Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 150
Filter
1.
Bioorg Chem ; 150: 107584, 2024 Jun 22.
Article in English | MEDLINE | ID: mdl-38964146

ABSTRACT

Developing multitargeted ligands as promising therapeutics for Alzheimer's disease (AD) has been considered important. Herein, a novel class of cinnamamide/ester-triazole hybrids with multifaceted effects on AD was developed based on the multitarget-directed ligands strategy. Thirty-seven cinnamamide/ester-triazole hybrids were synthesized, with most exhibiting significant inhibitory activity against Aß-induced toxicity at a single concentration in vitro. The most optimal hybrid compound 4j inhibited copper-induced Aß toxicity in AD cells. its action was superior to that of donepezil and memantine. It also moderately inhibited intracellular AChE activity and presented favorable bioavailability and blood-brain barrier penetration with low toxicity in vivo. Of note, it ameliorated cognitive impairment, neuronal degeneration, and Aß deposition in Aß1-42-injured mice. Mechanistically, the compound regulated APP processing by promoting the ADAM10-associated nonamyloidogenic signaling and inhibiting the BACE1-mediated amyloidogenic pathway. Moreover, it suppressed intracellular AChE activity and tau phosphorylation. Therefore, compound 4j may be a promising multitargeted active molecule against AD.

2.
Eur J Pharmacol ; 973: 176574, 2024 Jun 15.
Article in English | MEDLINE | ID: mdl-38642670

ABSTRACT

Osteoporosis is a multifaceted skeletal disorder characterized by reduced bone mass and structural deterioration, posing a significant public health challenge, particularly in the elderly population. Treatment strategies for osteoporosis primarily focus on inhibiting bone resorption and promoting bone formation. However, the effectiveness and limitations of current therapeutic approaches underscore the need for innovative methods. This review explores emerging molecular targets within crucial signaling pathways, including wingless/integrated (WNT), bone morphogenetic protein (BMP), hedgehog (HH), and Notch signaling pathway, to understand their roles in osteogenesis regulation. The identification of crosstalk targets between these pathways further enhances our comprehension of the intricate bone metabolism cycle. In summary, unraveling the molecular complexity of osteoporosis provides insights into potential therapeutic targets beyond conventional methods, offering a promising avenue for the development of new anabolic drugs.


Subject(s)
Osteogenesis , Osteoporosis , Signal Transduction , Humans , Osteoporosis/drug therapy , Osteoporosis/metabolism , Animals , Osteogenesis/drug effects , Signal Transduction/drug effects , Bone Morphogenetic Proteins/metabolism , Hedgehog Proteins/metabolism , Molecular Targeted Therapy , Receptors, Notch/metabolism
3.
Life (Basel) ; 14(3)2024 Feb 29.
Article in English | MEDLINE | ID: mdl-38541746

ABSTRACT

We have updated the email addresses of Li Zeng and Hailun Jiang as the two authors' previous email addresses are no longer in use [...].

4.
Int J Mol Sci ; 25(6)2024 Mar 15.
Article in English | MEDLINE | ID: mdl-38542323

ABSTRACT

As the global population ages, the number of patients with osteoporosis is rapidly rising. The existing first-line clinical drugs are bone resorption inhibitors that have difficulty restoring the bone mass of elderly patients to the safe range. The range and period of use of existing peptides and monoclonal antibodies are limited, and small-molecule bone formation-promoting drugs are urgently required. We established an I-9 synthesis route with high yield, simple operation, and low cost that was suitable for future large-scale production. I-9 administration promoted bone formation and increased bone mass in mice with low bone mass in an aged C57 mouse model. Our findings revealed a hitherto undescribed pathway involving the BMP2-ERK-ATF4 axis that promotes osteoblast differentiation; I-9 has favorable biosafety in mice. This study systematically investigated the efficacy, safety, and mechanism of I-9 for treating osteoporosis and positions this drug for preclinical research in the future. Thus, this study has promoted the development of small-molecule bone-promoting drugs.


