Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 643
Filter
1.
BMC Public Health ; 24(1): 1767, 2024 Jul 02.
Article in English | MEDLINE | ID: mdl-38956480

ABSTRACT

BACKGROUND: Women at middle age are puzzled by a series of menopausal disturbances, can be distressing and considerably affect the personal, social and work lives. We aim to estimate the global prevalence of nineteen menopausal symptoms among middle-aged women by performing a systematic review and meta-analysis. METHODS: Comprehensive search was performed in multiple databases from January, 2000 to March, 2023 for relevant studies. Random-effect model with double-arcsine transformation was used for data analysis. RESULTS: A total of 321 studies comprised of 482,067 middle-aged women were included for further analysis. We found varied prevalence of menopausal symptoms, with the highest prevalence of joint and muscular discomfort (65.43%, 95% CI 62.51-68.29) and lowest of formication (20.5%, 95% CI 13.44-28.60). Notably, South America shared dramatically high prevalence in a sort of menopausal symptoms including depression and urogenital symptoms. Besides, countries with high incomes (49.72%) had a significantly lower prevalence of hot flashes than those with low (65.93%), lower-middle (54.17%), and upper-middle (54.72%, p < 0.01), while personal factors, such as menopausal stage, had an influence on most menopausal symptoms, particularly in vaginal dryness. Prevalence of vagina dryness in postmenopausal women (44.81%) was 2-fold higher than in premenopausal women (21.16%, p < 0.01). Furthermore, a remarkable distinction was observed between body mass index (BMI) and prevalence of sleep problems, depression, anxiety and urinary problems. CONCLUSION: The prevalence of menopausal symptoms affected by both social and personal factors which calls for attention from general public.


Subject(s)
Hot Flashes , Menopause , Humans , Female , Menopause/physiology , Prevalence , Middle Aged , Hot Flashes/epidemiology , Global Health/statistics & numerical data
2.
Front Endocrinol (Lausanne) ; 15: 1393904, 2024.
Article in English | MEDLINE | ID: mdl-38948527

ABSTRACT

Background: Medullary thyroid cancer (MTC) is a challenging malignancy. The survival outcome of MTC based on AJCC staging system does not render a discriminant classifier among early stages. Methods: 3601 MTC patients from 2000 to 2018 were identified from the Surveillance, Epidemiology, and End Results (SEER) database. Smooth curve fitting, Cox proportional hazard regression and competing risk analysis were applied. Results: A linear correlation between age and log RR (relative risk of overall death) was detected. Overlaps were observed between K-M curves representing patients aged 45-50, 50-55, and 55-60. The study cohort was divided into 3 subgroups with 2 age cutoffs set at 45 and 60. Each further advanced age cutoff population resulted in a roughly "5%" increase in MTC-specific death risks and an approximately "3 times" increase in non-MTC-specific death risks. Conclusions: The survival outcome disparity across age cutoffs at 45 and 60 for MTC has been well defined.


Subject(s)
Carcinoma, Neuroendocrine , SEER Program , Thyroid Neoplasms , Humans , Thyroid Neoplasms/mortality , Thyroid Neoplasms/pathology , Middle Aged , Male , Female , Carcinoma, Neuroendocrine/mortality , Carcinoma, Neuroendocrine/pathology , Retrospective Studies , Age Factors , Survival Rate , Aged , Prognosis , Adult , Cohort Studies , Follow-Up Studies
3.
Adv Sci (Weinh) ; : e2403551, 2024 Jun 13.
Article in English | MEDLINE | ID: mdl-38868953

ABSTRACT

With the onset of the 5G era, wearable flexible electronic devices have developed rapidly and gradually entered the daily life of people. However, the vast majority of research focuses on the integration of functions and performance improvement, while ignoring electromagnetic hazards caused by devices. Herein, the 3D double conductive networks are constructed through a repetitive vacuum-assisted dip-coating technique to decorate the 2D MXene and 1D silver nanowires on the melamine foam. Benefiting from the unique porous structure and multi-scale interconnected frame, the resultant composite foam exhibited high electrical conductivity, low density, superb electromagnetic interference shielding (48.32 dB), and Joule heating performance (up to 90.8 °C under 0.8 V). Furthermore, a single-electrode triboelectric nanogenerator (TENG) with powerful energy harvesting capability is assembled by combining the composite foam with an ultra-thin Ecoflex film and a polyvinylidene fluoride film. Simultaneously, the foam-based TENG can also be considered a reliable wearable sensor for monitoring activity patterns in different parts of the human body. The versatility and scalable manufacturing of high-performance composite foams will provide new design ideas for the development of next-generation flexible wearable devices.

