Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 22
Filter
Add more filters










Publication year range
1.
Mol Hum Reprod ; 29(6)2023 05 31.
Article in English | MEDLINE | ID: mdl-37068378

ABSTRACT

Strategies to maximize individual fertility chances are constant requirements of ART. In vitro folliculogenesis may represent a valid option to create a large source of immature ovarian follicles in ART. Efforts are being made to set up mammalian follicle culture protocols with suitable FSH stimuli. In this study, a new type of recombinant FSH (KN015) with a prolonged half-life is proposed as an alternative to canonical FSH. KN015 supports the in vitro development of mouse follicles from primary to preovulatory stage with higher efficiency than canonical FSH and enhanced post-fertilization development rates of the ovulated oocytes. The use of KN015 also allows us to compare the dynamic transcriptome changes in oocytes and granulosa cells at different stages, in vivo and in vitro. In particular, KN015 facilitates mRNA accumulation in growing mouse oocytes and prevents spontaneous luteinization of granulosa cells in vitro. Novel analyses of transcriptome changes in this study reveal that the in vivo oocytes were more efficient than in vitro oocytes in terms of maternal mRNA clearing during meiotic maturation. KN015 promotes the degradation of maternal mRNA during in vitro oocyte maturation, improves cytoplasmic maturation and, therefore, enhances embryonic developmental potential. These findings establish new transcriptome data for oocyte and granulosa cells at the key stages of follicle development, and should help to widen the use of KN015 as a valid and commercially available hormonal support enabling optimized in vitro development of follicles and oocytes.


Subject(s)
RNA, Messenger, Stored , Transcriptome , Female , Mice , Animals , RNA, Messenger, Stored/metabolism , Oogenesis/genetics , Oocytes/metabolism , Granulosa Cells , Follicle Stimulating Hormone/genetics , Follicle Stimulating Hormone/pharmacology , Follicle Stimulating Hormone/metabolism , Meiosis , Mammals
2.
Cell Biol Int ; 47(5): 981-989, 2023 May.
Article in English | MEDLINE | ID: mdl-36691872

ABSTRACT

Leukemia inhibitory factor (LIF) is an important growth factor that supports the culture and maintenance of spermatogonial stem cells (SSCs) by suppressing spontaneous differentiation. Different LIF sequences may lead to differences in function. The protein sequences of buffalo LIF and mouse LIF differed by 65.5% according to MEGA software analysis. The PB-LIF-GFP-Puro vector was constructed, and the CHO-K1 cell line was established. The final LIF protein concentration in the CHO-K1 cell culture medium was approximately 4.268 ng/mL. Here, we report that buffalo LIF effectively maintains the self-renewal of buffalo spermatogonia during culture. Buffalo spermatogonia were cultured in conditioned medium containing no LIF (0 ng/mL), mouse LIF (1 ng/mL), mouse LIF (10 ng/mL), or buffalo LIF (1 ng/mL). Furthermore, the effects of mouse LIF and buffalo LIF culture on the maintenance of buffalo spermatogonia were determined by analyzing cell colony formation, quantitative real-time polymerase chain reaction, cell immunofluorescence, and cell counting. The buffalo LIF (1 ng/mL) group showed similar maintenance of the proliferation of buffalo spermatogonia to that in the mouse LIF (10 ng/mL) group. These results demonstrated that the proliferation of buffalo spermatogonia can be maintained in vitro by adding a low dose of buffalo LIF. This study provides a foundation for the further optimization of in vitro buffalo SSC culture systems.


Subject(s)
Spermatogonia , Stem Cells , Animals , Male , Mice , Leukemia Inhibitory Factor/metabolism , Leukemia Inhibitory Factor/pharmacology , Culture Media , Cell Differentiation , Cells, Cultured
3.
Reprod Domest Anim ; 56(4): 629-641, 2021 Apr.
Article in English | MEDLINE | ID: mdl-33492695