Subject(s)
Bone Density Conservation Agents , Osteoporosis , Aged , Mice , Humans , Animals , Osteogenesis , Pharmaceutical Preparations/metabolism , Osteoporosis/drug therapy , Osteoporosis/metabolism , Bone Density Conservation Agents/therapeutic use , Peptides/metabolism , Cell Differentiation , Osteoblasts/metabolism , Activating Transcription Factor 4/metabolism , Bone Morphogenetic Protein 2/metabolism
5.
Brain Behav Immun ; 118: 31-48, 2024 May.
Article in English | MEDLINE | ID: mdl-38360375

ABSTRACT

Microglia-mediated neuroinflammation plays a critical role in the occurrence and progression of Alzheimer's disease (AD). In recent years, studies have increasingly explored microRNAs as biomarkers and treatment interventions for AD. This study identified a novel microRNA termed miR-25802 from our high-throughput sequencing dataset of an AD model and explored its role and the underlying mechanism. The results confirmed the miRNA properties of miR-25802 based on bioinformatics and experimental verification. Expression of miR-25802 was increased in the plasma of AD patients and in the hippocampus of APP/PS1 and 5 × FAD mice carrying two and five familial AD gene mutations. Functional studies suggested that overexpression or inhibition of miR-25802 respectively aggravated or ameliorated AD-related pathology, including cognitive disability, Aß deposition, microglial pro-inflammatory phenotype activation, and neuroinflammation, in 5 × FAD mice and homeostatic or LPS/IFN-γ-stimulated EOC20 microglia. Mechanistically, miR-25802 negatively regulates KLF4 by directly binding to KLF4 mRNA, thus stimulating microglia polarization toward the pro-inflammatory M1 phenotype by promoting the NF-κB-mediated inflammatory response. The results also showed that inhibition of miR-25802 increased microglial anti-inflammatory M2 phenotype activity and suppressed NF-κB-mediated inflammatory reactions in the brains of 5 × FAD mice, while overexpression of miR-25802 exacerbated microglial pro-inflammatory M1 activity by enhancing NF-κB pathways. Of note, AD-associated manifestations induced by inhibition or overexpression of miR-25802 via the NF-κB signaling pathway were reversed by KLF4 silencing or upregulation. Collectively, these results provide the first evidence that miR-25802 is a regulator of microglial activity and establish the role of miR-25802/KLF4/NF-κB signaling in microglia-mediated neuroinflammation, suggesting potential therapeutic targets for AD.


Subject(s)
Alzheimer Disease , MicroRNAs , Humans , Mice , Animals , NF-kappa B/metabolism , Alzheimer Disease/metabolism , Microglia/metabolism , Neuroinflammatory Diseases , Signal Transduction/physiology , MicroRNAs/genetics , MicroRNAs/metabolism
8.
J Med Chem ; 66(21): 14700-14715, 2023 11 09.
Article in English | MEDLINE | ID: mdl-37883180

ABSTRACT

Herein, we first prepared a novel anti-TROP2 antibody-drug conjugate (ADC) hIMB1636-MMAE using hIMB1636 antibody chemically coupled to monomethyl auristatin E (MMAE) via a Valine-Citrulline linker and then reported its characteristics and antitumor activity. With a DAR of 3.92, it binds specifically to both recombinant antigen (KD ∼ 0.687 nM) and cancer cells and could be internalized by target cells and selectively kill them with IC50 values at nanomolar/subnanomolar levels by inducing apoptosis and G2/M phase arrest. hIMB1636-MMAE also inhibited cell migration, induced ADCC effects, and had bystander effects. It displayed significant tumor-targeting ability and excellent tumor-suppressive effects in vivo, resulting in 5/8 tumor elimination at 12 mg/kg in the T3M4 xenograft model or complete tumor disappearance at 10 mg/kg in BxPc-3 xenografts in nude mice. Its half-life in mice was about 87 h. These data suggested that hIMB1636-MMAE was a promising candidate for the treatment of pancreatic cancer with TROP2 overexpression.