4.
Article in English | MEDLINE | ID: mdl-38878281

ABSTRACT

PURPOSE: Teprotumumab is the only drug approval by The US Food and Drug Administration (FDA) for the treatment of thyroid eye disease (TED), which targets the insulin-like growth factor-1 receptor. This study aimed to identify potential safety signals of teprotumumab by analyzing post-marketing safety data from the FDA Adverse Event Reporting System (FAERS) database in 2023. METHODS: The case/non-case approach was used to estimate the reporting odds ratio (ROR) and information component (IC) with relevant confidence intervals (95% CI) for adverse events (AEs) that numbered three or more. RESULTS: Total of 2158 cases were included in the analysis. Main safety signals identified were ear and labyrinth disorders, reproductive system and breast disorders, metabolism and nutrition disorders and gastrointestinal disorders. Specifically, autophony (ROR [95% CI] = 4188.34 [1403.29-12500.8]), eyelid retraction (ROR [95% CI] = 2094.17 [850.69-5155.29]), deafness permanent (ROR [95% CI] = 1552.35 [789.07-3053.98]), deafness bilateral (ROR [95% CI] = 73.12 [41.14-129.97]), inflammatory bowel disease (ROR [95% CI] = 23.26 [13.46-40.19]), hyperglycaemic hyperosmolar nonketotic syndrome (ROR [95% CI] = 17.75 [5.70-55.28]) and amenorrhoea (ROR [95% CI] = 47.98 [36.22-63.54]) showed significant safety signals of teprotumumab. CONCLUSIONS: This study identified ear and labyrinth disorders, reproductive system and breast disorders, as specific safety signals of teprotumumab. Clinicians and pharmacists should be vigilant regarding these AEs. However, available data are currently insufficient, and further pharmacovigilance and surveillance are needed to fully understand this issue.

5.
JAMA Pediatr ; 2024 Jun 10.
Article in English | MEDLINE | ID: mdl-38856986

ABSTRACT

Importance: Overweight and obesity in childhood and adolescence is a global health issue associated with adverse outcomes throughout the life course. Objective: To estimate worldwide prevalence of overweight and obesity in children and adolescents from 2000 to 2023 and to assess potential risk factors for and comorbidities of obesity. Data Sources: MEDLINE, Web of Science, Embase, and Cochrane. Study Selection: The inclusion criteria were: (1) studies provided adequate information, (2) diagnosis based on body mass index cutoffs proposed by accepted references, (3) studies performed on general population between January 2000 and March 2023, (4) participants were younger than 18 years. Data Extraction and Synthesis: The current study was performed in accordance with the Meta-analysis of Observational Studies in Epidemiology guidelines. DerSimonian-Laird random-effects model with Free-Tukey double arcsine transformation was used for data analysis. Sensitivity analysis, meta-regression, and subgroup analysis of obesity among children and adolescents were conducted. Main Outcomes and Measures: Prevalence of overweight and obesity among children and adolescents assessed by World Health Organization, International Obesity Task Force, the US Centers for Disease Control and Prevention, or other national references. Results: A total of 2033 studies from 154 different countries or regions involving 45 890 555 individuals were included. The overall prevalence of obesity in children and adolescents was 8.5% (95% CI 8.2-8.8). We found that the prevalence varied across countries, ranging from 0.4% (Vanuatu) to 28.4% (Puerto Rico). Higher prevalence of obesity among children and adolescents was reported in countries with Human Development Index scores of 0.8 or greater and high-income countries or regions. Compared to 2000 to 2011, a 1.5-fold increase in the prevalence of obesity was observed in 2012 to 2023. Substantial differences in rates of obesity were noted when stratified by 11 risk factors. Children and adolescents with obesity had a high risk of depression and hypertension. The pooled estimates of overweight and excess weight in children and adolescents were 14.8% (95% CI 14.5-15.1) and 22.2% (95% CI 21.6-22.8), respectively. Conclusions and Relevance: This study's findings indicated 1 of 5 children or adolescents experienced excess weight and that rates of excess weight varied by regional income and Human Development Index. Excess weight among children and adolescents was associated with a mix of inherent, behavioral, environmental, and sociocultural influences that need the attention and committed intervention of primary care professionals, clinicians, health authorities, and the general public.

