Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 342
Filter
1.
J Adv Res ; 2024 Sep 05.
Article in English | MEDLINE | ID: mdl-39243941

ABSTRACT

INTRODUCTION: Taurine is a naturally occurring sulfonic acid involved in various physiological and pathological processes, such as the regulation of calcium signaling, immune function, inflammatory response, and cellular aging. It has the potential to predict tumor malignant transformation and formation. Our previous work discovered the elevated taurine in lung cancer patients. However, the precise impact and mechanism of elevated serum taurine levels on lung cancer progression and the suitability of taurine or taurine-containing drinks for lung cancer patients remain unclear. OBJECTIVES: Our study aimed to systematically investigate the role of taurine in lung cancer, with the ultimate goal of contributing novel strategies for lung cancer treatment. METHODS: Lung cancer C57 and nude mice models, RNA sequencing, and stable transfection were applied to explored the effects and mechanisms of taurine on lung cancer. Tissues of 129 non-small cell lung cancer (NSCLC) patients derived from 2014 to 2017 for immunohistochemistry were collected in Taihe Hospital. RESULTS: Low doses of taurine, as well as taurine-infused beverages at equivalent doses, significantly enhanced lung tumor growth. Equally intriguing is that the promoting effect of taurine on lung cancer progression wanes as the dosage increases. The Nuclear factor erythroid 2-like 1 (Nfe2l1 or Nrf1)-reactive oxygen species (ROS)-PD-1 axis may be a potential mechanism for dual role of taurine in lung cancer progression. However, taurine's impacts on lung cancer progression and the anti-tumor function of Nfe2l1 were mainly determined by the immune competence. Taurine inhitited lung tumor growth probably by inhibiting NF-κB-mediated inflammatory responses in nude mice rather than by affecting Nfe2l1 function. As patients age increased, Nfe2l1 gene and protein gradually returned to the levels observed in healthy individuals, but lost its anti-lung cancer effects. CONCLUSIONS: Taurine emerges as a potential biomarker for lung cancer progression, predicting poor prognosis and unsuitability for specific patients. Lung cancer patients, especially young patients, should be conscious of potential effects of taurine-containing drinks. Conversely, taurine or its drinks may be more suitable for older or immune-deficient patients.

2.
J Sci Food Agric ; 2024 Sep 07.
Article in English | MEDLINE | ID: mdl-39243161

ABSTRACT

BACKGROUND: There are few studies about the differences in the composition of moisture, ash, crude protein, crude fat, crude polysaccharide and ergothioneine in Ganoderma lucidum spore powder (GLSP) from different origins. As for GLSP after oil extraction (OE-GLSP), there are still lots of bioactive substance in it. It can be seen that OE-GLSP has certain biological activity. The effect of OE-GLSP on the improvement of intestinal barrier function has been less studied. RESULTS: The results showed that there were significant differences for GLSP from five different origins (Anhui, Jilin, Jiangxi, Shandong and Zhejiang) in moisture (0.065-0.113%), ash (0.603-0.955%), crude fat (42.444-44.773%), crude polysaccharide (2.977-4.127%), crude protein (14.761-17.639%) and ergothioneine (0.552-1.816 mg g-1) (P < 0.05). The monosaccharides of GLSP polysaccharide mainly consist of glucose, galactose, mannose, rhamnose, etc. Moreover, the effects of OE-GLSP supplementation on the regulation of organ index, colonic tissue and intestinal microbiota in C57BL/6J mice were investigated. The supplement of OE-GLSP could restore the organ index and weight loss of antibiotic-treated mice. Moreover, OE-GLSP led to the improvement of intestinal dysbiosis by enriching Bacteroidetes, Firmicutes, Lactobacillus and Roseburia, and increasing the Firmicutes/Bacteroidetes ratio. In addition, OE-GLSP intervention repaired intestinal barrier dysfunction by increasing the expression of tight junction proteins (Occludin, Claudin-1 and E-cadherin). CONCLUSION: Different GLSP from five origins exhibited significant differences in microstructure and contents of crude polysaccharide, crude protein, crude fat, water, ash and ergothioneine. Moreover, it was found that OE-GLSP could improve the intestinal barrier function and induce potentially beneficial changes in intestinal flora. © 2024 Society of Chemical Industry.

