Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 279
Filter
1.
Crit Rev Food Sci Nutr ; : 1-17, 2024 Jun 19.
Article in English | MEDLINE | ID: mdl-38965668

ABSTRACT

Most studies on the beneficial effects of polyphenols on human health have focused on polyphenols extracted using aqueous organic solvents, ignoring the fact that a portion of polyphenols form complexes with polysaccharides. Polysaccharides and polyphenols are interrelated, and their interactions affect the physicochemical property, quality, and nutritional value of foods. In this review, the distribution of bound polyphenols in major food sources is summarized. The effect of food processing on the interaction between polyphenols and cell wall polysaccharides (CWP) is discussed in detail. We also focus on the digestion, absorption, and metabolic behavior of polysaccharide-polyphenol complexes. Different food processing techniques affect the interaction between CWP and polyphenols by altering their structure, solubility, and strength of interactions. The interaction influences the free concentration and extractability of polyphenols in food and modulates their bioaccessibility in the gastrointestinal tract, leading to their major release in the colon. Metabolism of polyphenols by gut microbes significantly enhances the bioavailability of polyphenols. The metabolic pathway and product formation rate of polyphenols and the fermentation characteristics of polysaccharides are affected by the interaction. Furthermore, the interaction exhibits synergistic or antagonistic effects on the stability, solubility, antioxidant and functional activities of polyphenols. In summary, understanding the interactions between polysaccharides and polyphenols and their changes in food processing is of great significance for a comprehensive understanding of the health benefits of polyphenols and the optimization of food processing technology.

2.
Front Immunol ; 15: 1392804, 2024.
Article in English | MEDLINE | ID: mdl-38868762

ABSTRACT

Rabies virus (RABV) causes a fatal neurological disease, consisting of unsegmented negative-strand RNA, which encodes five structural proteins (3'-N-P-M-G-L-5'). Apolipoprotein D (ApoD), a lipocalin, is upregulated in the nervous system after injury or pathological changes. Few studies have focused on the role of ApoD during virus infection so far. This study demonstrated that ApoD is upregulated in the mouse brain (in vivo) and C8-D1A cells (in vitro) after RABV infection. By upregulating ApoD expression in C8-D1A cells, we found that ApoD facilitated RABV replication. Additionally, Co-immunoprecipitation demonstrated that ApoD interacted with RABV glycoprotein (G protein). The interaction could promote RABV replication by upregulating the cholesterol level. These findings revealed a novel role of ApoD in promoting RABV replication and provided a potential therapeutic target for rabies.


Subject(s)
Apolipoproteins D , Cholesterol , Rabies virus , Rabies , Virus Replication , Animals , Female , Humans , Male , Mice , Apolipoproteins D/metabolism , Apolipoproteins D/genetics , Brain/virology , Brain/metabolism , Cell Line , Cholesterol/metabolism , HEK293 Cells , Rabies/metabolism , Rabies/virology , Rabies virus/physiology , Up-Regulation
3.
Adv Mater ; : e2403865, 2024 Jun 10.
Article in English | MEDLINE | ID: mdl-38857624

ABSTRACT

High-entropy alloy (HEA) nanostructures arranged into well-defined configurations hold great potential for accelerating the development of electronics, photonics, catalysis, and device integration. However, the random nucleation induced by the disparity in physicochemical properties of multiple elements makes it challenging to achieve single-particle synthesis at the patterned preset sites in the high-entropy scenario. Herein, the liquid metal nanoreactor strategy is proposed to realize the construction of HEA arrays. The coalescence of the liquid metal driven by the tendency to decrease surface energy provides a restricted environment for the nucleation and growth to form single HEA particles at the preset locations, which can be regarded as a self-confinement reaction. Liquid metal endowing a low diffusion energy barrier on the substrate and a high diffusivity of the alloy system can dynamically promote the aggregation process. As a result, the HEA array is prepared with elements up to eleven and possesses uniform periodicity, which exhibits excellent holography response in a broad spectrum. This work injects new vitality into the construction of HEA nanopatterns and provides an excellent platform for propelling their fundamental research and applications.

