Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Aging (Albany NY) ; 16(7): 5967-5986, 2024 03 22.
Article in English | MEDLINE | ID: mdl-38526324

ABSTRACT

BACKGROUND: Energy metabolism has a complex intersection with pathogenesis and development of breast cancer (BC). This allows for the possibility of identifying energy-metabolism-related genes (EMRGs) as novel prognostic biomarkers for BC. 7-dehydrocholesterol reductase (DHCR7) is a key enzyme of cholesterol biosynthesis involved in many cancers, and in this paper, we investigate the effects of DHCR7 on the proliferation and mitochondrial function of BC. METHODS: EMRGs were identified from the Gene Expression Omnibus (GEO) and MSigDB databases using bioinformatics methods. Key EMRGs of BC were then identified and validated by functional enrichment analysis, interaction analysis, weighted gene co-expression network analysis (WGCNA), least absolute shrinkage and selection operator (LASSO) regression, Cox analysis, and immune infiltration. Western blot, qRT-PCR, immunohistochemistry (IHC), MTT assay, colony formation assay and flow cytometry assay were then used to analyze DHCR7 expression and its biological effects on BC cells. RESULTS: We identified 31 EMRGs in BC. These 31 EMRGs and related transcription factors (TFs), miRNAs, and drugs were enriched in glycerophospholipid metabolism, glycoprotein metabolic process, breast cancer, and cell cycle. Crucially, DHCR7 was a key EMRG in BC identified and validated by WGCNA, LASSO regression and receiver operating characteristic (ROC) curve analysis. High DHCR7 expression was significantly associated with tumor immune infiltration level, pathological M, and poor prognosis in BC. In addition, DHCR7 knockdown inhibited cell proliferation, induced apoptosis and affected mitochondrial function in BC cells. CONCLUSIONS: DHCR7 was found to be a key EMRG up-regulated in BC cells. This study is the first to our knowledge to report that DHCR7 acts as an oncogene in BC, which might become a novel therapeutic target for BC patients.


Subject(s)
Biomarkers, Tumor , Breast Neoplasms , Cell Proliferation , Gene Expression Regulation, Neoplastic , Mitochondria , Oxidoreductases Acting on CH-CH Group Donors , Humans , Breast Neoplasms/genetics , Breast Neoplasms/pathology , Breast Neoplasms/metabolism , Oxidoreductases Acting on CH-CH Group Donors/genetics , Oxidoreductases Acting on CH-CH Group Donors/metabolism , Female , Cell Proliferation/genetics , Biomarkers, Tumor/metabolism , Biomarkers, Tumor/genetics , Mitochondria/metabolism , Mitochondria/genetics , Cell Line, Tumor , Energy Metabolism/genetics , Prognosis , MCF-7 Cells
2.
Fish Shellfish Immunol ; 127: 306-317, 2022 Aug.
Article in English | MEDLINE | ID: mdl-35753558

ABSTRACT

Common carp (Cyprinus carpio L.) is one of the most widely cultivated fish in China. Spring viraemia of carp virus (SVCV) is a highly pathogenic virus and has often caused excessive losses in carp pond fisheries. Innate immune play important roles against virus infection. To better understand the immune response of common carp against SVCV infection, transcriptome analysis was performed using the Illumina Novaseq 6000 platform. It was showed that a total of 3953 differentially expressed unigenes were identified, and the RLR signaling pathway were significantly enriched after SVCV infection. Subsequently, the role of RLR signaling pathway in SVCV infection was studied. The results showed that common carp RIG-I (CcRIG-I) and TRIM25 (CcTRIM25) significantly decreased the replication of SVCV by inducing the phosphorylation of TBK1, IRF3 and p65 and the expression of ifn-1, viperin, isg15 and mx. Further studies illustrated that CcTRIM25 could positive regulate CcRIG-I mediated downstream signaling pathway. Finally, the mechanism of CcTRIM25 promoting CcRIG-I-mediated signaling was investigated. CcTRIM25 could interact with the caspase activation and recruitment domain (CARD) of CcRIG-I and promoted K63-linked polyubiquitination of CcRIG-I. Altogether, the study revealed a mechanism of CcTRIM25 regulating CcRIG-I mediated immune response in SVCV infection.


Subject(s)
Carps , Fish Diseases , Rhabdoviridae Infections , Rhabdoviridae , Animals , Carps/genetics , Rhabdoviridae/physiology , Signal Transduction , Viremia
SELECTION OF CITATIONS
SEARCH DETAIL
...