3.
J Agric Food Chem ; 72(28): 15740-15754, 2024 Jul 17.
Article in English | MEDLINE | ID: mdl-38970822

ABSTRACT

Hepatic fibrosis is a compensatory response to chronic liver injury and inflammation, and dietary intervention is recommended as one of the fundamental prevention strategies. Raspberry ketone (RK) is an aromatic compound first isolated from raspberry and widely used to prepare food flavors. The current study investigated the hepatoprotection and potential mechanism of RK against hepatic fibrosis. In vitro, hepatic stellate cell (HSC) activation was stimulated with TGF-ß and cultured with RK, farnesoid X receptor (FXR), or peroxisome proliferator-activated receptor gamma coactivator 1-alpha (PGC-1α) agonist or inhibitor, respectively. In vivo, C57BL/6 mice were injected intraperitoneally with thioacetamide (TAA) at 100/200 mg/kg from the first to the fifth week. Mice were intragastrically administrated with RK or Cur once a day from the second to the fifth week. In activated HSCs, RK inhibited extracellular matrix (ECM) accumulation, inflammation, and epithelial-mesenchymal transition (EMT) process. RK both activated FXR/PGC-1α and regulated their crosstalk, which were verified by their inhibitors and agonists. Deficiency of FXR or PGC-1α also attenuated the effect of RK on the reverse of activated HSCs. RK also decreased serum ALT/AST levels, liver histopathological change, ECM accumulation, inflammation, and EMT in mice caused by TAA. Double activation of FXR/PGC-1α might be the key targets for RK against hepatic fibrosis. Above all, these discoveries supported the potential of RK as a novel candidate for the dietary intervention of hepatic fibrosis.


Subject(s)
Butanones , Hepatic Stellate Cells , Liver Cirrhosis , Mice, Inbred C57BL , Peroxisome Proliferator-Activated Receptor Gamma Coactivator 1-alpha , Receptors, Cytoplasmic and Nuclear , Signal Transduction , Animals , Humans , Male , Mice , Butanones/pharmacology , Epithelial-Mesenchymal Transition/drug effects , Hepatic Stellate Cells/metabolism , Hepatic Stellate Cells/drug effects , Inflammation/metabolism , Inflammation/drug therapy , Liver Cirrhosis/metabolism , Liver Cirrhosis/genetics , Liver Cirrhosis/drug therapy , Peroxisome Proliferator-Activated Receptor Gamma Coactivator 1-alpha/metabolism , Peroxisome Proliferator-Activated Receptor Gamma Coactivator 1-alpha/genetics , Receptors, Cytoplasmic and Nuclear/metabolism , Receptors, Cytoplasmic and Nuclear/genetics , Rubus/chemistry , Signal Transduction/drug effects , Rats
4.
Phytomedicine ; 131: 155783, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38838402

ABSTRACT

BACKGROUND: Psoriasis, a chronic immune-mediated skin disease with pathological features such as aberrant differentiation of keratinocytes, dermal-epidermal inflammation, and angiogenesis. 2,3,5,4'-Tetrahydroxy stilbene 2-Ο-ß-d-glucoside (2354Glu) is a natural small molecule polyhydrostilbenes isolated from Polygonum multiglorum Thunb. The regulation of IL-36 subfamily has led to new pharmacologic strategies to reverse psoriasiform dermatitis. PURPOSE: Here we investigated the therapeutic potential of 2354Glu and elucidated the underlying mechanism in psoriasis. METHODS: The effects of 2354Glu on IL-36 signaling were assessed by psoriasiform in vivo, in vitro and ex vivo model. The in vivo mice model of psoriasis-like skin inflammation was established by applying imiquimod (IMQ), and the in vitro and ex vitro models were established by stimulating mouse primary keratinocyte, human keratinocytes cells (HaCaT) and ex vivo skin tissue isolated from the mice back with Polyinosine-polycytidylic acid (Poly(I:C)), IMQ, IL-36γ and Lipopolysaccharide (LPS) respectively. Moreover, NETs formation was inhibited by Cl-amidine to evaluate the effect of NETs in psoriatic mouse model. The effects of 2354Glu on skin inflammation were assessed by western blot, H&E, immunohistochemistry, immunofluorescence, enzyme-linked immunosorbent assay and real-time quantitative PCR. RESULTS: In Poly(I:C)-stimulated keratinocytes, the secretion of IL-36 was inhibited after treatment with 2354Glu, similar to the effects of TLR3, P2X7R and caspase-1 inhibitors. In aldara (imiquimod)-induced mice, 2354Glu (100 and 25 mg/kg) improved immune cell infiltration and hyperkeratosis in psoriasis by directly targeting IL-36 in keratinocytes through P2X7R-caspase-1. When treatment with 2354Glu (25 mg/kg) was insufficient to inhibit IL-36γ, NETs reduced pathological features and IL-36 signaling by interacting with keratinocytes to combat psoriasis like inflammation. CONCLUSION: These results indicated that NETs had a beneficial effect on psoriasiform dermatitis. 2354Glu alleviates psoriasis by directly targeting IL-36/P2X7R axis and NET formation, providing a potential candidate for the treatment of psoriasis.