Subject(s)
Immunoconjugates , Pancreatic Neoplasms , Humans , Animals , Mice , Immunoconjugates/pharmacology , Immunoconjugates/therapeutic use , Cell Line, Tumor , Mice, Nude , Pancreatic Neoplasms/drug therapy , Pancreatic Neoplasms/pathology , Xenograft Model Antitumor Assays , Pancreatic Neoplasms
9.
Acta Pharm Sin B ; 13(9): 3678-3693, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37719365

ABSTRACT

Polymyxin B and polymyxin E (colistin) are presently considered the last line of defense against human infections caused by multidrug-resistant Gram-negative organisms such as carbapenemase-producer Enterobacterales, Acinetobacter baumannii, and Klebsiella pneumoniae. Yet resistance to this last-line drugs is a major public health threat and is rapidly increasing. Polymyxin S2 (S2) is a polymyxin B analogue previously synthesized in our institute with obviously high antibacterial activity and lower toxicity than polymyxin B and colistin. To predict the possible resistant mechanism of S2 for wide clinical application, we experimentally induced bacterial resistant mutants and studied the preliminary resistance mechanisms. Mut-S, a resistant mutant of K. pneumoniae ATCC BAA-2146 (Kpn2146) induced by S2, was analyzed by whole genome sequencing, transcriptomics, mass spectrometry and complementation experiment. Surprisingly, large-scale genomic inversion (LSGI) of approximately 1.1 Mbp in the chromosome caused by IS26 mediated intramolecular transposition was found in Mut-S, which led to mgrB truncation, lipid A modification and hence S2 resistance. The resistance can be complemented by plasmid carrying intact mgrB. The same mechanism was also found in polymyxin B and colistin induced drug-resistant mutants of Kpn2146 (Mut-B and Mut-E, respectively). This is the first report of polymyxin resistance caused by IS26 intramolecular transposition mediated mgrB truncation in chromosome in K. pneumoniae. The findings broaden our scope of knowledge for polymyxin resistance and enriched our understanding of how bacteria can manage to survive in the presence of antibiotics.

10.
Front Neurosci ; 17: 1167125, 2023.
Article in English | MEDLINE | ID: mdl-37547152

ABSTRACT

Background: Brain computer interface (BCI) technology may provide a new way of communication for some patients with disorder of consciousness (DOC), which can directly connect the brain and external devices. However, the DOC patients' EEG differ significantly from that of the normal person and are difficult to collected, the decoding algorithm currently only is trained based on a small amount of the patient's own data and performs poorly. Methods: In this study, a decoding algorithm called WD-ADSTCN based on domain adaptation is proposed to improve the DOC patients' P300 signal detection. We used the Wasserstein distance to filter the normal population data to increase the training data. Furthermore, an adversarial approach is adopted to resolve the differences between the normal and patient data. Results: The results showed that in the cross-subject P300 detection of DOC patients, 7 of 11 patients achieved an average accuracy of over 70%. Furthermore, their clinical diagnosis changed and CRS-R scores improved three months after the experiment. Conclusion: These results demonstrated that the proposed method could be employed in the P300 BCI system for the DOC patients, which has important implications for the clinical diagnosis and prognosis of these patients.

12.
Comput Biol Med ; 163: 107209, 2023 09.
Article in English | MEDLINE | ID: mdl-37442009

ABSTRACT

Glaucoma is a chronic disorder that harms the optic nerves and causes irreversible blindness. The calculation of optic cup (OC) to optic disc (OD) ratio plays an important role in the primary screening and diagnosis of glaucoma. Thus, automatic and precise segmentations of OD and OC is highly preferable. Recently, deep neural networks demonstrate remarkable progress in the OD and OC segmentation, however, they are severely hindered in generalizing across different scanners and image resolution. In this work, we propose a novel domain adaptation-based framework to mitigate the performance degradation in OD and OC segmentation. We first devise an effective transformer-based segmentation network as a backbone to accurately segment the OD and OC regions. Then, to address the issue of domain shift, we introduce domain adaptation into the learning paradigm to encourage domain-invariant features. Since the segmentation-based domain adaptation loss is insufficient for capturing segmentation details, we further propose an auxiliary classifier to enable the discrimination on segmentation details. Exhaustive experiments on three public retinal fundus image datasets, i.e., REFUGE, Drishti-GS and RIM-ONE-r3, demonstrate our superior performance on the segmentation of OD and OC. These results suggest that our proposal has great potential to be an important component for an automated glaucoma screening system.


