteins/genetics , Autoantigens/metabolism , Ubiquitin-Protein Ligases/genetics
9.
J Zhejiang Univ Sci B ; 24(9): 807-822, 2023.
Article En, Zh | MEDLINE | ID: mdl-37701957

BACKGROUND: The musk glands of adult male Chinese forest musk deer (Moschus berezovskii Flerov, 1929) (FMD), which are considered as special skin glands, secrete a mixture of sebum, lipids, and proteins into the musk pod. Together, these components form musk, which plays an important role in attracting females during the breeding season. However, the relationship between the musk glands and skin of Chinese FMD remains undiscovered. Here, the musk gland and skin of Chinese FMD were examined using histological analysis and RNA sequencing (RNA-seq), and the expression of key regulatory genes was evaluated to determine whether the musk gland is derived from the skin. METHODS: A comparative analysis of musk gland anatomy between juvenile and adult Chinese FMD was conducted. Then, based on the anatomical structure of the musk gland, skin tissues from the abdomen and back as well as musk gland tissues were obtained from three juvenile FMD. These tissues were used for RNA-seq, hematoxylin-eosin (HE) staining, immunohistochemistry (IHC), western blot (WB), and quantitative real-time polymerase chain reaction (qRT-PCR) experiments. RESULTS: Anatomical analysis showed that only adult male FMD had a complete glandular organ and musk pod, while juvenile FMD did not have any well-developed musk pods. Transcriptomic data revealed that 88.24% of genes were co-expressed in the skin and musk gland tissues. Kyoto Encyclopedia of Genes and Genomes (KEGG) signaling pathway analysis found that the genes co-expressed in the abdomen skin, back skin, and musk gland were enriched in biological development, endocrine system, lipid metabolism, and other pathways. Gene Ontology (GO) enrichment analysis indicated that the genes expressed in these tissues were enriched in biological processes such as multicellular development and cell division. Moreover, the Metascape predictive analysis tool demonstrated that genes expressed in musk glands were skin tissue-specific. qRT-PCR and WB revealed that sex-determining region Y-box protein 9 (Sox9),Caveolin-1 (Cav-1), andandrogen receptor (AR) were expressed in all three tissues, although the expression levels differed among the tissues. According to the IHC results, Sox9 and AR were expressed in the nuclei of sebaceous gland, hair follicle, and musk gland cells, whereas Cav-1 was expressed in the cell membrane. CONCLUSIONS: The musk gland of Chinese FMD may be a derivative of skin tissue, and Sox9, Cav-1, and AR may play significant roles in musk gland development.

10.
Heliyon ; 9(9): e19339, 2023 Sep.
Article En | MEDLINE | ID: mdl-37662802

Background: The decrease in physical function resulting from COVID-19 infection exerts a substantial negative influence on the quality of life of individuals. Physical activity plays a crucial and irreplaceable role in hastening the elimination of adverse effects on the body caused by acute and chronic diseases. Nevertheless, there have been reports of unfavorable events following physical activity post-COVID-19 infection, sparking debate regarding the efficacy of physical activity as a rehabilitation method to enhance the physical function of COVID-19 patients. Objective: The aim of this study is to investigate the impact of physical activity on promoting the restoration of physical function among individuals with COVID-19, and to offer guidance for the advancement and consideration of physical activity in the rehabilitation treatment of COVID-19 patients. Methods: A search was conducted on the PubMed and Web of Science core collection databases, with the search period set from January 1, 2020, to February 6, 2023. The included literature was assessed for risk of bias and methodological quality according to the Cochrane Handbook for Systematic Reviews of Interventions, utilizing Review Manager 5.1 software. The outcome measures from the included studies were analyzed, and the quality of evidence for the outcome measures was graded using the GRADE classification criteria. Results: The effect of physical activity intervention on improving the 6-Minute Walk Test score in COVID-19 patients was better than that of conventional treatment [WMD = 69.19(95%CI = 39.38, 98.99), I2 = 57%(p = 0.03)]. The effect of physical activity on improving the 30-Second Sit-to-Stand Test score was better than that of conventional treatment [WMD = 2.98(95%CI = 1.91, 4.04), I2 = 0%(p = 0.56)]. There was no significant difference between physical activity and conventional treatment in improving Grip strength in COVID-19 patients [WMD = 2.35(95%CI = -0.49, 5.20), I2 = 0%(p = 0.80)]. The effect of physical activity on improving the Timed Up and Go test score in COVID-19 patients was better than that of conventional treatment [WMD = -1.16(95%CI = -1.98, -0.34), I2 = 4%(p = 0.35)]. The effect of physical activity on improving Forced Vital Capacity in COVID-19 patients was better than that of conventional treatment [WMD = 0.14(95%CI = 0.08, 0.21), I2 = 0%(p = 0.45)]. The effect of physical activity on improving Forced Expiratory Volume in the first second in COVID-19 patients was better than that of conventional treatment [WMD = 0.08(95%CI = 0.02, 0.15), I2 = 52%(p = 0.10)]. Conclusions: Physical activity plays a crucial role in facilitating the recovery of exercise capacity and pulmonary function in COVID-19 patients, helping to expedite the restoration of overall physical health. It is crucial for COVID-19 patients to undergo an accurate assessment of their physical condition before engaging in any physical activity.