4.
Heliyon ; 10(11): e32124, 2024 Jun 15.
Article in English | MEDLINE | ID: mdl-38882338

ABSTRACT

As a medicine-food homology herb, Dendrobium spp. has versatile applications in modern medicine and food industry. Herein, an ultra-performance liquid chromatography tandem mass spectrometry (UPLC-MS/MS) based method was established for simultaneous quantification of six active components, including gigantol, erianin, naringenin, quercetin, rutin, and p-coumaric acid in Dendrobium spp., on the basis of optimized sample preparation, mass spectrometry conditions, and chromatography conditions. Sample extraction was carried out using methanol at a temperature of 60 °C, followed by separation on a T3 C18 column utilizing a gradient eluting program. The results demonstrated excellent linearity (r > 0.999) for the six active components within a specified concentration range. The average recovery rates ranged from 84.7 % to 106.9 %, and the precision (RSD) was within 7.4 %. The detection and quantification limits of this method ranged from 0.34 to 4.17 ng mL-1 and 1.12-13.91 ng mL-1, respectively. The established method demonstrates high accuracy and reliability and is applicable in practical sample detection. Different Dendrobium spp. exhibit specific variations in compound composition, with D. fimbriatum Hook. having a higher content of benzyl compounds and D. crystallinum. Rchb. f. having a higher content of flavonoids. This study provides experimental evidence for the quality and safety regulation of Dendrobium spp.

5.
Int J Mol Sci ; 25(11)2024 May 22.
Article in English | MEDLINE | ID: mdl-38891803

ABSTRACT

Rabies virus (RABV) is a neurotropic virus that causes fatal neurological disease, raising serious public health issues and attracting extensive attention in society. To elucidate the molecular mechanism of RABV-induced neuronal damage, we used hematoxylin-eosin staining, transmission electron microscopy, transcriptomics analysis, and immune response factor testing to investigate RABV-infected neurons. We successfully isolated the neurons from murine brains. The specificity of the isolated neurons was identified by a monoclonal antibody, and the viability of the neurons was 83.53-95.0%. We confirmed that RABV infection induced serious damage to the neurons according to histochemistry and transmission electron microscope (TEM) scanning. In addition, the transcriptomics analysis suggested that multiple genes related to the pyroptosis pathway were significantly upregulated, including gasdermin D (Gsdmd), Nlrp3, caspase-1, and IL-1ß, as well as the chemokine genes Ccl2, Ccl3, Ccl4, Ccl5, Ccl7, Ccl12, and Cxcl10. We next verified this finding in the brains of mice infected with the rRC-HL, GX074, and challenge virus standard strain-24 (CVS-24) strains of RABV. Importantly, we found that the expression level of the Gsdmd protein was significantly upregulated in the neurons infected with different RABV strains and ranged from 691.1 to 5764.96 pg/mL, while the basal level of mock-infected neurons was less than 100 pg/mL. Taken together, our findings suggest that Gsdmd-induced pyroptosis is involved in the neuron damage caused by RABV infection.


Subject(s)
Neurons , Phosphate-Binding Proteins , Pyroptosis , Rabies virus , Rabies , Animals , Neurons/virology , Neurons/metabolism , Neurons/pathology , Rabies virus/pathogenicity , Rabies virus/physiology , Rabies/virology , Rabies/pathology , Rabies/metabolism , Mice , Phosphate-Binding Proteins/metabolism , Phosphate-Binding Proteins/genetics , Intracellular Signaling Peptides and Proteins/metabolism , Intracellular Signaling Peptides and Proteins/genetics , Brain/virology , Brain/pathology , Brain/metabolism , Gasdermins
6.
J Agric Food Chem ; 2024 Jun 05.
Article in English | MEDLINE | ID: mdl-38838169