Subject(s)
Disease Models, Animal , Glucosides , Imiquimod , Interleukin-1 , Psoriasis , Stilbenes , Animals , Psoriasis/drug therapy , Glucosides/pharmacology , Humans , Interleukin-1/metabolism , Stilbenes/pharmacology , Mice , Keratinocytes/drug effects , Polygonum/chemistry , Skin/drug effects , Skin/pathology , Mice, Inbred BALB C , Signal Transduction/drug effects , Male , Caspase 1/metabolism
5.
Animal Model Exp Med ; 7(3): 234-258, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38863309

ABSTRACT

BACKGROUND: According to traditional Chinese medicine (TCM), drugs supplementing the vital energy, Qi, can eliminate tumors by restoring host immunity. The objective of this study is to investigate the underlying immune mechanisms of anti-tumor activity associated with Qi-supplementing herbs, specifically the paired use of Huangqi and Danggui. METHODS: Analysis of compatibility regularity was conducted to screen the combination of Qi-supplementing TCMs. Using the MTT assay and a transplanted tumor mice model, the anti-tumor effects of combination TCMs were investigated in vitro and in vivo. High content analysis and flow cytometry were then used to evaluate cellular immunity, followed by network pharmacology and molecular docking to dissect the significant active compounds and potential mechanisms. Finally, the anti-tumor activity and the mechanism of the active ingredients were verified by molecular experiments. RESULTS: There is an optimal combination of Huangqi and Danggui that, administered as an aqueous extract, can activate immunity to suppress tumor and is more effective than each drug on its own in vitro and in vivo. Based on network pharmacology analysis, PIK3R1 is the core target for the anti-tumor immunity activity of combined Huangqi and Danggui. Molecular docking analysis shows 6 components of the combined Danggui and Huangqi extract (quercetin, jaranol, isorhamnetin, kaempferol, calycosin, and suchilactone) that bind to PIK3R1. Jaranol is the most important component against breast cancer. The suchilactone/jaranol combination and, especially, the suchilactone/kaempferol combination are key for immunity enhancement and the anti-tumor effects of the extract. CONCLUSIONS: The combination of Huangqi and Danggui can activate immunity to suppress breast cancer and is more effective than the individual drugs alone.


Subject(s)
Breast Neoplasms , Drugs, Chinese Herbal , Mice, Inbred BALB C , Molecular Docking Simulation , Drugs, Chinese Herbal/pharmacology , Animals , Female , Breast Neoplasms/drug therapy , Breast Neoplasms/immunology , Mice , Humans , Astragalus propinquus , Cell Line, Tumor , Up-Regulation/drug effects
6.
Phytother Res ; 38(8): 4009-4021, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38863408

ABSTRACT

Environmental pollution, virus infection, allergens, and other factors may cause respiratory disease, which could be improved by dietary therapy. Allium species are common daily food seasoning and have high nutritional and medical value. Diallyl disulfide (DADS) is the major volatile oil compound of Allium species. The present study aims to explore the preventive effect and potential mechanism of DADS on pulmonary fibrosis. C57BL/6J mice were intratracheally injected with bleomycin (BLM) to establish pulmonary fibrosis and then administrated with DADS. Primary lung fibroblasts or A549 were stimulated with BLM, followed by DADS, farnesoid X receptor (FXR) agonist (GW4064), yes-associated protein 1 (YAP1) inhibitor (verteporfin), or silencing of FXR and YAP1. In BLM-stimulated mice, DADS significantly ameliorated histopathological changes and interleukin-1ß levels in bronchoalveolar lavage fluid. DADS decreased fibrosis markers, HIF-1α, inflammatory cytokines, and epithelial-mesenchymal transition in pulmonary mice and activated fibroblasts. DADS significantly enhanced FXR expression and inhibited YAP1 activation, which functions as GW4064 and verteporfin. A deficiency of FXR or YAP1 could result in the increase of these two protein expressions, respectively. DADS ameliorated extracellular matrix deposition, hypoxia, epithelial-mesenchymal transition, and inflammation in FXR or YAP1 knockdown A549. Taken together, targeting the crosstalk of FXR and YAP1 might be the potential mechanism for DADS against pulmonary fibrosis. DADS can serve as a potential candidate or dietary nutraceutical supplement for the treatment of pulmonary fibrosis.


Subject(s)
Allyl Compounds , Disulfides , Mice, Inbred C57BL , Pulmonary Fibrosis , Receptors, Cytoplasmic and Nuclear , Signal Transduction , YAP-Signaling Proteins , Animals , Pulmonary Fibrosis/drug therapy , Pulmonary Fibrosis/chemically induced , Mice , Disulfides/pharmacology , Humans , Receptors, Cytoplasmic and Nuclear/metabolism , Signal Transduction/drug effects , Allyl Compounds/pharmacology , A549 Cells , Male , Allium/chemistry , Adaptor Proteins, Signal Transducing/metabolism , Bleomycin , Lung/drug effects , Lung/pathology , Fibroblasts/drug effects , Fibroblasts/metabolism
7.
Front Endocrinol (Lausanne) ; 15: 1383993, 2024.
Article in English | MEDLINE | ID: mdl-38836227