6.
J Ethnopharmacol ; : 118465, 2024 Jun 27.
Article in English | MEDLINE | ID: mdl-38944360

ABSTRACT

ETHNOPHARMACOLOGICAL RELEVANCE: Cistanche deserticola is a kind of parasitic plant living in the roots of desert trees. It is a rare Chinese medicine, which has the effect of tonifying kidney Yang, benefiting essence and blood and moistening the intestinal tract. Cistache deserticola phenylethanoid glycoside (PGS), an active component found in Cistanche deserticola Ma, have potential kidney tonifying, intellectual enhancing, and neuroprotective effects. Cistanche total glycoside capsule has been marketed to treat vascular dementia disease. AIM OF THE STUDY: To identify the potential renal, intellectual enhancing and neuroprotective effects of PGS and explore the exact targets and mechanisms of PGS. MATERIALS AND METHODS: This study systematically investigated the four types of pathways leading to ferroptosis through transcriptome, metabolome, ultrastructure and molecular biology techniques and explored the molecular mechanism by which multiple PGS targets and pathways synergistically exert neuroprotective effects on hypoxia. RESULTS: PGS alleviated learning and memory dysfunction and pathological injury in mice exposed to hypobaric hypoxia by attenuating hypobaric hypoxia-induced hippocampal histopathological damage, impairing blood‒brain barrier integrity, increasing oxidative stress levels, and increasing the expression of cognitive proteins. PGS reduced the formation of lipid peroxides and improved ferroptosis by upregulating the GPX-4/SCL7A311 axis and downregulating the ACSL4/LPCAT3/LOX axis. PGS also reduced ferroptosis by facilitating cellular Fe2+ efflux and regulating mitochondrial Fe2+ transport and effectively antagonized cell ferroptosis induced by erastin (a ferroptosis inducer). CONCLUSIONS: This study demonstrated the mechanism by which PGS prevents hypobaric hypoxic nerve injury through four types of ferroptosis pathways, achieved neuroprotective effects and alleviated learning and memory dysfunction in hypobaric hypoxia mice. This study provides a theoretical basis for the development and application of PGS.

7.
Small ; : e2402143, 2024 Jun 27.
Article in English | MEDLINE | ID: mdl-38934343

ABSTRACT

MXene is considered as a promising solid lubricant due to facile shearing ability and tuneable surface chemistry. However, it faces challenges in high-humidity environments where excessive water molecules can significantly impact its 2D structure, thus deteriorating its lubricating properties. In this work, the self-assembled monolayers are formed on MXene by surface chlorination (MXene-Cl) and fluorination (MXene-F), and their friction behaviors in high/low humidity are investigated. The results indicate that MXene-F and MXene-Cl can maintain a relatively constant friction coefficient (CoF) (MXene-F ∼0.76, MXene-Cl ∼0.48) under both high (75%) and low (25%)-relative humidity (RH) environments. Meanwhile, the MXene-F and MXene-Cl display a lower CoF than the pristine MXene (MXene CoF∼1.18) in high humidity. The above phenomena are mainly attributed to the preservation of its 2D layered structure, the increased layer spacing, and superficial partial oxidation for SAMs-functionalized MXene under high humidity during friction. Interestingly, MXene-Cl with moderate water resistance has a lower CoF than that of MXene-F with complete water resistance. The nanostructured water adsorption capacity and larger interlayer spacing of MXene-Cl make it exhibit a lower CoF compared to MXene-F. The findings of this study offer valuable guidance for tailoring MXene by surface chemical functionalization as an efficient solid lubricant in high humidity.

8.
PLoS One ; 19(6): e0305201, 2024.
Article in English | MEDLINE | ID: mdl-38935635

ABSTRACT

Alternative splicing (AS) is a universal phenomenon in eukaryotes, and it is still challenging to identify AS events. Several methods have been developed to identify AS events, such as expressed sequence tags (EST), microarrays and RNA-seq. However, EST has limitations in identifying low-abundance genes, while microarray and RNA-seq are high-throughput technologies, and PCR-based technology is needed for validation. To overcome the limitations of EST and shortcomings of high-throughput technologies, we established a method to identify AS events, especially for low-abundance genes, by reverse transcription (RT) PCR with gene-specific primers (GSPs) followed by nested PCR. This process includes two major steps: 1) the use of GSPs to amplify as long as the specific gene segment and 2) multiple rounds of nested PCR to screen the AS and confirm the unknown splicing variants. With this method, we successfully identified three new splicing variants, namely, GenBank Accession No. HM623886 for the bdnf gene (GenBank GeneID: 12064), GenBank Accession No. JF417977 for the trkc gene (GenBank GeneID: 18213) and GenBank Accession No. HM623888 for the glb-18 gene (GenBank GeneID: 172485). In addition to its reliability and simplicity, the method is also cost-effective and labor-intensive. In conclusion, we developed an RT-nested PCR method using gene-specific primers to efficiently identify known and novel AS variants. This approach overcomes the limitations of existing methods for detecting rare transcripts. By enabling the discovery of new isoforms, especially for low-abundance genes, this technique can aid research into aberrant splicing in disease. Future studies can apply this method to uncover AS variants involved in cancer, neurodegeneration, and other splicing-related disorders.