Subject(s)
Glaucoma , Optic Disk , Humans , Optic Disk/diagnostic imaging , Glaucoma/diagnostic imaging , Fundus Oculi , Optic Nerve , Neural Networks, Computer
13.
Front Immunol ; 14: 1118808, 2023.
Article in English | MEDLINE | ID: mdl-37153565

ABSTRACT

Introduction: Although vascular dementia (VaD) is the second most prevalent form of dementia, there is currently a lack of effective treatments. Tilianin, isolated from the traditional drug Dracocephalum moldavica L., may protect against ischemic injury by inhibiting oxidative stress and inflammation via the CaMKII-related pathways but with weak affinity with the CaMKII molecule. microRNAs (miRNAs), functioning in post-transcriptional regulation of gene expression, may play a role in the pathological process of VaD via cognitive impairment, neuroinflammatory response, and neuronal dysfunction. This study aimed to investigate the role of tilianin in VaD therapy and the underlying mechanism through which tilianin regulates CaMKII signaling pathways based on miRNA-associated transcriptional action. Methods: Rats with 2-vessel occlusion (2VO), a standard model of VaD, were treated with tilianin, vehicle control, and target overexpression or downregulation. High-throughput sequencing, qRT-PCR, and western blot analyses were utilized to identify the downstream target genes and signaling pathways of tilianin involved in VaD. Results: Our results showed that tilianin ameliorated cognitive deficits, neurodegeneration, and microglial and astrocytic activation in rats with 2VO. Subsequent high-throughput sequencing and qRT-PCR analyses revealed that tilianin increased the downregulated miR-193b-3p and miR-152-3p levels in the cortex and hippocampus of 2VO rats. Mechanistically, miR-193b-3p targeting CaM and miR-152-3p targeting CaMKIIα were identified to play a role in VaD-associated pathology, inhibiting the p38 MAPK/NF--κB p65 pathway and decreasing TNF-α and IL-6 levels. Further gain- and loss-of-function experiments for these key genes showed that tilianin-exerted cognitive improvement by activating the p38 MAPK/NF--κB p65 and Bcl-2/Bax/caspase-3/PARP pathways in the brain of 2VO rats was abolished by miR-193b-3p and miR-152-3p inhibition. Moreover, CaM and CaMKIIα overexpression eliminated the elevated effects of miR-193b-3p and miR-152-3p on tilianin's protection against ischemic injury through increased inflammatory reactions and apoptotic signaling. Discussion: Together, these findings indicate that tilianin improves cognition by regulating the miR-193b-3p/CaM- and miR-152-3p/CaMKIIα-mediated inflammatory and apoptotic pathways, suggesting a potential small-molecule regulator of miRNA associated with inflammatory signaling for VaD treatment.


Subject(s)
Dementia, Vascular , MicroRNAs , Animals , Rats , Calcium-Calmodulin-Dependent Protein Kinase Type 2/genetics , Calcium-Calmodulin-Dependent Protein Kinase Type 2/metabolism , Cognition , Dementia, Vascular/drug therapy , Dementia, Vascular/genetics , Inflammation/drug therapy , Inflammation/genetics , Inflammation/metabolism , MicroRNAs/genetics , MicroRNAs/metabolism , p38 Mitogen-Activated Protein Kinases
14.
Talanta ; 260: 124576, 2023 Aug 01.
Article in English | MEDLINE | ID: mdl-37148689