ABSTRACT

Background: Stress hyperglycemia ratio (SHR) has shown a predominant correlation with transient adverse events in critically ill patients. However, there remains a gap in comprehensive research regarding the association between SHR and mortality among patients experiencing cardiac arrest and admitted to the intensive care unit (ICU). Methods: A total of 535 patients with their initial ICU admission suffered cardiac arrest, according to the American Medical Information Mart for Intensive Care (MIMIC)-IV database. Patients were stratified into four categories based on quantiles of SHR. Multivariable Cox regression models were used to evaluate the association SHR and mortality. The association between SHR and mortality was assessed using multivariable Cox regression models. Subgroup analyses were conducted to determine whether SHR influenced ICU, 1-year, and long-term all-cause mortality in subgroups stratified according to diabetes status. Results: Patients with higher SHR, when compared to the reference quartile 1 group, exhibited a greater risk of ICU mortality (adjusted hazard ratio [aHR] = 3.029; 95% CI: 1.802-5.090), 1-year mortality (aHR = 3.057; 95% CI: 1.885-4.958), and long-term mortality (aHR = 3.183; 95% CI: 2.020-5.015). This association was particularly noteworthy among patients without diabetes, as indicated by subgroup analysis. Conclusion: Elevated SHR was notably associated with heightened risks of ICU, 1-year, and long-term all-cause mortality among cardiac arrest patients. These findings underscore the importance of considering SHR as a potential prognostic factor in the critical care management of cardiac arrest patients, warranting further investigation and clinical attention.


Subject(s)
Databases, Factual , Heart Arrest , Hyperglycemia , Intensive Care Units , Humans , Male , Female , Heart Arrest/mortality , Heart Arrest/blood , Hyperglycemia/mortality , Hyperglycemia/blood , Aged , Middle Aged , Intensive Care Units/statistics & numerical data , Prognosis , United States/epidemiology
9.
Int Immunopharmacol ; 131: 111824, 2024 Apr 20.
Article in English | MEDLINE | ID: mdl-38461633

ABSTRACT

BACKGROUND: Psoriasis is an inflammatory skin disease that occurs repeatedly over time. The natural product of sesquiterpene lactones, Parthenolide (Par), is isolated from Tanacetum parthenium L. (feverfew) which has significant effects on anti-inflammatory. The therapeutic effect of the medication itself is crucial, but different routes of administration of the same drug can also produce different effects. PURPOSE: The aim of our research sought to investigate the ameliorating effects of Par in psoriasis-like skin inflammation and its related mechanism of action. RESULTS: In the IMQ-induced model, intragastric administration of Par reduced the Psoriasis Area and Severity Index (PASI) score, improved skin erythema, scaling, and other symptoms. And Par decreased the expression of Ki67, keratin14, keratin16 and keratin17, and increased the expression of keratin1. Par could reduce IL-36 protein expressions, meanwhile the expression of Il1b, Cxcl1 and Cxcl2 mRNA were also decreased. Par regulated the expression levels of F4/80, MPO and NE. However, skin transdermal administration of Par was more effective. Similarly, Par attenuated IL-36γ, IL-1ß and caspase-1 activated by Poly(I:C) in in vitro and ex vivo. In addition, Par also reduced NE, PR3, and Cathepsin G levels in explant skin tissues. CONCLUSION: Par ameliorated psoriasis-like skin inflammation in both in vivo and in vitro, especially after treatment with transdermal drug delivery, possibly by inhibiting neutrophil extracellular traps and thus by interfering IL-36 signaling pathway. It indicated that Par provides a new research strategy for the treatment of psoriasis-like skin inflammation and is expected to be a promising drug.


Subject(s)
Dermatitis , Extracellular Traps , Psoriasis , Sesquiterpenes , Animals , Mice , Imiquimod/pharmacology , Administration, Cutaneous , Extracellular Traps/metabolism , Skin , Psoriasis/chemically induced , Psoriasis/drug therapy , Psoriasis/metabolism , Sesquiterpenes/therapeutic use , Sesquiterpenes/pharmacology , Dermatitis/drug therapy , Inflammation/chemically induced , Inflammation/drug therapy , Disease Models, Animal , Mice, Inbred BALB C
10.
Eur J Med Chem ; 269: 116311, 2024 Apr 05.
Article in English | MEDLINE | ID: mdl-38508118

ABSTRACT

Four series of imidazoles (15a-g, 20c, and 20d) and thiazoles (18a-g, 22a, and 22b) possessing various amino acids were synthesized and evaluated for activin receptor-like kinase 5 (ALK5) inhibitory activities in an enzymatic assay. Among them, compounds 15g and 18c showed the highest inhibitory activity against ALK5, with IC50 values of 0.017 and 0.025 µM, respectively. Compounds 15g and 18c efficiently inhibited extracellular matrix (ECM) deposition in TGF-ß-induced hepatic stellate cells (HSCs), and eventually suppressed HSC activation. Moreover, compound 15g showed a good pharmacokinetic (PK) profile with a favorable half-life (t1/2 = 9.14 h). The results indicated that these compounds exhibited activity targeting ALK5 and may have potential in the treatment of liver fibrosis; thus they are worthy of further study.