11.
J Cell Mol Med ; 27(17): 2482-2494, 2023 09.
Article En | MEDLINE | ID: mdl-37409682

Around the world, tuberculosis (TB) remains one of the most common causes of morbidity and mortality. The molecular mechanism of Mycobacterium tuberculosis (Mtb) infection is still unclear. Extracellular vesicles (EVs) play a key role in the onset and progression of many disease states and can serve as effective biomarkers or therapeutic targets for the identification and treatment of TB patients. We analysed the expression profile to better clarify the EVs characteristics of TB and explored potential diagnostic markers to distinguish TB from healthy control (HC). Twenty EVs-related differentially expressed genes (DEGs) were identified, and 17 EVs-related DEGs were up-regulated and three DEGs were down-regulated in TB samples, which were related to immune cells. Using machine learning, a nine EVs-related gene signature was identified and two EVs-related subclusters were defined. The single-cell RNA sequence (scRNA-seq) analysis further confirmed that these hub genes might play important roles in TB pathogenesis. The nine EVs-related hub genes had excellent diagnostic values and accurately estimated TB progression. TB's high-risk group had significantly enriched immune-related pathways, and there were substantial variations in immunity across different groups. Furthermore, five potential drugs were predicted for TB using CMap database. Based on the EVs-related gene signature, the TB risk model was established through a comprehensive analysis of different EV patterns, which can accurately predict TB. These genes could be used as novel biomarkers to distinguish TB from HC. These findings lay the foundation for further research and design of new therapeutic interventions aimed at treating this deadly infectious disease.


Extracellular Vesicles , Mycobacterium tuberculosis , Tuberculosis , Humans , Tuberculosis/diagnosis , Tuberculosis/genetics , Mycobacterium tuberculosis/genetics , Extracellular Vesicles/genetics , Extracellular Vesicles/metabolism , Biomarkers/metabolism
12.
Chemistry ; 29(54): e202301569, 2023 Sep 26.
Article En | MEDLINE | ID: mdl-37394679

A new pathway via a cyclic intermediate for the synthesis of ketones from aldehydes and sulfonylhydrazone derivatives under basic conditions is proposed. Several control experiments were performed along with analysis of the mass spectra and in-situ IR spectra of the reaction mixture. Inspired by the new mechanism, an efficient and scalable method for homologation of aldehydes to ketones was developed. A wide variety of target ketones were obtained in yields of 42-95 % by simply heating the 3-(trifluoromethyl)benzene sulfonylhydrazones (3-(Tfsyl)hydrazone) for 2 h at 110 °C with aldehydes and with K2 CO3 and DMSO as base and solvent, respectively.