Subject(s)
Alternative Splicing , Humans , Brain-Derived Neurotrophic Factor/genetics , Reverse Transcriptase Polymerase Chain Reaction/methods , DNA Primers/genetics
9.
Transl Lung Cancer Res ; 13(5): 965-985, 2024 May 31.
Article in English | MEDLINE | ID: mdl-38854934

ABSTRACT

Background: Tumor metastasis commonly affects pleura in advanced lung cancer and results in malignant pleural effusion (MPE). MPE is related to poor prognosis, but without systematic investigation on different cell types and their crosstalk at single cell resolution. Methods: We conducted single-cell RNA-sequencing (scRNA-seq) of lung cancer patients with pleural effusion. Next, our data were integrated with 5 datasets derived from individuals under normal, non-malignant disease and lung carcinomatous conditions. Mesothelial cells were re-clustered and their interactions with epithelial cells were comprehensively analyzed. Taking advantage of inferred ligand-receptor pairs, a prediction model of prognosis was constructed. The co-culture of mesothelial cells and malignant epithelial cells in vitro and RNA-seq was performed. Epidermal growth factor receptor (EGFR) antagonist cetuximab was utilized to prevent the lung cancer cells' invasiveness. Spatial distribution of cells in lung adenocarcinoma patients' samples were also analyzed to validate our findings. Results: The most distinctive transcriptome profiles between tumor and control were revealed in mesothelial cells, which is the predominate cell type of pleura. Five subtypes were divided, including one predominately identified in MPE which was characterized by enriched cancer-related pathways (e.g., cell migration) along evolutionary trajectory from normal mesothelial cells. Cancer-associated mesothelial cells (CAMCs) exhibited varied interactions with different subtypes of malignant epithelial cells, and multiple ligands/receptors exhibited significant correlation with poor prognosis. Experimentally, mesothelial cells can increase the migration ability of lung cancer cells through co-culturing. EGFR was the only affected gene in cancer cells that exhibited interaction with mesothelial cells and was associated with poor prognosis. Using EGFR antagonist cetuximab prevented the lung cancer cells' increased invasiveness caused by mesothelial cells. Moreover, epithelial mitogen (EPGN)-EGFR interaction was supported through spatial distribution analysis, revealing the significant proximity between EPGN+ mesothelial cells and EGFR+ epithelial cells. Conclusions: Our findings highlighted the important role of mesothelial cells and their interactions with cancer cells in pleural metastasis of lung cancer, providing potential targets for treatment.

10.
Plants (Basel) ; 13(11)2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38891345

ABSTRACT

The investigation of taxonomic diversity within island plant communities stands as a central focus in the field of island biogeography. Phylogenetic diversity is crucial for unraveling the evolutionary history, ecological functions, and species combinations within island plant communities. Island effects (area and isolation effect) may shape species distribution patterns, habitat heterogeneity affects habitat diversity, and anthropogenic disturbances can lead to species extinction and habitat destruction, thus impacting both species diversity and phylogenetic diversity. To investigate how taxonomic and phylogenetic diversity in island natural plant communities respond to island effects, habitat heterogeneity, and anthropogenic disturbances, we took the main island of Haitan (a land-bridge island) and nine surrounding islands (oceanic islands) of varying sizes as the subjects of our study on the Pingtan islands. We aim to elucidate the influence of island effects, habitat heterogeneity, and anthropogenic disturbances on taxonomic and phylogenetic diversity. The results showed that, (1) Both the taxonomic and phylogenetic diversity of plants on the Pingtan islands followed the island area effect, indicating that as the island area increases, both taxonomic and phylogenetic diversity also increase. (2) Island effects and habitat heterogeneity were found to enhance taxonomic and phylogenetic diversity, whereas anthropogenic disturbances were associated with a decrease in both taxonomic and phylogenetic diversity. Furthermore, the synergistic influence of island effects, habitat heterogeneity, and anthropogenic disturbances collectively exerted a negative impact on both taxonomic and phylogenetic diversity. (3) The contribution of explanatory variables of anthropogenic disturbances for taxonomic and phylogenetic diversity was higher than that of island effects and habitat heterogeneity. Additionally, the contribution of the explanatory variables under the combined influence of island effects, habitat heterogeneity, and anthropogenic disturbances is higher than that of the individual variables for island effects and habitat heterogeneity. These findings suggest that anthropogenic disturbances emerged as the dominant factors influencing both taxonomic and phylogenetic diversity. These findings demonstrate the intricate interplay between island effects, habitat heterogeneity, and anthropogenic disturbances, highlighting their combined influence on both taxonomic and phylogenetic diversity on island.