Subject(s)
Amino Acids , Thiazoles , Humans , Thiazoles/pharmacology , Amino Acids/pharmacology , Liver Cirrhosis/metabolism , Receptors, Transforming Growth Factor beta/metabolism , Imidazoles/pharmacology
11.
J Nat Med ; 78(2): 427-438, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38334900

ABSTRACT

Angelica dahurica (A. dahurica) has a wide range of pharmacological effects, including analgesic, anti-inflammatory and hepatoprotective effects. In this study, we investigated the effect of A. dahurica extract (AD) and its effective component bergapten (BG) on hepatic fibrosis and potential mechanisms. Hepatic fibrosis was induced by intraperitoneal injection with carbon tetrachloride (CCl4) for 1 week, and mice were administrated with AD or BG by gavage for 1 week before CCl4 injection. Hepatic stellate cells (HSCs) were stimulated by transforming growth factor-ß (TGF-ß) and cultured with AD, BG, GW4064 (FXR agonist) or Guggulsterone (FXR inhibitor). In CCl4-induced mice, AD significantly decreased serum aminotransferase, reduced excess accumulation of extracellular matrix (ECM), inhibited caspase-1 and IL-1ß, and increased FXR expressions. In activated HSCs, AD suppressed the expressions of α-SMA, collagen I, and TIMP-1/MMP-13 ratio and inflammatory factors, functioning as FXR agonist. In CCl4-induced mice, BG significantly improved serum transaminase and histopathological changes, reduced ECM excessive deposition, inflammatory response, and activated FXR expression. BG increased FXR expression and inhibited α-SMA and IL-1ß expressions in activated HSCs, functioning as GW4064. FXR deficiency significantly attenuated the decreasing effect of BG on α-SMA and IL-1ß expressions in LX-2 cells. In conclusion, AD could regulate hepatic fibrosis by regulating ECM excessive deposition and inflammation. Activating FXR signaling by BG might be the potential mechanism of AD against hepatic fibrosis.


Subject(s)
Liver Cirrhosis , Signal Transduction , Mice , Animals , 5-Methoxypsoralen/adverse effects , Liver Cirrhosis/chemically induced , Liver Cirrhosis/drug therapy , Hepatic Stellate Cells , Transforming Growth Factor beta/pharmacology , Liver
12.
Article in Chinese | WPRIM (Western Pacific) | ID: wpr-1030958

ABSTRACT

Breast cancer has become the malignant tumor with the highest incidence rate. Although the emergence of new drugs has prolonged the overall survival of breast cancer patients, it still possesses a high recurrence and metastasis rate due to tumor heterogeneity and drug resistance. Glucose is the main source of energy metabolism for breast cancer cells, and the glucose metabolism of breast cancer cells is significantly different from that of normal breast cells. The high energy demand and rapid growth of breast cancer cells make their demand for glucose much higher than that of normal cells. Moreover, even under aerobic conditions, the glycolytic effect of breast cancer cells will be significantly enhanced to meet the high energy metabolism demand of breast cancer cells. The main reason for the enhanced glycolytic effect of breast cancer cells is the enhanced activity of glycolysis-related enzymes and regulatory factors, including pyruvate kinase, hexokinase, phosphofructokinase, lactate dehydrogenase, and glucose transporter protein. The metabolism process of glycolysis in breast cancer cells can be regulated by interfering with the activity of these enzymes and regulatory factors, thus inhibiting the proliferation of breast cancer, promoting apoptosis, and reversing drug resistance, invasion, and metastasis. Traditional Chinese medicine (TCM) has a long history of treating breast cancer and has made significant achievements in the aspects of anti-recurrence, metastasis, and drug resistance. In recent years, more and more research related to the intervention of aerobic glycolysis in breast cancer by TCM monomers, single-flavored TCM, and compounds has been conducted and has made great achievements. In addition, a large number of in vivo and in vitro experiments have shown that aerobic glycolysis is an important potential target for the treatment of breast cancer by TCM, but there is a lack of a comprehensive review and summary. On this basis, this paper elaborated on the roles of key targets in aerobic glycolysis and breast cancer and summarized the relevant studies on the treatment of breast cancer by intervention of glycolysis with TCM, with a view to providing new ideas for further research.

13.
Herald of Medicine ; (12): 228-233, 2024.
Article in Chinese | WPRIM (Western Pacific) | ID: wpr-1023703

ABSTRACT

Patients with gastric cancer are at high risk for venous thromboembolism(VTE)and bleeding,and patients who develop VTE are often associated with poor outcomes,making it clinically challenging to identify and manage the risk of thrombosis in patients with gastric cancer.Risk factors for VTE in gastric cancer patients include age,obesity,surgery,chemotherapy,etc.It is essential to identify high-risk patients and adopt aggressive prevention strategies.The main strategy to prevent and treat VTE is the use of anticoagulant drugs.This article discusses guidelines and recent studies for the prevention and treatment of VTE in patients with gastric cancer to help clinicians make individualized decisions for their patients and maximize clinical outcomes for their patients.