ABSTRACT

Reliable diagnostic approaches especially those targeting critical Gram-negative bacteria are urgently needed for the prevention of antimicrobial resistance. Polymyxin B (PMB) which specifically targets the outer membrane of Gram-negative bacteria is the last-line antibiotic against life-threatening multidrug-resistant Gram-negative bacteria. However, increasing number of studies have reported the spread of PMB-resistant strains. With the aim to specifically detect Gram-negative bacteria and potentially reduce the irrational use of antibiotics, we herein rationally designed two Gram-negative bacteria specific fluorescent probes based on our previous activity-toxicity optimization of PMB. The in vitro probe PMS-Dns showed fast and selective labeling of Gram-negative pathogens in complex biological cultures. Subsequently, we constructed the caged in vivo fluorescent probe PMS-Cy-NO2 by conjugating bacterial nitroreductase (NTR)-activatable positive charged hydrophobic near-infrared (NIR) fluorophore with polymyxin scaffold. Significantly, PMS-Cy-NO2 exhibited excellent Gram-negative bacterial detection capability with the differentiation between Gram-positive and Gram-negative in a mouse skin infection model.


Subject(s)
Anti-Bacterial Agents , Polymyxins , Animals , Mice , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Polymyxins/pharmacology , Fluorescent Dyes/pharmacology , Nitrogen Dioxide , Drug Resistance, Bacterial , Polymyxin B/pharmacology , Polymyxin B/chemistry , Gram-Negative Bacteria , Microbial Sensitivity Tests
15.
Front Pharmacol ; 14: 1123188, 2023.
Article in English | MEDLINE | ID: mdl-36937876

ABSTRACT

Neurodegenerative diseases (NDs) are common chronic disorders associated with progressive nervous system damage, including Alzheimer's disease, Parkinson's disease, and Huntington's disease, among others. Mitochondria are abundant in various nervous system cells and provide a bulk supply of the adenosine triphosphate necessary for brain function, considered the center of the free-radical theory of aging. One common feature of NDs is mitochondrial dysfunction, which is involved in many physiopathological processes, including apoptosis, inflammation, oxidative stress, and calcium homeostasis. Recently, genetic studies revealed extensive links between mitochondrion impairment and dysregulation of non-coding RNAs (ncRNAs) in the pathology of NDs. Traditional Chinese medicines (TCMs) have been used for thousands of years in treating NDs. Numerous modern pharmacological studies have demonstrated the therapeutic effects of prescription, herbal medicine, bioactive ingredients, and monomer compounds of TCMs, which are important for managing the symptoms of NDs. Some highly effective TCMs exert protective effects on various key pathological features regulated by mitochondria and play a pivotal role in recovering disrupted signaling pathways. These disrupted signaling pathways are induced by abnormally-expressed ncRNAs associated with mitochondrial dysfunction, including microRNAs, long ncRNAs, and circular RNAs. In this review, we first explored the underlying ncRNA mechanisms linking mitochondrial dysfunction and neurodegeneration, demonstrating the implication of ncRNA-induced mitochondrial dysfunction in the pathogenesis of NDs. The ncRNA-induced mitochondrial dysfunctions affect mitochondrial biogenesis, dynamics, autophagy, Ca2+ homeostasis, oxidative stress, and downstream apoptosis. The review also discussed the targeting of the disease-related mitochondrial proteins in NDs and the protective effects of TCM formulas with definite composition, standardized extracts from individual TCMs, and monomeric compounds isolated from TCM. Additionally, we explored the ncRNA regulation of mitochondrial dysfunction in NDs and the effects and potential mechanisms of representative TCMs in alleviating mitochondrial pathogenesis and conferring anti-inflammatory, antioxidant, and anti-apoptotic pathways against NDs. Therefore, this review presents an overview of the role of mitochondrion-related ncRNAs and the target genes for TCM-based therapeutic interventions in NDs, providing insight into understanding the "multi-level compound-target-pathway regulatory" treatment mechanism of TCMs.