ABSTRACT

The microenvironment in the seminiferous tubules of buffalo changes with age, which affects the self-renewal and growth of spermatogonial stem cells (SSCs) and the process of spermatogenesis, but the mechanism remains to be elucidated. RNA-seq was performed to compare the transcript profiles of pre-pubertal buffalo (PUB) and adult buffalo (ADU) seminiferous tubules. In total, 17,299 genes from PUB and ADU seminiferous tubules identified through RNA-seq, among which 12,271 were expressed in PUB and ADU seminiferous tubules, 4,027 were expressed in only ADU seminiferous tubules, and 956 were expressed in only PUB seminiferous tubules. Of the 17,299 genes, we identified 13,714 genes that had significant differences in expression levels between PUB and ADU through GO enrichment analysis. Among these genes, 5,342 were significantly upregulated and possibly related to the formation or identity of the surface antigen on SSCs during self-renewal; 7,832 genes were significantly downregulated, indicating that genes in PUB seminiferous tubules do not participate in the biological processes of sperm differentiation or formation in this phase compared with those in ADU seminiferous tubules. Subsequently, through the combination with KEGG analysis, we detected enrichment in a number of genes related to the development of spermatogonial stem cells, providing a reference for study of the development mechanism of buffalo spermatogonial stem cells in the future. In conclusion, our data provide detailed information on the mRNA transcriptomes in PUB and ADU seminiferous tubules, revealing the crucial factors involved in maintaining the microenvironment and providing a reference for further in vitro cultivation of SSCs.


Subject(s)
Adult Germline Stem Cells/physiology , Buffaloes/physiology , Gene Expression Profiling/veterinary , Sexual Maturation/physiology , Animals , Gene Expression Regulation, Developmental , Male , RNA, Messenger , Seminiferous Tubules/cytology , Seminiferous Tubules/physiology
4.
J Vet Sci ; 21(1): e13, 2020 Jan.
Article in English | MEDLINE | ID: mdl-31940692

ABSTRACT

Currently, the systems for culturing buffalo spermatogonial stem cells (SSCs) in vitro are varied, and their effects are still inconclusive. In this study, we compared the effects of culture systems with undefined (foetal bovine serum) and defined (KnockOut Serum Replacement) materials on the in vitro culture of buffalo SSC-like cells. Significantly more DDX4- and UCHL1-positive cells (cultured for 2 days at passage 2) were observed in the defined materials culture system than in the undefined materials system (p < 0.01), and these cells were maintained for a longer period than those in the culture system with undefined materials (10 days vs. 6 days). Furthermore, NANOS2 (p < 0.05), DDX4 (p < 0.01) and UCHL1 (p < 0.05) were expressed at significantly higher levels in the culture system with defined materials than in that with undefined materials. Induction with retinoic acid was used to verify that the cultured cells maintained SSC characteristics, revealing an SCP3⁺ subset in the cells cultured in the defined materials system. The expression levels of Stra8 (p < 0.05) and Rec8 (p < 0.01) were significantly increased, and the expression levels of ZBTB16 (p < 0.01) and DDX4 (p < 0.05) were significantly decreased. These findings provided a clearer research platform for exploring the mechanism of buffalo SSCs in vitro.


Subject(s)
Adult Germline Stem Cells/physiology , Buffaloes , Cell Culture Techniques/veterinary , Cells, Cultured/physiology , Animals , Cell Culture Techniques/methods , Male , Spermatogonia/physiology
5.
Reprod Fertil Dev ; 31(2): 386-394, 2019 Jan.
Article in English | MEDLINE | ID: mdl-30309436

ABSTRACT

The effects of acetyl-l-carnitine (ALC) supplementation during IVM on subsequently vitrified buffalo oocytes were evaluated, followed by determination of the mitochondrial DNA copy number, measurement of mitochondrial membrane potential (MMP) and identification of the lipid profile of oocyte membranes as markers of oocyte quality after vitrification. Supplementation with ALC during IVM significantly improved the rates of oocyte cleavage and morula and blastocyst formation, and increased MMP after vitrification compared with unsupplemented vitrified oocytes (P<0.05). Using a bidirectional orthogonal projection to latent structures discriminant analysis based on positive ion matrix-assisted laser desorption ionisation time-of-flight mass spectrometry data, five phospholipid ions (m/z 728.7 (phosphatidylcholine (PC) 32:3), 746.9 (PC 32:5), 760.6 (PC 34:1), 768.8 (PC P-36:3) and 782.6 (PC 36:4); P<0.05) were identified as significantly more abundant in fresh oocytes than in unsupplemented vitrified oocytes. Meanwhile, three phospholipid ions (m/z 734.6 (PC 32:0), 760.6 (PC 34:1), and 782.6 (PC 36:4); P<0.05) were more abundant in ALC-supplemented vitrified oocytes than in unsupplemented vitrified oocytes. Therefore, supplementation with ALC during IVM may improve buffalo oocyte quality after vitrification by enhancing mitochondrial function and altering the phospholipid composition of vitrified oocyte membranes.