11.
Endocrine ; 2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38822895

ABSTRACT

PURPOSE: To investigate the implications of Lobectomy (LT) or total thyroidectomy (TT) on psychological distress and sleep quality in PTC patients with a low to intermediate risk of recurrence and tumors measuring 1 to 4 cm. METHODS: Patients who were admitted to our hospital between July 2021 and July 2022 were prospectively enrolled in this survey. Psychological distress and sleep quality were assessed at hospitalization, discharge, and 1, 3, and 6 months post-treatment using validated scales. Participants were divided into LT and TT groups, with propensity score matching (PSM) applied for analyses. RESULTS: Among 525 eligible PTC patients, 440 patients completed all the questionnaires throughout the follow-up. After PSM, 166 patients underwent LT, and 166 patients underwent TT were enrolled. The psychological distress and sleep quality of patients in the LT group remained relatively stable during the 6-month follow-up, but patients in the TT group may have faced greater sleep quality concerns in the longitudinal assessment. Additionally, the sleep quality of the TT group was also worse than that of the LT group postoperatively. CONCLUSIONS: The sleep quality rather than other psychological distress of patients with PTC with a low to intermediate risk of recurrence is associated with the extent of surgery.

12.
ACS Chem Neurosci ; 15(11): 2243-2252, 2024 06 05.
Article in English | MEDLINE | ID: mdl-38779816

ABSTRACT

Staining frozen sections is often required to distinguish cell types for spatial transcriptomic studies of the brain. The impact of the staining methods on the RNA integrity of the cells becomes one of the limitations of spatial transcriptome technology with microdissection. However, there is a lack of systematic comparisons of different staining modalities for the pretreatment of frozen sections of brain tissue as well as their effects on transcriptome sequencing results. In this study, four different staining methods were analyzed for their effect on RNA integrity in frozen sections of brain tissue. Subsequently, differences in RNA quality in frozen sections under different staining conditions and their impact on transcriptome sequencing results were assessed by RNA-seq. As one of the most commonly used methods for staining pathological sections, HE staining seriously affects the RNA quality of frozen sections of brain tissue. In contrast, the homemade cresyl violet staining method developed in this study has the advantages of short staining time, low cost, and less RNA degradation. The homemade cresyl violet staining proposed in this study can be applied instead of HE staining as an advance staining step for transcriptome studies in frozen sections of brain tissue. In the future, this staining method may be suitable for wide application in brain-related studies of frozen tissue sections. Moreover, it is expected to become a routine step for staining cells before sampling in brain science.


Subject(s)
Brain , Frozen Sections , Staining and Labeling , Animals , Brain/metabolism , Staining and Labeling/methods , Frozen Sections/methods , Cryoultramicrotomy/methods , Mice , Transcriptome , Male , RNA/analysis , Benzoxazines , Mice, Inbred C57BL , Oxazines
13.
Article in English | MEDLINE | ID: mdl-38810928

ABSTRACT

OBJECTIVES: Tuberculous pleurisy is one of the most common types of extra-pulmonary tuberculosis, but the sensitivity of conventional mycobacterial culture (Culture) or Xpert MTB/RIF assay (Xpert) is not satisfying. This multicentre cohort study evaluated the accuracy of a new cell-free DNA droplet digital PCR assay (cf-ddPCR) for diagnosing tuberculous pleurisy. METHODS: Patients with suspected tuberculosis (≥5 years of age) with pleural effusion were consecutively recruited from nine research sites across six provinces in China between September 2020 to May 2022. Culture, Xpert, Xpert MTB/RIF Ultra assay (Ultra), real-time PCR, and cf-ddPCR were performed simultaneously for all specimens. RESULTS: A total of 321 participants were enrolled, and data from 281 (87.5%) participants were available, including 105 definite tuberculous pleurisy, 113 possible tuberculous pleurisy and 63 non-tuberculous pleurisy according to the composite reference standard. The sensitivity of cf-ddPCR was 90.5% (95/105, 95% CI, 82.8-95.1%) in the definite tuberculous pleurisy group, which was significantly higher than those of Culture (57.1%, 60/105, 95% CI, 47.1-66.6%, p < 0.001), Xpert (46.7%, 49/105, 95% CI, 37.0-56.6%, p < 0.001), Ultra (69.5%, 73/105, 95% CI, 59.7-77.9%, p < 0.001) and real-time PCR (75.2%, 79/105, 95% CI, 65.7-82.9%, p < 0.001). In possible tuberculous pleurisy, whose results of Culture and Xpert were both negative, the sensitivity of cf-ddPCR was 61.1% (69/113, 95% CI, 51.4-70.0%), which was still significantly higher than that of Ultra (27.4%, 31/113, 95% CI, 19.7-36.8%, p < 0.001) and real-time PCR (38.9%, 44/113, 95% CI, 30.0-48.6%, p < 0.001). DISCUSSION: The performance of cf-ddPCR is superior to Culture, Xpert, Ultra, and real-time PCR, indicating that improved diagnostic accuracy can be anticipated by incorporating this new assay.