16.
J Med Chem ; 66(4): 2524-2541, 2023 02 23.
Article in English | MEDLINE | ID: mdl-36739537

ABSTRACT

The current global issue of antibiotic resistance is serious, and there is an urgent requirement of developing novel antibiotics. Octapeptins have recently regained interest because of their activities against resistant Gram-negative bacteria. We synthesized four natural octapeptins and 33 derivatives with diverse polarity, amphiphilicity, and acid-base properties by solid-phase synthesis and investigated their in vitro antibacterial activity and renal cytotoxicity. We also assessed the structure-activity relationship and structure-toxicity relationship of the cyclic lipopeptide compounds. Some compounds showed increased activity against Gram-negative and/or Gram-positive bacteria, with improved renal cytotoxicity. C-02 showed remarkable in vitro antibacterial activity and low renal cytotoxicity. We found that C-02 showed high antibacterial activity against Escherichia coli in vivo and manifested its effects preliminarily by increasing outer membrane permeability. Therefore, C-02 might be a new antibiotic lead compound with not only high efficacy but also low renal cytotoxicity.


Subject(s)
Amino Acids , Anti-Bacterial Agents , Anti-Bacterial Agents/pharmacology , Amino Acids/chemistry , Lipopeptides , Gram-Negative Bacteria , Structure-Activity Relationship , Microbial Sensitivity Tests
17.
J Med Chem ; 66(3): 1742-1760, 2023 02 09.
Article in English | MEDLINE | ID: mdl-36662031

ABSTRACT

Most patients with senile osteoporosis (SOP) are severely deficient in bone mass, and treatments using bone resorption inhibitors, such as bisphosphonates, have shown limited efficacy. Small-molecule osteogenesis-promoting drugs are required to improve the treatment for this disease. Previously, we demonstrated that a compound with a benzofuran-like structure promoted bone formation by upregulating BMP-2, and it exhibited a therapeutic effect in SAMP-6 mice, glucocorticoid-induced osteoporosis rats, and ovariectomized rats. In this study, aged C57 and SAMP-6 mice models were used to investigate the therapeutic and preventive effects of compound 125 on SOP. scRNA-seq analysis showed that BMP-2 upregulation is the mechanism through which 125 accelerates bone turnover and increases the proportion of osteoblasts. We evaluated the structure-activity relationship of the candidate drugs and found that the derivative I-9 showed significantly higher efficacy than 125 and teriparatide in the zebrafish osteoporosis model. This study provides a foundation for the development of SOP drugs.


Subject(s)
Benzofurans , Osteoporosis , Rats , Mice , Animals , Zebrafish , Osteoporosis/drug therapy , Osteoporosis/prevention & control , Osteogenesis , Osteoblasts , Benzofurans/pharmacology , Benzofurans/therapeutic use , Benzofurans/chemistry , Structure-Activity Relationship
18.
Comput Biol Med ; 152: 106408, 2023 01.
Article in English | MEDLINE | ID: mdl-36516580

ABSTRACT

Diabetic retinopathy (DR) is the primary cause of blindness in adults. Incorporating machine learning into DR grading can improve the accuracy of medical diagnosis. However, problems, such as severe data imbalance, persists. Existing studies on DR grading ignore the correlation between its labels. In this study, a category weighted network (CWN) was proposed to achieve data balance at the model level. In the CWN, a reference for weight settings is provided by calculating the category gradient norm and reducing the experimental overhead. We proposed to use relation weighted labels instead of the one-hot label to investigate the distance relationship between labels. Experiments revealed that the proposed CWN achieved excellent performance on various DR datasets. Furthermore, relation weighted labels exhibit broad applicability and can improve other methods using one-hot labels. The proposed method achieved kappa scores of 0.9431 and 0.9226 and accuracy of 90.94% and 86.12% on DDR and APTOS datasets, respectively.