13.
BMJ Ment Health ; 26(1)2023 Jun.
Article En | MEDLINE | ID: mdl-37316257

OBJECTIVE: When developing prediction models, researchers commonly employ a single model which uses all the available data (end-to-end approach). Alternatively, a similarity-based approach has been previously proposed, in which patients with similar clinical characteristics are first grouped into clusters, then prediction models are developed within each cluster. The potential advantage of the similarity-based approach is that it may better address heterogeneity in patient characteristics. However, it remains unclear whether it improves the overall predictive performance. We illustrate the similarity-based approach using data from people with depression and empirically compare its performance with the end-to-end approach. METHODS: We used primary care data collected in general practices in the UK. Using 31 predefined baseline variables, we aimed to predict the severity of depressive symptoms, measured by Patient Health Questionnaire-9, 60 days after initiation of antidepressant treatment. Following the similarity-based approach, we used k-means to cluster patients based on their baseline characteristics. We derived the optimal number of clusters using the Silhouette coefficient. We used ridge regression to build prediction models in both approaches. To compare the models' performance, we calculated the mean absolute error (MAE) and the coefficient of determination (R2) using bootstrapping. RESULTS: We analysed data from 16 384 patients. The end-to-end approach resulted in an MAE of 4.64 and R2 of 0.20. The best-performing similarity-based model was for four clusters, with MAE of 4.65 and R2 of 0.19. CONCLUSIONS: The end-to-end and the similarity-based model yielded comparable performance. Due to its simplicity, the end-to-end approach can be favoured when using demographic and clinical data to build prediction models on pharmacological treatments for depression.


Depression , Humans , Depression/diagnosis , Patient Health Questionnaire , General Practice , Severity of Illness Index , Male , Female , Adult , Middle Aged , Predictive Value of Tests , Mood Disorders/diagnosis
14.
Front Immunol ; 14: 1159713, 2023.
Article En | MEDLINE | ID: mdl-37205113

Background: Tuberculosis (TB) is the deadliest communicable disease in the world with the exception of the ongoing COVID-19 pandemic. Programmed cell death (PCD) patterns play key roles in the development and progression of many disease states such that they may offer value as effective biomarkers or therapeutic targets that can aid in identifying and treating TB patients. Materials and methods: The Gene Expression Omnibus (GEO) was used to gather TB-related datasets after which immune cell profiles in these data were analyzed to examine the potential TB-related loss of immune homeostasis. Profiling of differentially expressed PCD-related genes was performed, after which candidate hub PCD-associated genes were selected via a machine learning approach. TB patients were then stratified into two subsets based on the expression of PCD-related genes via consensus clustering. The potential roles of these PCD-associated genes in other TB-related diseases were further examined. Results: In total, 14 PCD-related differentially expressed genes (DEGs) were identified and highly expressed in TB patient samples and significantly correlated with the abundance of many immune cell types. Machine learning algorithms enabled the selection of seven hub PCD-related genes that were used to establish PCD-associated patient subgroups, followed by the validation of these subgroups in independent datasets. These findings, together with GSVA results, indicated that immune-related pathways were significantly enriched in TB patients exhibiting high levels of PCD-related gene expression, whereas metabolic pathways were significantly enriched in the other patient group. Single cell RNA-seq (scRNA-seq) further highlighted significant differences in the immune status of these different TB patient samples. Furthermore, we used CMap to predict five potential drugs for TB-related diseases. Conclusion: These results highlight clear enrichment of PCD-related gene expression in TB patients and suggest that this PCD activity is closely associated with immune cell abundance. This thus indicates that PCD may play a role in TB progression through the induction or dysregulation of an immune response. These findings provide a foundation for further research aimed at clarifying the molecular drivers of TB, the selection of appropriate diagnostic biomarkers, and the design of novel therapeutic interventions aimed at treating this deadly infectious disease.


COVID-19 , Tuberculosis , Humans , Pandemics , COVID-19/genetics , Apoptosis , Tuberculosis/genetics , Algorithms
15.
Sci Total Environ ; 889: 164265, 2023 Sep 01.
Article En | MEDLINE | ID: mdl-37211102