14.
Mol Pharmacol ; 106(1): 71-82, 2024 Jun 18.
Article in English | MEDLINE | ID: mdl-38769019

ABSTRACT

Remdesivir (RDV), a broad-spectrum antiviral agent, is often used together with dexamethasone (DEX) for hospitalized COVID-19 patients requiring respiratory support. Potential hepatic adverse drug reaction is a safety concern associated with the use of RDV. We previously reported that DEX cotreatment effectively mitigates RDV-induced hepatotoxicity and reduces elevated serum alanine aminotransferase and aspartate aminotransferase levels in cultured human primary hepatocytes (HPH) and hospitalized COVID-19 patients, respectively. Yet, the precise mechanism behind this protective drug-drug interaction remains largely unknown. Here, we show that through the activation of p38, c-Jun N-terminal kinase (JNK), and extracellular signal-regulated kinases 1 and 2 (ERK1/2) signaling, RDV induces apoptosis (cleavage of caspases 8, 9, and 3), autophagy (increased autophagosome and LC3-II), and mitochondrial damages (decreased membrane potential, respiration, ATP levels, and increased expression of Bax and the released cytosolic cytochrome C) in HPH. Importantly, cotreatment with DEX partially reversed RDV-induced apoptosis, autophagy, and cell death. Mechanistically, DEX deactivates/dephosphorylates p38, JNK, and ERK1/2 signaling by enhancing the expression of dual specificity protein phosphatase 1 (DUSP1), a mitogen-activated protein kinase (MAPK) phosphatase, in a glucocorticoid receptor (GR)-dependent manner. Knockdown of GR in HPH attenuates DEX-mediated DUSP1 induction, MAPK dephosphorylation, as well as protection against RDV-induced hepatotoxicity. Collectively, our findings suggest a molecular mechanism by which DEX modulates the GR-DUSP1-MAPK regulatory axis to alleviate the adverse actions of RDV in the liver. SIGNIFICANCE STATEMENT: The research uncovers the molecular mechanisms by which dexamethasone safeguards against remdesivir-associated liver damage in the context of COVID-19 treatment.


Subject(s)
Adenosine Monophosphate , Alanine , Antiviral Agents , Apoptosis , Autophagy , COVID-19 Drug Treatment , Chemical and Drug Induced Liver Injury , Dexamethasone , Dual Specificity Phosphatase 1 , Hepatocytes , Dexamethasone/pharmacology , Humans , Adenosine Monophosphate/analogs & derivatives , Adenosine Monophosphate/pharmacology , Alanine/analogs & derivatives , Alanine/pharmacology , Chemical and Drug Induced Liver Injury/etiology , Antiviral Agents/pharmacology , Antiviral Agents/adverse effects , Dual Specificity Phosphatase 1/metabolism , Dual Specificity Phosphatase 1/genetics , Hepatocytes/drug effects , Hepatocytes/metabolism , Apoptosis/drug effects , Autophagy/drug effects , Cells, Cultured , MAP Kinase Signaling System/drug effects
15.
Phytomedicine ; 129: 155670, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38704915

ABSTRACT

BACKGROUND: Anaplastic thyroid carcinoma (ATC) is recognized as the most aggressive and malignant form of thyroid cancer, underscoring the critical need for effective therapeutic strategies to curb its progression and improve patient prognosis. Halofuginone (HF), a derivative of febrifugine, has displayed antitumor properties across various cancer types. However, there is a paucity of published research focused on the potential of HF to enhance the clinical efficacy of treating ATC. OBJECTIVE: In this study, we thoroughly investigated the antitumor effects and mechanisms of HF in ATC, aiming to discover lead compounds for treating ATC and reveal novel therapeutic targets for ATC tumors. METHODS: A series of assays, including CCK8, colony formation, tumor xenograft models, and ATC tumor organoid experiments, were conducted to evaluate the anticancer properties of HF both in vitro and in vivo. Techniques such as drug affinity responsive target stability (DARTS), western blot, immunofluorescence, and immunohistochemistry were employed to pinpoint HF target proteins within ATC. Furthermore, we harnessed the GEPIA and GEO databases and performed immunohistochemistry to validate the therapeutic potential of the glutamyl-prolyl-tRNA-synthetase (EPRS)- activating transcription factor 4 (ATF4)- type I collagen (COLI) pathway axis in the context of ATC. The study also incorporated RNA sequencing analysis, confocal imaging, and flow cytometry to delve into the molecular mechanisms of HF in ATC. RESULTS: HF exhibited a substantial inhibitory impact on cell proliferation in vitro and on tumor growth in vivo. The DARTS results highlighted HF's influence on EPRS within ATC cells, triggering an amino acid starvation response (AASR) by suppressing EPRS expression, consequently leading to a reduction in COLI expression in ATC cells. The introduction of proline mitigated the effect of HF on ATF4 and COLI expression, indicating that the EPRS-ATF4-COLI pathway axis was a focal target of HF in ATC. Analysis of the expression levels of the EPRS, ATF4, and COLI proteins in thyroid tumors, along with an examination of the relationship between COLI expression and thyroid tumor stage, revealed that HF significantly inhibited the growth of ATC tumor organoids, demonstrating the therapeutic potential of targeting the EPRS-ATF4-COLI pathway axis in ATC. RNA sequencing analysis revealed significant differences in the pathways associated with metastasis and apoptosis between control and HF-treated cells. Transwell assays and flow cytometry experiments provided evidence of the capacity of HF to impede cell migration and induce apoptosis in ATC cells. Furthermore, HF hindered cell metastasis by suppressing the epithelial-mesenchymal transition (EMT) pathway, acting through the inhibition of FAK-AKT-NF-κB/Wnt-ß-catenin signaling and restraining angiogenesis via the VEGF pathway. HF also promoted apoptosis through the mitochondrial apoptotic pathway. CONCLUSION: This study provided inaugural evidence suggesting that HF could emerge as a promising therapeutic agent for the treatment of ATC. The EPRS-ATF4-COLI pathway axis stood out as a prospective biomarker and therapeutic target for ATC.