ABSTRACT

Inflammatory bowel disease (IBD) is a recurrent inflammatory condition affecting the gastrointestinal tract, and its clinical treatment remains suboptimal. Probiotics have shown effectiveness in alleviating dextran sulfate sodium salt (DSS)-induced colitis, exhibiting strain-specific anti-inflammatory properties. In this study, we compared the therapeutic effects of five strains of Bifidobacterium bifidum isolated from healthy adult feces on DSS-induced colitis in mice. Additionally, we investigated the underlying mechanisms by examining gut microbiota composition and microbial metabolome. Our findings highlighted the superior efficacy of B. bifidum M1-3 compared to other strains. It significantly improved colitis symptoms, mitigated gut barrier disruption, and reduced colonic inflammation in DSS-treated mice. Moreover, gut microbiota composition analysis revealed that B. bifidum M1-3 treatment increased the abundance and diversity of gut microbiota. Specifically, it significantly increased the abundance of Muribaculaceae, Lactobacillus, Bacteroides, and Enterorhabdus, while decreasing the abundance of Escherichia-Shigella. Furthermore, our nontargeted metabolomics analysis illustrated that B. bifidum M1-3 treatment had a regulatory effect on various metabolic pathways, including tyrosine metabolism, lysine degradation, and tryptophan metabolism. Importantly, we confirmed that the therapeutic efficiency of B. bifidum M1-3 was dependent on the gut microbiota. These results are conducive to the development of probiotic products for alleviating colitis.

7.
Compr Rev Food Sci Food Saf ; 23(4): e13398, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38925595

ABSTRACT

Food science encounters increasing complexity and challenges, necessitating more efficient, accurate, and sensitive analytical techniques. Mass spectrometry imaging (MSI) emerges as a revolutionary tool, offering more molecular-level insights. This review delves into MSI's applications and challenges in food science. It introduces MSI principles and instruments such as matrix-assisted laser desorption/ionization, desorption electrospray ionization, secondary ion mass spectrometry, and laser ablation inductively coupled plasma mass spectrometry, highlighting their application in chemical composition analysis, variety identification, authenticity assessment, endogenous substance, exogenous contaminant and residue analysis, quality control, and process monitoring in food processing and food storage. Despite its potential, MSI faces hurdles such as the complexity and cost of instrumentation, complexity in sample preparation, limited analytical capabilities, and lack of standardization of MSI for food samples. While MSI has a wide range of applications in food analysis and can provide more comprehensive and accurate analytical results, challenges persist, demanding further research and solutions. The future development directions include miniaturization of imaging devices, high-resolution and high-speed MSI, multiomics and multimodal data fusion, as well as the application of data analysis and artificial intelligence. These findings and conclusions provide valuable references and insights for the field of food science and offer theoretical and methodological support for further research and practice in food science.


Subject(s)
Food Analysis , Food Technology , Mass Spectrometry , Food Technology/methods , Mass Spectrometry/methods , Food Analysis/methods
8.
Chem Soc Rev ; 53(12): 6021-6041, 2024 Jun 17.
Article in English | MEDLINE | ID: mdl-38738520

ABSTRACT

High-entropy alloys (HEAs) involving more than four elements, as emerging alloys, have brought about a paradigm shift in material design. The unprecedented compositional diversities and structural complexities of HEAs endow multidimensional exploration space and great potential for practical benefits, as well as a formidable challenge for synthesis. To further optimize performance and promote advanced applications, it is essential to synthesize HEAs with desired characteristics to satisfy the requirements in the application scenarios. The properties of HEAs are highly related to their chemical compositions, microstructure, and morphology. In this review, a comprehensive overview of the controllable synthesis of HEAs is provided, ranging from composition design to morphology control, structure construction, and surface/interface engineering. The fundamental parameters and advanced characterization related to HEAs are introduced. We also propose several critical directions for future development. This review can provide insight and an in-depth understanding of HEAs, accelerating the synthesis of the desired HEAs.