Estuarine ecosystems undergo pronounced and intricate changes due to the mixing of freshwater and saltwater. Additionally, urbanization and population growth in estuarine regions result in shifts in the planktonic bacterial community and the accumulation of antibiotic resistance genes (ARGs). The dynamic changes in bacterial communities, environmental factors, and carriage of ARGs from freshwater to seawater, as well as the complex interrelationships among these factors, have yet to be fully elucidated. Here, we conducted a comprehensive study based on metagenomic sequencing and full-length 16S rRNA sequencing, covering the entire Pearl River Estuary (PRE) in Guangdong, China. The abundance and distribution of the bacterial community, ARGs, mobile genetic elements (MGEs), and bacterial virulence factors (VFs) were analyzed on a site-by-site basis through sampling along the salinity gradient in PRE, from upstream to downstream. The structure of the planktonic bacterial community undergoes continuous changes in response to variations in estuarine salinity, with the phyla Proteobacteria and Cyanobacteria being dominant bacterial throughout the entire region. The diversity and abundance of ARGs and MGEs gradually decreased with the direction of water flow. A large number of ARGs were carried by potentially pathogenic bacteria, especially in Alpha-proteobacteria and Beta-proteobacteria. Multi-drug resistance genes have the highest abundance and subtypes in PRE. In addition, ARGs are more linked to some MGEs than to specific bacterial taxa and disseminate mainly by HGT and not by vertical transfer in the bacterial communities. Various environmental factors, such as salinity and nutrient concentrations, have a significantly impact on the community structure and distribution of bacteria. In conclusion, our results represent a valuable resource for further investigating the intricate interplay between environmental factors and anthropogenic disturbances on bacterial community dynamics. Moreover, they contribute to a better understanding of the relative impact of these factors on the dissemination of ARGs.


Estuaries , Genes, Bacterial , Ecosystem , Salinity , RNA, Ribosomal, 16S/genetics , Bacteria/genetics , China
16.
Front Microbiol ; 14: 1179966, 2023.
Article En | MEDLINE | ID: mdl-37256057

Introduction: Genome-based analysis is crucial in monitoring antibiotic-resistant bacteria (ARB)and antibiotic-resistance genes (ARGs). Short-read sequencing is typically used to obtain incomplete draft genomes, while long-read sequencing can obtain genomes of multidrug resistance (MDR) plasmids and track the transmission of plasmid-borne antimicrobial resistance genes in bacteria. However, long-read sequencing suffers from low-accuracy base calling, and short-read sequencing is often required to improve genome accuracy. This increases costs and turnaround time. Methods: In this study, a novel ONT sequencing method is described, which uses the latest ONT chemistry with improved accuracy to assemble genomes of MDR strains and plasmids from long-read sequencing data only. Three strains of Salmonella carrying MDR plasmids were sequenced using the ONT SQK-LSK114 kit with flow cell R10.4.1, and de novo genome assembly was performed with average read accuracy (Q > 10) of 98.9%. Results and Discussion: For a 5-Mb-long bacterial genome, finished genome sequences with accuracy of >99.99% could be obtained at 75× sequencing coverage depth using Flye and Medaka software. Thus, this new ONT method greatly improves base-calling accuracy, allowing for the de novo assembly of high-quality finished bacterial or plasmid genomes without the need for short-read sequencing. This saves both money and time and supports the application of ONT data in critical genome-based epidemiological analyses. The novel ONT approach described in this study can take the place of traditional combination genome assembly based on short- and long-read sequencing, enabling pangenomic analyses based on high-quality complete bacterial and plasmid genomes to monitor the spread of antibiotic-resistant bacteria and antibiotic resistance genes.

17.
Article En | MEDLINE | ID: mdl-37022776

A novel bacterial strain, CDC141T, was isolated from sputum samples of a patient with pulmonary infection in Hainan Province, PR China. We performed a polyphasic study to assess the taxonomic position of the new species. Based on the results of 16S rRNA gene sequence analyses, strain CDC141T belonged to the genus Nocardia with the highest sequence similarity to Nocardia nova NBRC 15556T (98.84 %) and Nocardia macrotermitis RB20T (98.54 %). The dapb1 gene sequence-based phylogenetic and phylogenomic trees further showed that the novel strain was clustered in a distinct clade adjacent to Nocardia pseudobrasiliensis DSM 44290T. The DNA G+C content of strain CDC141T was 68.57 mol%. The genomic diversity analysis revealed low average nucleotide identity and in silico DNA‒DNA hybridization values (<84.7 and <28.9 %, respectively) with its closest relative. Growth occurred at 20-40 °C, pH 6.0-9.0 and with NaCl concentrations of 0.5-2.5 % (w/v). The main fatty acids of strain CDC141T were C16 : 0, C18 : 0 10-methyl, TBSA, C16 : 1 ω6c/C16 : 1 ω7c, C18 : 1 ω9c, C18 : 0, C17 : 1 iso I/anteiso B and C17 : 0. The polar lipid profile was dominated by diphosphatidylglycerol, phosphatidylethanolamine, phosphatidylinositol, phosphatidylinositol mannoside, unidentified glycolipids, unidentified phospholipids and unidentified lipids. MK8 (H4ω-cycl) and MK8 (H4) were the major respiratory quinones. These characteristics were consistent with the typical chemotaxonomic properties of members of the genus Nocardia. Based on the results of phenotypic and genetic analyses, strain CDC141T was identified as representing a new species of the genus Nocardia, with the proposed name Nocardia pulmonis sp. nov. (CDC141T=JCM 34955T=GDMCC 4.207T).