Subject(s)
Activating Transcription Factor 4 , Piperidines , Quinazolinones , Thyroid Carcinoma, Anaplastic , Thyroid Neoplasms , Thyroid Carcinoma, Anaplastic/drug therapy , Activating Transcription Factor 4/metabolism , Humans , Animals , Cell Line, Tumor , Thyroid Neoplasms/drug therapy , Piperidines/pharmacology , Quinazolinones/pharmacology , Mice , Mice, Nude , Xenograft Model Antitumor Assays , Signal Transduction/drug effects , Cell Proliferation/drug effects , Mice, Inbred BALB C
17.
Biomed Res Int ; 2024: 5526942, 2024.
Article in English | MEDLINE | ID: mdl-38726293

ABSTRACT

Background: Although inappropriate gestational weight gain is considered closely related to adverse maternal and birth outcomes globally, little evidence was found in low- and middle-income countries. Study Objectives. This study is aimed at identifying the determinants of gestational weight gain and examine the association between gestational weight gain and maternal and birth outcomes in the Northern Region of Ghana. Study Methods. The study used a facility-based cross-sectional study design involving 611 antenatal and delivery records in Tatale district, Tamale west, and Gushegu municipal hospitals. A two-stage sampling method involving cluster and simple random sampling was employed. Descriptive statistical analysis and measures of central tendency were used to describe the sample. The multinomial logistic regression model was used to determine the determinants of gestational weight gain and its association with maternal and birth outcomes. Results: Among the 611 women included in the study, 516 (84.45%) had inadequate gestational weight gain, and 19 (3.11%) had excessive gestational weight gain. The gestational weight gain ranged from 2 kg to 25 kg with a mean of 7.26 ± 3.70 kg. The risk factor for inadequate gestational weight gain was low prepregnancy BMI (adjusted odds ratio (AOR) = 1.33, 95% CI = 1.18 - 2.57, P = 0.002). Pregnant women who had inadequate gestational weight gain were significantly less likely to deliver through caesarean section (AOR = 0.27, 95% CI = 0.12 - 0.61, P = 0.002), and those who had excessive weight gain were more likely to undergo caesarean section (AOR = 19.81, 95% CI = 5.38 - 72.91, P = 0.001). The odds of premature delivery (birth < 37 weeks) among pregnant women with inadequate weight gain were 2.88 (95% CI = 1.27 - 6.50, P = 0.011). Furthermore, subjects who had excessive weight gain were 43.80 times more likely to give birth to babies with macrosomia (95% CI = 7.07 - 271.23, P = 0.001). Conclusion: Inappropriate gestational weight gain is prevalent in Ghana, which is associated with caesarean section, preterm delivery, delivery complications, and macrosomia. Urgent policy interventions are needed to improve on the frequent monitoring and management of gestational weight gain of pregnant women till term.


Subject(s)
Gestational Weight Gain , Pregnancy Outcome , Humans , Female , Pregnancy , Ghana/epidemiology , Adult , Pregnancy Outcome/epidemiology , Risk Factors , Cross-Sectional Studies , Cesarean Section/statistics & numerical data , Infant, Newborn , Body Mass Index , Young Adult , Birth Weight , Weight Gain/physiology
18.
J Chem Inf Model ; 64(10): 4002-4008, 2024 May 27.
Article in English | MEDLINE | ID: mdl-38798191