Subject(s)
Diabetes Mellitus , Diabetic Retinopathy , Humans , Diabetic Retinopathy/diagnosis , Mass Screening/methods , Machine Learning , Fundus Oculi
19.
Front Aging Neurosci ; 14: 1020699, 2022.
Article in English | MEDLINE | ID: mdl-36466608

ABSTRACT

Introduction: Alzheimer's disease (AD) causes a decline in cognitive function that poses a significant hazard to human health. However, the exact pathogenesis of AD and effective treatment have both proven elusive. Circular RNAs (circRNAs), which were initially deemed as meaningless non-coding RNAs, have been shown to participate in a variety of physiological and pathological processes. However, the variations and characteristics of circRNAs are not fairly well understood during the occurrence and development of AD. Methods: In this study, we performed RNA sequencing analyses, identified circRNA expression profiles, and explored the circRNA-associated competing endogenous RNA (ceRNA) relationship in the hippocampus of five familial AD (5 × FAD) mice with cognitive dysfunction. Results: The RNA sequencing results identified 34 dysregulated circRNAs in the hippocampus of 5 × FAD mice, including 17 upregulated and 17 downregulated circRNAs. The circRNA-miRNA interaction network for the dysregulated circRNAs was generated, and it was found to include 34 circRNAs and 711 miRNAs. Next, 2067 mRNAs potentially modulated by upregulated circRNA-interacting miRNAs and 2297 mRNAs potentially modulated by downregulated circRNA-interacting miRNAs were identified. Pathway enrichment analyses revealed that the circRNA-miRNA-mRNA network modulated AD development via multiple pathways, such as axon guidance, mitogen-activated protein kinase, and neurotrophin. The associated biological processes were mainly related to neuron projection development, cell morphogenesis, and head development. Their corresponding distributions were especially high in the axon, postsynapse, and neuronal body. We constructed a ceRNA network that included five circRNAs, four miRNAs, and 188 mRNAs. In this network, the differential expressions of three circRNAs (circRNA04655, circRNA00723, and circRNA01891), two miRNAs (miR-3470b and miR-6240), and 13 mRNAs (Vgll3, Nhsl2, Rab7, Tardbp, Vps33b, Fam107a, Tacr1, Ankrd40, Creb1, Snap23, Csnk1a1, Bmi1, and Bfar) in the hippocampus of 5 × FAD mice using qRT-PCR analyses were consistent with the RNA sequencing results. Another one circRNAs (circRNA00747) and two mRNAs (Zfp37 and Polr1e) had similar expression trends to the sequencing data, while circRNA03723 and Mapk10 had deviated expression trends to the sequencing data. Conclusions: In conclusion, our study uncovered dysregulated circRNA expression profiles in the hippocampus of 5 × FAD mice, stretched comprehension of ceRNA biology, investigated the potential role of this ceRNA network in pathogenesis and progression, and identified potential biomarkers and therapeutic targets for AD.

20.
Front Chem ; 10: 1058256, 2022.
Article in English | MEDLINE | ID: mdl-36505747

ABSTRACT

Ovarian cancer (OC) is a gynecological tumor with possibly the worst prognosis, its 5-year survival rate being only 47.4%. The first line of therapy prescribed is chemotherapy consisting of platinum and paclitaxel. The primary reason for treatment failure is drug resistance. FOXM1 protein has been found to be closely associated with drug resistance, and inhibition of FOXM1 expression sensitizes cisplatin-resistant ovarian cancer cells. Combining existing first-line chemotherapy drugs with FOXM1 prolongs the overall survival of patients, therefore, FOXM1 is considered a potential therapeutic target in ovarian cancer. Previous research conducted by our team revealed a highly credible conformation of FOXM1 which enables binding by small molecules. Based on this conformation, the current study conducted virtual screening to determine a new structural skeleton for FOXM1 inhibitors which would enhance their medicinal properties. DZY-4 showed the highest affinity towards FOXM1, and its inhibitory effect on proliferation and migration of ovarian cancer at the cellular level was better than or equal to that of cisplatin, while its efficacy was equivalent to that of cisplatin in a nude mouse model. In this study, the anti-tumor effect of DZY-4 is reported for the first time. DZY-4 shows potential as a drug that can be used for ovarian cancer treatment, as well as a drug lead for future research.

SELECTION OF CITATIONS
SEARCH DETAIL
...