Actinobacteria , Nocardia , Humans , Fatty Acids/chemistry , Actinobacteria/genetics , Phylogeny , RNA, Ribosomal, 16S/genetics , Sequence Analysis, DNA , DNA, Bacterial/genetics , Base Composition , Bacterial Typing Techniques , Phospholipids/chemistry
18.
Theriogenology ; 200: 155-167, 2023 Apr 01.
Article En | MEDLINE | ID: mdl-36806925

Spermatogenesis is a highly complicated biological process that occurs in the epithelium of the seminiferous tubules. It is regulated by a complex network of endocrine and paracrine factors. Sertoli cells (SCs) play a key role in spermatogenesis due to their production of trophic, differentiation, and immune-modulating factors. However, many of the molecular pathways of SC action remain controversial and unclear. Recently, many studies have focused on exosomes as an important mechanism of intercellular communication. We found that the exosomes derived from mouse SCs inhibited the apoptosis of primary spermatogonia. A total of 1016 miRNAs in SCs and 556 miRNAs in exosomes were detected using miRNA high-throughput sequencing. A total of 294 miRNAs were differentially expressed between SCs and exosomes. Furthermore, 19 tsRNA families appeared in SCs, while 6 tsRNA families appeared in exosomes. A total of 57 and 1 miRNAs (RPM >4) and 14 and 1 tsRNAs were exclusively expressed in SCs and exosomes, respectively. MiR-10b is one of the top ten exosomes with a relatively large enrichment of miRNA. Overexpression of miR-10b downregulates the expression of the target KLF4 to reduce spermatogonial apoptosis in primary spermatogonia or the C18-4 cell line.


Exosomes , MicroRNAs , Male , Mice , Animals , Spermatogonia/physiology , Sertoli Cells/metabolism , MicroRNAs/metabolism , Apoptosis
19.
Bioorg Chem ; 133: 106430, 2023 04.
Article En | MEDLINE | ID: mdl-36812828

In search of new-structure compounds with good anticonvulsant activity and low neurotoxicity, a series of 3-(1,2,3,6-tetrahydropyridine)-7-azaindole derivatives was designed and synthesized. Their anticonvulsant activities were evaluated by maximal electroshock (MES) and pentylenetetrazole (PTZ) test, and neurotoxicity was determined by the rotary rod method. In the PTZ-induced epilepsy model, compounds 4i, 4p and 5 k showed significant anticonvulsant activities with ED50 values at 30.55 mg/kg, 19.72 mg/kg and 25.46 mg/kg, respectively. However, these compounds did not show any anticonvulsant activity in the MES model. More importantly, these compounds have lower neurotoxicity with protective index (PI = TD50/ED50) values at 8.58, 10.29 and 7.41, respectively. In order to obtain a clearer structure-activity relationship, more compounds were designed rationally based on 4i, 4p and 5 k and their anticonvulsant activities were evaluated on PTZ models. The results demonstrated that the N-atom at the 7-position of the 7-azaindole and the double-bond in the 1,2,3,6-tetrahydropyridine skeleton was essential for antiepileptic activities.


Anticonvulsants , Indoles , Seizures , Anticonvulsants/pharmacology , Anticonvulsants/therapeutic use , Anticonvulsants/chemistry , Electroshock , Indoles/therapeutic use , Pentylenetetrazole , Seizures/chemically induced , Seizures/drug therapy , Structure-Activity Relationship , Mice , Animals
20.
J Asian Nat Prod Res ; 25(8): 756-764, 2023.
Article En | MEDLINE | ID: mdl-36369722

An efficient and scalable process for the synthesis of 19-hydroxyprogesterone was obtained through seven steps with 34.5% total yield, which is much higher than the process reported in the literature (11.0% total yield). The plausible ring-opening mechanism of 6,19-epoxy bridge in compound 7 was first proposed and the structures of intermediates were supported by the LC-MS analysis of the reaction mixture.

...