9.
Carbohydr Polym ; 338: 122205, 2024 Aug 15.
Article in English | MEDLINE | ID: mdl-38763727

ABSTRACT

Developing multifunctional films with antibacterial, antioxidant, and sustained-release properties is a robust strategy for preventing contamination of perishable fruits by foodborne microorganisms. This study engineered a sustained-release biodegradable antibacterial film loaded with EGCG (Pickering emulsion (PE)/α-Cyclodextrin (α-CD)/Konjac glucomannan (KGM)) through multi-strategy cross-linking for fruit preservation. EGCG is stabilized using PE and incorporated into the α-CD/KGM inclusion compound; the unique structure of α-CD enhances EGCG encapsulation, while KGM provides the film toughness and surface adhesion. The composite film's physicochemical properties, antioxidant, bacteriostatic and biodegradability were studied. Results showed that Pickering emulsions with 3 % oil phase exhibited excellent stability. Moreover, α-CD introduction increased the loading and sustained release of EGCG from the film, and its concentration significantly affected the light transmission, thermal stability, mechanical strength, mechanical characteristics and antioxidant capacity of the composite membrane. Antioxidant and antimicrobial activities of the composite film increased significantly with increasing α-CD concentration. Application of the film to tomatoes and strawberries effectively inhibited Escherichia coli and Staphylococcus aureus growth, prolonging the shelf-life of the fruits. Notably, the composite film exhibits superior biodegradability in soil. This EGCG-loaded PE/α-CD/KGM composite film is anticipated to be a multifunctional antimicrobial preservation material with sustained-release properties and biodegradable for perishable food applications.


Subject(s)
Anti-Bacterial Agents , Antioxidants , Catechin , Emulsions , Escherichia coli , Fruit , Mannans , alpha-Cyclodextrins , alpha-Cyclodextrins/chemistry , Catechin/analogs & derivatives , Catechin/chemistry , Catechin/pharmacology , Mannans/chemistry , Mannans/pharmacology , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Fruit/chemistry , Emulsions/chemistry , Antioxidants/chemistry , Antioxidants/pharmacology , Escherichia coli/drug effects , Food Preservation/methods , Staphylococcus aureus/drug effects , Food Packaging/methods , Microbial Sensitivity Tests , Cross-Linking Reagents/chemistry , Drug Liberation
10.
Int J Biol Macromol ; 269(Pt 1): 132063, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38705329

ABSTRACT

Probiotic therapy has emerged as a promising approach for the treatment of gastrointestinal diseases, offering advantages in terms of safety and convenience. However, oral probiotics encounter significant challenges, including exposure to a hostile gastric environment with low pH, bile salts, elevated levels of reactive oxygen species (ROS), and damage to the protective mucus layer. These factors reduce probiotic survival rates and limit their physiological activity. To address these challenges, we developed a layer-by-layer coated probiotics with curcumin-loaded liposome and polymer. Through DSS-induced colitis mice experiments, we demonstrated that the coated probiotics exhibited an improved survival rate in the gastrointestinal tract and enhanced adhesion to the intestinal mucosa. Furthermore, multi-layered coated probiotics exhibited remarkable efficacy in alleviating colitis by efficiently repairing the gut barrier, modulating gut microbial homeostasis, and reducing bacterial motility at sites of colonic inflammation. Our innovative approach holds promise for effectively treating gastrointestinal diseases.


Subject(s)
Chitosan , Colitis , Dextran Sulfate , Liposomes , Probiotics , Animals , Probiotics/administration & dosage , Probiotics/pharmacology , Colitis/chemically induced , Colitis/therapy , Colitis/drug therapy , Liposomes/chemistry , Mice , Chitosan/chemistry , Chitosan/pharmacology , Curcumin/pharmacology , Curcumin/chemistry , Disease Models, Animal , Intestinal Mucosa/drug effects , Intestinal Mucosa/metabolism , Gastrointestinal Microbiome/drug effects
11.
Oncol Rep ; 51(6)2024 Jun.
Article in English | MEDLINE | ID: mdl-38695244

ABSTRACT

Following the publication of the above article, a concerned reader drew to the Editor's attention that certain of the Transwell cell migration and invasion assay data featured in Figs. 5C and 6C were strikingly similar to data appearing in different form in other articles written by different authors at different research institutes that had already been published elsewhere prior to the submission of this paper to Oncology Reports, or were submitted for consideration for publication at around the same time. In view of the fact that certain of these data had already apparently been published prior to the submission of this article for publication, the Editor of Oncology Reports has decided that this paper should be retracted from the Journal. The authors were asked for an explanation to account for these concerns, but the Editorial Office did not receive a reply. The Editor apologizes to the readership for any inconvenience caused. [Oncology Reports 37: 2743­2750, 2017; DOI: 10.3892/or.2017.5555].