14.
Herald of Medicine ; (12): 418-423, 2024.
Article in Chinese | WPRIM (Western Pacific) | ID: wpr-1023730

ABSTRACT

Patients with primary membranous nephropathy(PMN)tend to develop thrombosis,especially in the early phase of the disease.The pathogenesis of thrombosis is multifactorial,with hypoalbuminemia being widely regarded as an inde-pendent risk factor.Other factors include proteinuria,M-type phospholipase A2 receptor antibody,and D-dimer.Although prophy-lactic anticoagulation therapy is frequently used in clinical practice to prevent thrombosis in PMN patients,there are still many un-resolved issues regarding the optimal prevention of thrombosis in this condition.The timing of prophylactic anticoagulation,the threshold of serum albumin level,and the choice of treatment regimen are still lacking consensus.This article reviewed the relevant literature on these topics,aiming to establish a standard for thrombosis prevention and treatment for this population in the future and provide guidance for clinical practice.

15.
Int Immunopharmacol ; 127: 111460, 2024 Jan 25.
Article in English | MEDLINE | ID: mdl-38157696

ABSTRACT

BACKGROUND: Ligustilide (Lig) is the main active ingredient of Umbelliferae Angelicae Sinensis Radix (Chinese Angelica) and Chuanxiong Rhizoma (Sichuan lovase rhizome). Lig possesses various pharmacological properties and could treat obesity by regulating energy metabolism. However, the impact and regulatory mechanism of Lig on alcoholic hepatic steatosis remains unclear. PURPOSE: This study aimed to explore the therapeutic effect of Lig on alcoholic hepatic steatosis and its related pharmacological mechanism. RESULTS: With chronic and binge ethanol feeding, liver tissue damage and lipid accumulation in mice suffering alcoholic hepatic steatosis were significantly improved after Lig treatment. Lig effectively regulated the expression levels of lipid metabolism-related proteins in alcoholic hepatic steatosis. In addition, Lig reduced RXFP1 expression, inhibited the activation of NLRP3 inflammasome, and blocked NET formation. Lig reduced the infiltration of immune cells to the liver and the further prevented the occurrence of alcohol-stimulated inflammatory response in liver. Lig significantly regulated lipid accumulation in alcohol exposed AML12 cells via modulating PPARα and SREBP1. In MPMs, Lig decreased the expression of RXFP1, inhibited the activation of NLRP3 in macrophages stimulated by LPS/ATP, and slowed down the occurrence of inflammatory response. CONCLUSION: Lig sustained lipid metabolism homeostasis in alcoholic hepatic steatosis, through inhibiting the activation of NLRP3 inflammasomes and the formation of NETs, especially targeting RXFP1 in macrophages.


Subject(s)
4-Butyrolactone/analogs & derivatives , Fatty Liver, Alcoholic , NLR Family, Pyrin Domain-Containing 3 Protein , Mice , Animals , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , Fatty Liver, Alcoholic/drug therapy , Fatty Liver, Alcoholic/metabolism , Liver/metabolism , Ethanol/therapeutic use , Inflammasomes , Lipids/therapeutic use , Mice, Inbred C57BL
16.
J Clin Endocrinol Metab ; 109(6): 1540-1549, 2024 May 17.
Article in English | MEDLINE | ID: mdl-38124275

ABSTRACT

CONTEXT: There is limited data on the clinical significance of metabolic hyperferritinemia (MHF) based on the most recent consensus. OBJECTIVE: We aimed to validate the clinical outcomes of MHF in the general population and patients with biopsy-proven metabolic dysfunction-associated fatty liver disease (MAFLD). METHODS: The NHANES database and PERSONS cohort were included. MHF was defined as elevated serum ferritin with metabolic dysfunction (MD) and stratified into different grades according to ferritin (grade 1: 200 [females]/300 [males]-550 ng/mL; grade 2: 550-1000 ng/mL; grade 3: >1000 ng/mL). The clinical outcomes, including all-cause death, comorbidities, and liver histology, were compared between non-MHF and MHF in adjusted models. RESULTS: In NHANES, compared with non-MHF with MD, MHF was related to higher risks of advanced fibrosis (P = .036), elevated albumin-creatinine ratio (UACR, P = .001), and sarcopenia (P = .013). Although the association between all grades of MHF and mortality was insignificant (P = .122), grades 2/3 was associated with increased mortality (P = .029). When comparing with non-MHF without MD, the harmful effects of MHF were more significant in mortality (P < .001), elevated UACR (P < .001), cardiovascular disease (P = .028), and sarcopenia (P < .001). In the PERSONS cohort, MHF was associated with more advanced grades of steatosis (P < .001), lobular inflammation (P < .001), advanced fibrosis (P = .017), and more severe hepatocellular iron deposition (P < .001). CONCLUSION: Both in the general population and in at-risk individuals with MAFLD, MHF was related with poorer clinical outcomes.