ABSTRACT

Transcription factors (TFs) are important regulatory elements for vital cellular activities, and the identification of transcription factor binding sites (TFBS) can help to explore gene regulatory mechanisms. Research studies have proved that cfDNA (cell-free DNA) shows relatively higher coverage at TFBS due to the protection by TF from degradation by nucleases and short fragments of cfDNA are enriched in TFBS. However, there are still great difficulties in the noninvasive identification of TFBSs from experimental techniques. In this study, we propose a deep learning-based approach that can noninvasively predict TFBSs of cfDNA by learning sequence information from known TFBSs through convolutional neural networks. Under the addition of long short-term memory, our model achieved an area under the curve of 84%. Based on this model to predict cfDNA, we found consistent motifs in cfDNA fragments and lower coverage occurred upstream and downstream of these cfDNA fragments, which is consistent with a previous study. We also found that the binding sites of the same TF differ in different cell lines. TF-specific target genes were detected from cfDNA and were enriched in cancer-related pathways. In summary, our method of locating TFBSs from plasma has the potential to reflect the intrinsic regulatory mechanism from a noninvasive perspective and provide technical guidance for dynamic monitoring of disease in clinical practice.


Subject(s)
Cell-Free Nucleic Acids , Deep Learning , Transcription Factors , Transcription Factors/metabolism , Transcription Factors/chemistry , Binding Sites , Humans , Cell-Free Nucleic Acids/metabolism , Cell-Free Nucleic Acids/chemistry , DNA/metabolism , DNA/chemistry
19.
Biosens Bioelectron ; 259: 116365, 2024 Sep 01.
Article in English | MEDLINE | ID: mdl-38759309

ABSTRACT

Effective wound management has the potential to reduce both the duration and cost of wound healing. However, traditional methods often rely on direct observation or complex and expensive biological testing to monitor and evaluate the invasive damage caused by wound healing, which can be time-consuming. Biosensors offer the advantage of precise and real-time monitoring, but existing devices are not suitable for integration with sensitive wound tissue due to their external dimensions. Here, we have designed a self-powered biosensing suture (SPBS) based on biofuel cells to accurately monitor glucose concentration at the wound site and promote wound healing. The anode of the SPBS consists of carbon nanotubes-modified carbon fibers, tetrathiafulvalene (TTF), and glucose oxidase (GOx), while the cathode is composed of Ag2O and carbon nanotubes modified nanotubes modified carbon fibers. It was observed that SPBS exhibited excellent physical and chemical stability in vitro. Regardless of different bending degrees or pH values, the maximum power density of SPBS remained above 92%, which is conducive to long-term dynamic evaluation. Furthermore, the voltage generated by SPBS reflects blood glucose concentration, and measurements at wound sites are consistent with those obtained using a commercially available blood glucose meter. SPBS achieves the healing effect of traditional medical sutures after complete healing within 14 days. It offers valuable insights for intelligent devices dedicated to real-time wound monitoring.


Subject(s)
Biosensing Techniques , Nanotubes, Carbon , Sutures , Wound Healing , Biosensing Techniques/instrumentation , Nanotubes, Carbon/chemistry , Humans , Glucose Oxidase/chemistry , Equipment Design , Bioelectric Energy Sources , Blood Glucose/analysis , Animals , Glucose/analysis , Glucose/isolation & purification , Carbon Fiber/chemistry
20.
Int J Nanomedicine ; 19: 4377-4409, 2024.
Article in English | MEDLINE | ID: mdl-38774029

ABSTRACT

Angiogenesis, or the formation of new blood vessels, is a natural defensive mechanism that aids in the restoration of oxygen and nutrition delivery to injured brain tissue after an ischemic stroke. Angiogenesis, by increasing vessel development, may maintain brain perfusion, enabling neuronal survival, brain plasticity, and neurologic recovery. Induction of angiogenesis and the formation of new vessels aid in neurorepair processes such as neurogenesis and synaptogenesis. Advanced nano drug delivery systems hold promise for treatment stroke by facilitating efficient transportation across the the blood-brain barrier and maintaining optimal drug concentrations. Nanoparticle has recently been shown to greatly boost angiogenesis and decrease vascular permeability, as well as improve neuroplasticity and neurological recovery after ischemic stroke. We describe current breakthroughs in the development of nanoparticle-based treatments for better angiogenesis therapy for ischemic stroke employing polymeric nanoparticles, liposomes, inorganic nanoparticles, and biomimetic nanoparticles in this study. We outline new nanoparticles in detail, review the hurdles and strategies for conveying nanoparticle to lesions, and demonstrate the most recent advances in nanoparticle in angiogenesis for stroke treatment.


Subject(s)
Ischemic Stroke , Nanoparticles , Neovascularization, Physiologic , Humans , Ischemic Stroke/drug therapy , Animals , Nanoparticles/chemistry , Neovascularization, Physiologic/drug effects , Blood-Brain Barrier/drug effects , Liposomes/chemistry , Drug Delivery Systems/methods , Nanoparticle Drug Delivery System/chemistry , Angiogenesis
SELECTION OF CITATIONS
SEARCH DETAIL
...