12.
Article in English | MEDLINE | ID: mdl-38703096

ABSTRACT

CONTEXT: Childhood obesity continues to be a critical public health concern with far-reaching implications for the well-being. OBJECTIVE: This study aimed to investigate the association between metabolites in plasma and feces and indicators including body mass index (BMI), BMI for age Z score (BMIZ), and body fat distribution among children aged 6-9 years in China. METHODS: This cross-sectional study enrolled 424 healthy children, including 186 girls and 238 boys. Dual-energy X-ray absorptiometry (DXA) was used to determine the body fat content and regional fat distribution. Plasma and fecal metabolites were analyzed using targeted metabolomic technologies. RESULTS: A total of 200 plasma metabolites and 212 fecal metabolites were accurately quantified via ultra-performance liquid chromatography coupled with tandem mass spectrometry (UPLC-MS/MS). By using Orthogonal Projections to Latent Structures Discriminant Analysis (OPLS-DA) and random forest model, we discovered that 9 plasma metabolites and 11 fecal metabolites were associated with different weight statuses. After adjusting for potential covariates and false discovery rate (FDR) correction, multiple linear regression analyses revealed that plasma metabolites (fumaric acid, glycine, l-glutamine, methylmalonic acid, and succinic acid) and fecal metabolites (protocatechuic acid) were negatively associated (ß: -1.373--0.016, pFDR: <0.001-0.031; ß: -1.008--0.071, pFDR: 0.005-0.033), while plasma metabolites (isovaleric acid, isovalerylcarnitine, l-glutamic acid, and pyroglutamic acid) and fecal metabolites (3-aminoisobutanoic acid, butyric acid, N-acetylneuraminic acid, octanoylcarnitine, oleoylcarnitine, palmitoylcarnitine, stearoylcarnitine, taurochenodesoxycholic acid, and taurodeoxycholic acid) exhibited positive associations with BMI, BMIZ, and body fat distribution (ß: 0.023-2.396, pFDR: <0.001; ß: 0.014-1.736, pFDR: <0.001-0.049). CONCLUSION: Plasma and fecal metabolites such as glutamine may serve as a potential therapeutic target for the development of obesity.

13.
Nat Commun ; 15(1): 4658, 2024 May 31.
Article in English | MEDLINE | ID: mdl-38821957

ABSTRACT

The emergence of alternative stable states in forest systems has significant implications for the functioning and structure of the terrestrial biosphere, yet empirical evidence remains scarce. Here, we combine global forest biodiversity observations and simulations to test for alternative stable states in the presence of evergreen and deciduous forest types. We reveal a bimodal distribution of forest leaf types across temperate regions of the Northern Hemisphere that cannot be explained by the environment alone, suggesting signatures of alternative forest states. Moreover, we empirically demonstrate the existence of positive feedbacks in tree growth, recruitment and mortality, with trees having 4-43% higher growth rates, 14-17% higher survival rates and 4-7 times higher recruitment rates when they are surrounded by trees of their own leaf type. Simulations show that the observed positive feedbacks are necessary and sufficient to generate alternative forest states, which also lead to dependency on history (hysteresis) during ecosystem transition from evergreen to deciduous forests and vice versa. We identify hotspots of bistable forest types in evergreen-deciduous ecotones, which are likely driven by soil-related positive feedbacks. These findings are integral to predicting the distribution of forest biomes, and aid to our understanding of biodiversity, carbon turnover, and terrestrial climate feedbacks.


Subject(s)
Biodiversity , Forests , Plant Leaves , Trees , Plant Leaves/growth & development , Trees/growth & development , Ecosystem , Soil/chemistry , Climate
14.
Int J Biol Macromol ; 271(Pt 2): 132376, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38750865

ABSTRACT

Diabetes is a complex metabolic disease and islet transplantation is a promising approach for the treatment of diabetes. Unfortunately, the transplanted islets at the subcutaneous site are also affected by various adverse factors such as poor vascularization and hypoxia. In this study, we utilize biocompatible copolymers l-lactide and D,l-lactide to manufacture a biomaterial scaffold with a mesh-like structure via 3D printing technology, providing a material foundation for encapsulating pancreatic islet cells. The scaffold maintains the sustained release of vascular endothelial growth factor (VEGF) and a slow release of oxygen from calcium peroxide (CPO), thereby regulating the microenvironment for islet survival. This helps to improve insufficient subcutaneous vascularization and reduce islet death due to hypoxia post-transplantation. By pre-implanting VEGF-CPO scaffolds subcutaneously into diabetic rats, a sufficiently vascularized site is formed, thereby ensuring early survival of transplanted islets. In a word, the VEGF-CPO scaffold shows good biocompatibility both in vitro and in vivo, avoids the adverse effects on the implanted islets, and displays promising clinical transformation prospects.