Subject(s)
Ferritins , Hyperferritinemia , Humans , Female , Male , Middle Aged , Adult , Cohort Studies , Hyperferritinemia/blood , Hyperferritinemia/diagnosis , Ferritins/blood , Consensus , Nutrition Surveys , Aged , Prognosis
17.
Iran J Basic Med Sci ; 26(8): 882-890, 2023.
Article in English | MEDLINE | ID: mdl-37427322

ABSTRACT

Objectives: Ulcerative colitis (UC) remains an enduring, idiopathic inflammatory bowel disease marked by persistent mucosal inflammation initiating from the rectum and extending in a proximal direction. An ethanol extract of Periplaneta americana L., namely Kangfuxin (KFX), has a significant historical presence in Traditional Chinese Medicine and has been broadly utilized in clinical practice for the treatment of injury. Here, we aimed to determine the effect of KFX on 2,4,6-trinitro'benzene sulfonic acid (TNBS)-induced UC in Sprague-Dawley rats. Materials and Methods: We established the UC model by TNBS/ethanol method. Then, the rats were subject to KFX (50, 100, 200 mg/kg/day) for 2 weeks by intragastric gavage. The body weight, disease activity index (DAI), colonic mucosal injury index (CMDI), and histopathological score were evaluated. The colonic tissue interleukin (IL)-1ß, IL-6, tumor necrosis factor-α (TNF-α), IL-10, transforming growth factor-1 (TGF-ß1), and epidermal growth factor (EGF) were determined by Elisa. To study T-lymphocyte subsets, flow cytometry was performed. In addition, the expression level of NF-κB p65 was evaluated by immunohistochemistry and western blot analysis. Results: Compared with the TNBS-triggered colitis rats, the treatment of rats with KFX significantly increased the body weight, and decreased DAI, CMDI, and histopathological score. Also, KFX elicited a reduction in the secretion of colonic pro-inflammatory cytokines, namely IL-1ß, IL-6, and TNF-α, concomitant with up-regulation of IL-10, TGF-ß1, and EGF levels. Upon KFX treatment, the CD3+CD4+/CD3+CD8+ ratio in the spleen decreased, while the CD3+CD8+ subset and the CD3+CD4+CD25+/CD3+CD4+ ratio demonstrated an increase. In addition, the expression of NF-κB p65 in the colon was decreased. Conclusion: KFX effectively suppresses TNBS-induced colitis by inhibiting the activation of NF-κB p65 and regulating the ratio of CD4+/CD8+.

18.
PLoS Genet ; 19(7): e1010867, 2023 07.
Article in English | MEDLINE | ID: mdl-37523410

ABSTRACT

Many filamentous fungi produce plant-polysaccharide-degrading enzymes (PPDE); however, the regulatory mechanism of this process is poorly understood. A Gal4-like transcription factor, CxrA, is essential for mycelial growth and PPDE production in Penicillium oxalicum. Its N-terminal region, CxrAΔ207-733 is required for the regulatory functions of whole CxrA, and contains a DNA-binding domain (CxrAΔ1-16&Δ59-733) and a methylated arginine (R) 94. Methylation of R94 is mediated by an arginine N-methyltransferase, PRMT2 and appears to induce dimerization of CxrAΔ1-60. Overexpression of prmt2 in P. oxalicum increases PPDE production by 41.4-95.1% during growth on Avicel, compared with the background strain Δku70;hphR+. Another arginine N-methyltransferase, PRMT3, appears to assist entry of CxrA into the nucleus, and interacts with CxrAΔ1-60 in vitro under Avicel induction. Deletion of prmt3 resulted in 67.0-149.7% enhanced PPDE production by P. oxalicum. These findings provide novel insights into the regulatory mechanism of fungal PPDE production.


Subject(s)
Penicillium , Protein-Arginine N-Methyltransferases , Protein-Arginine N-Methyltransferases/genetics , Penicillium/genetics , Cellulose , Arginine
19.
Bioorg Chem ; 139: 106723, 2023 10.
Article in English | MEDLINE | ID: mdl-37459824

ABSTRACT

Liver fibrosis is a worldwide challenge of health issue. Developing effective new drugs for treating liver fibrosis is of great importance. In recent years, chemically synthesized drugs have significant advantages in treating liver fibrosis. Small molecule pyrazole derivatives as activin receptor-like kinase 5 (ALK5) inhibitors have also shown anti-fibrotic and tumor growth inhibitory effects. To develop the candidate with anti-fibrotic effect, we synthesized a novel pyrazole derivative, J-1048. The inhibitory effect of J-1048 on ALK5 and p38α mitogen-activated protein (MAP) kinase activity was assessed by enzymatic assays. We established an in vivo liver fibrosis model by injecting thioacetamide (TAA) into mice and in vitro model of TGF-ß stimulated hepatic stellated cells to explore the inhibition mechanisms and therapeutic potential of J-1048 as an ALK5 inhibitor in liver fibrosis. Our data showed that J-1048 inhibited TAA-induced liver fibrosis in mice by explicitly blocking the TGF-ß/Smad signaling pathway. Additionally, J-1048 inhibited the production of inflammatory cytokine Interleukin-1ß (IL-1ß) by inhibiting the purinergic ligand-gated ion channel 7 receptor (P2X7r) -Nucleotide-binding domain-(NOD-)like receptor protein 3 (NLRP3) axis, thereby alleviating liver fibrosis. Our findings demonstrated that a novel small molecule ALK5 inhibitor, J-1048, exhibited strong potential as a clinical therapeutic candidate for liver fibrosis.