Subject(s)
Biocompatible Materials , Diabetes Mellitus, Experimental , Islets of Langerhans Transplantation , Islets of Langerhans , Printing, Three-Dimensional , Tissue Scaffolds , Vascular Endothelial Growth Factor A , Animals , Tissue Scaffolds/chemistry , Rats , Islets of Langerhans Transplantation/methods , Vascular Endothelial Growth Factor A/metabolism , Diabetes Mellitus, Experimental/therapy , Biocompatible Materials/chemistry , Biocompatible Materials/pharmacology , Islets of Langerhans/drug effects , Islets of Langerhans/blood supply , Islets of Langerhans/metabolism , Male , Neovascularization, Physiologic/drug effects , Rats, Sprague-Dawley , Peroxides
16.
Angew Chem Int Ed Engl ; 63(25): e202402453, 2024 Jun 17.
Article in English | MEDLINE | ID: mdl-38622832

ABSTRACT

Fabrication of large-area thin films through irreversible reactions remains a formidable task. This study reports a breakthrough strategy for in situ synthesis of large-area, free-standing, robust and multi-stimulus responsive thin films through a catalyst-free and irreversible Katritzky reaction at a liquid-liquid interface. The as resulted films are featured with adjustable thickness of 1-3 µm and an area up to 50 cm2. The thin films exhibit fast photo-mechanical motions (a response time of ca 0.1 s), vapor-mechanical motions, as well as photo-chromic and solvato-chromic behaviors. It was revealed that the reason behind the observable motions is proton transfer from the imine groups to the carbonyl structures within the film induced by photo- and/or dimethyl sulfoxide-stimulus. In addition, the films can harvest anionic radicals and the radicals as captured can be efficiently degraded under UV light illumination. This study provides a new strategy for fabricating smart thin films via interfacially confined irreversible Katritzky reaction.

17.
Article in English | MEDLINE | ID: mdl-38581929

ABSTRACT

Nandrolone (NT) is a type of androgen anabolic steroid that is often illegally used in cattle farming, leading to unpredictable harm to human health via the food chain. In this study, a rapid detection method for NT in the samples of cattle farming was established using a portable mass spectrometer. The instrument parameters were optimized, including a thermal desorption temperature of 220 °C, a pump speed of 30 %, an APCI ionization voltage of 3900 v, and an injection volume of 6 µL. The samples of bovine urine, feed, sewage, and tissue were selected, and extracted using a solution of methanol:acetonitrile (1:1, v/v), followed by spiking a NT standard solution (1000 ng·mL-1) and ionization through the APCI ion source for detection. The results showed that NT could not be detected in beef and feed due to the complexity of the matrix, while clear signals of NT ions were observed in bovine urine and sewage samples, with LODs of 1000 and 100 ng·mL-1, respectively. Furthermore, quantitative analysis was attempted, and a good linear relationship (R2 = 0.9952) was observed for NT in sewage within the range of 100 to 1000 ng·mL-1. At spiked levels of 100, 500, 1000 and 2000 ng mL-1, the recovery rates ranged from 74.3 % to 92.8 %, with a relative standard deviation (n = 6) of less than 15 %. In conclusion, this detection method offers the advantages of simplicity, rapidity, strong timeliness, and specificity, making it suitable for on-site detection. It can be used for qualitative screening of nandrolone in bovine urine and quantitative analysis of nandrolone in sewage.


Subject(s)
Limit of Detection , Nandrolone , Cattle , Animals , Nandrolone/analysis , Nandrolone/urine , Linear Models , Reproducibility of Results , Mass Spectrometry/methods , Sewage/chemistry , Sewage/analysis , Animal Feed/analysis , Anabolic Agents/urine , Anabolic Agents/analysis
18.
Am J Hum Genet ; 111(5): 954-965, 2024 May 02.
Article in English | MEDLINE | ID: mdl-38614075

ABSTRACT

Variability in quantitative traits has clinical, ecological, and evolutionary significance. Most genetic variants identified for complex quantitative traits have only a detectable effect on the mean of trait. We have developed the mean-variance test (MVtest) to simultaneously model the mean and log-variance of a quantitative trait as functions of genotypes and covariates by using estimating equations. The advantages of MVtest include the facts that it can detect effect modification, that multiple testing can follow conventional thresholds, that it is robust to non-normal outcomes, and that association statistics can be meta-analyzed. In simulations, we show control of type I error of MVtest over several alternatives. We identified 51 and 37 previously unreported associations for effects on blood-pressure variance and mean, respectively, in the UK Biobank. Transcriptome-wide association studies revealed 633 significant unique gene associations with blood-pressure mean variance. MVtest is broadly applicable to studies of complex quantitative traits and provides an important opportunity to detect novel loci.


Subject(s)
Blood Pressure , Genome-Wide Association Study , Quantitative Trait Loci , Humans , Blood Pressure/genetics , Polymorphism, Single Nucleotide , Models, Genetic , Genotype , Genetic Variation , Computer Simulation , Phenotype
19.
Nat Commun ; 15(1): 3154, 2024 Apr 11.
Article in English | MEDLINE | ID: mdl-38605043

ABSTRACT

Forest carbon sequestration capacity in China remains uncertain due to underrepresented tree demographic dynamics and overlooked of harvest impacts. In this study, we employ a process-based biogeochemical model to make projections by using national forest inventories, covering approximately 415,000 permanent plots, revealing an expansion in biomass carbon stock by 13.6 ± 1.5 Pg C from 2020 to 2100, with additional sink through augmentation of wood product pool (0.6-2.0 Pg C) and spatiotemporal optimization of forest management (2.3 ± 0.03 Pg C). We find that statistical model might cause large bias in long-term projection due to underrepresentation or neglect of wood harvest and forest demographic changes. Remarkably, disregarding the repercussions of harvesting on forest age can result in a premature shift in the timing of the carbon sink peak by 1-3 decades. Our findings emphasize the pressing necessity for the swift implementation of optimal forest management strategies for carbon sequestration enhancement.


Subject(s)
Carbon Sequestration , Forests , Trees , China , Biomass , Carbon/analysis
20.
J Adv Res ; 2024 Mar 11.
Article in English | MEDLINE | ID: mdl-38471648

ABSTRACT

BACKGROUND: Non-alcoholic fatty liver disease (NAFLD) is a common chronic liver disease with an increasing incidence worldwide. Single drug therapy may have toxic side effects and disrupt gut microbiota balance. Polyphenols are widely used in disease intervention due to their distinctive nutritional properties and medicinal value, which a potential gut microbiota modulator. However, there is a lack of comprehensive review to explore the efficacy and mechanism of combined therapy with drugs and polyphenols for NAFLD. AIM OF REVIEW: Based on this, this review firstly discusses the link between NAFLD and gut microbiota, and outlines the effects of polyphenols and drugs on gut microbiota. Secondly, it examined recent advances in the treatment and intervention of NAFLD with drugs and polyphenols and the therapeutic effect of the combination of the two. Finally, we highlight the underlying mechanisms of polyphenol combined drug therapy in NAFLD. This is mainly in terms of signaling pathways (NF-κB, AMPK, Nrf2, JAK/STAT, PPAR, SREBP-1c, PI3K/Akt and TLR) and gut microbiota. Furthermore, some emerging mechanisms such as microRNA potential biomarker therapies may provide therapeutic avenues for NAFLD. KEY SCIENTIFIC CONCEPTS OF REVIEW: Drawing inspiration from combination drug strategies, the use of active substances in combination with drugs for NAFLD intervention holds transformative and prospective potential, both improve NAFLD and restore gut microbiota balance while reducing the required drug dosage. This review systematically discusses the bidirectional interactions between gut microbiota and NAFLD, and summarizes the potential mechanisms of polyphenol synergistic drugs in the treatment of NAFLD by modulating signaling pathways and gut microbiota. Future researches should develop multi-omics technology to identify patients who benefit from polyphenols combination drugs and devising individualized treatment plans to enhance its therapeutic effect.

SELECTION OF CITATIONS
SEARCH DETAIL
...