Subject(s)
Hepatitis , Protein Serine-Threonine Kinases , Mice , Animals , Receptor, Transforming Growth Factor-beta Type I , Protein Serine-Threonine Kinases/metabolism , Receptors, Transforming Growth Factor beta/metabolism , Mice, Inbred NOD , Fibrosis , Liver Cirrhosis/chemically induced , Liver Cirrhosis/drug therapy , Liver Cirrhosis/metabolism , Inflammation , Transforming Growth Factor beta , Pyrazoles/adverse effects
20.
J Ethnopharmacol ; 317: 116700, 2023 Dec 05.
Article in English | MEDLINE | ID: mdl-37315652

ABSTRACT

ETHNOPHARMACOLOGICAL RELEVANCE: Rheumatoid arthritis (RA) is a chronic inflammatory disease that is related to the aberrant proliferation of fibroblast-like synoviocytes (FLS). Wasp venom (WV, Vespa magnifica, Smith), an insect secretion, has been used to treat RA in Chinese Jingpo national minority's ancient prescription. However, the potential mechanisms haven't been clarified. AIM OF THE STUDY: The purposes of this paper were two-fold. First, to investigate which was the best anti-RA effective part of WV-I (molecular weight less than 3 kDa), WV-II (molecular weight 3-10 kDa) and WV-III (molecular weight more than 10 kDa) that were separated from WV. Second, to explore the underlying molecular mechanism of WV and WV-II that was best effective part in RA. MATERIALS AND METHODS: The wasps were electrically stimulated and the secretions were collected. WV-I, WV-II and WV-III were acquired by ultracentrifuge method according to molecular weight. Next, WV, WV-I, WV-II and WV-III were identified by HPLC. Functional annotation and pathway analysis of WV used to bioinformatics analysis. RNA-seq analyses were constructed to identify differentially expressed genes (DEGs). GO and KEGG pathway analyses were performed by Metascape database. STRING was used to analyze the PPI network from DEGs. Next, PPI network was visualized using Cytoscape that based on MCODE. The pivotal genes of PPI network and MCODE analysis were verified by qRT-PCR. Subsequently, MH7A cells were performed by MTT assay to evaluate the ability of inhibiting cell proliferation. Luciferase activity assay was conducted in HepG2/STAT1 or HepG2/STAT3 cells to assess STAT1/3 sensitivity of WV, WV-I, WV-II and WV-III. Additionally, interleukin (IL)-1ß and IL-6 expression levels were detected by ELISA kits. Intracellular thioredoxin reductase (TrxR) enzyme was evaluated by TrxR activity assay kit. ROS levels, lipid ROS levels and Mitochondrial membrane potential (MMP) were assessed by fluorescence probe. Cell apoptosis and MMP were measured by using flow cytometry. Furthermore, the key proteins of JAK/STAT signaling pathway, protein levels of TrxR and glutathione peroxidase 4 axis (GPX4) were examined by Western blotting assay. RESULTS: RNA-sequencing analysis of WV displayed be related to oxidation-reduction, inflammation and apoptosis. The data displayed that WV, WV-II and WV-III inhibited significantly cells proliferation in human MH7A cell line compared to WV-I treatment group, but WV-III had no significant suppressive effect on luciferase activity of STAT3 compared with IL-6-induced group. Combined with earlier reports that WV-III contained major allergens, we selected WV and WV-II further to study the mechanism of anti-RA. In addition, WV and WV-II decreased the level of IL-1ß and IL-6 in TNF-α-induced MH7A cells via inactivating of JAK/STAT signaling pathway. On the other hand, WV and WV-II down-regulated the TrxR activity to produce ROS and induce cell apoptosis. Furthermore, WV and WV-II could accumulate lipid ROS to induce GPX4-mediated ferroptosis. CONCLUSIONS: Taken together, the experimental results revealed that WV and WV-II were potential therapeutic agents for RA through modulating JAK/STAT signaling pathways, redox homeostasis and ferroptosis in MH7A cells. Of note, WV-II was an effective part and the predominant active monomer in WV-II will be further explored in the future.


Subject(s)
Arthritis, Rheumatoid , Ferroptosis , Synoviocytes , Wasps , Animals , Humans , Wasp Venoms/pharmacology , Wasp Venoms/metabolism , Wasp Venoms/therapeutic use , Interleukin-6/metabolism , Wasps/metabolism , Reactive Oxygen Species/metabolism , Arthritis, Rheumatoid/drug therapy , Arthritis, Rheumatoid/metabolism , Inflammation/drug therapy , Inflammation/metabolism , Cell Proliferation , Antioxidants/pharmacology , Oxidation-Reduction , Fibroblasts , Luciferases , Lipids/pharmacology , Cells, Cultured
SELECTION OF CITATIONS
SEARCH DETAIL