Subject(s)
Acetylcarnitine/pharmacology , Embryonic Development/drug effects , Membrane Lipids/metabolism , Mitochondria/drug effects , Oocytes/drug effects , Animals , Buffaloes , Cryopreservation/methods , Female , In Vitro Oocyte Maturation Techniques , Mitochondria/metabolism , Oocytes/metabolism , Vitrification
6.
Theriogenology ; 118: 80-89, 2018 Sep 15.
Article in English | MEDLINE | ID: mdl-29885644

ABSTRACT

Oocyte quality is one of the important factors in female fertility, in vitro maturation (IVM), and subsequent embryonic development. In the present study, we assessed whether acetyl-l-carnitine (ALC) supplementation during in vitro maturation of buffalo oocytes could improve oocyte quality and subsequent embryonic development. To determine the optimal level of ALC supplementation, we matured cumulus-oocyte complexes in maturation medium supplemented with 0, 2.5, and 5 mM ALC. The oocytes with a polar body were selected for parthenogenetic activation (PA) and in vitro fertilization (IVF). We found that oocytes matured in 2.5 mM ALC had significantly higher PA blastocyst rate (P < 0.05) and blastocyst cell number than those of unsupplemented oocytes (P < 0.05) and a significantly higher IVF blastocyst rate than that of oocytes matured in 5 mM ALC (P < 0.05). In all further experiments, we supplemented the maturation medium with 2.5 mM ALC. We then tested whether ALC supplementation could improve various markers of oocytes and cumulus cells. We compared cell proliferation; concentrations of reactive oxygen species (ROS), intracellular ATP, estradiol, and progesterone; mitochondrial distribution; mitochondrial DNA copy number (mtDNA); and expression levels of four genes encoding oocyte-derived factors (GDF9, BMP15) and steroid hormones (StAR, P450scc) between the supplemented and unsupplemented oocytes and cumulus cells. Cumulus cells matured with ALC supplementation were more prolific than those matured without ALC supplementation (P < 0.05). Oocytes treated with ALC had lower concentrations of intracellular ROS (P < 0.05) and a higher rate of diffuse mitochondrial distributions (P < 0.05) than those of untreated oocytes. Additionally, the mtDNA was higher in the ALC-treated oocytes (P < 0.05) and cumulus cells (P < 0.05) than that in the untreated cells. The ALC-treated maturation medium had a higher postmaturation concentration of estradiol than that of the untreated medium (P < 0.05). Finally, the gene expression levels of P450scc and GDF9 were greater in ALC-treated oocytes and cumulus cells than those in untreated cells (P < 0.05). Therefore, in buffalo, our results suggest that ALC affects mitochondrial function, regulates oocyte-derived paracrine factors, and increases the production of steroid hormones, leading to increased quality of matured oocytes and improved embryonic development in vitro.


Subject(s)
Acetylcarnitine/pharmacology , Buffaloes , Embryonic Development/drug effects , In Vitro Oocyte Maturation Techniques/veterinary , Oocytes/drug effects , Acetylcarnitine/administration & dosage , Animals , Blastocyst/physiology , Cell Proliferation/drug effects , Culture Media , Cumulus Cells/drug effects , Cumulus Cells/physiology , DNA, Mitochondrial/analysis , Embryonic Development/physiology , Estradiol/analysis , Female , Fertilization in Vitro/veterinary , In Vitro Oocyte Maturation Techniques/methods , Oocytes/chemistry , Oocytes/physiology , Reactive Oxygen Species/analysis
7.
Anim Reprod Sci ; 186: 44-51, 2017 Nov.
Article in English | MEDLINE | ID: mdl-28982519

ABSTRACT

Nanos2 belongs to the Nanos gene-coding family and is an important RNA-binding protein that has been shown to have essential roles in male germline stem cells development and self-renewal in mouse. However, little is known about Nanos2 in inchoate buffalo spermatogonia. Here, rapid-amplification of cDNA ends (RACE) was used to obtain the full-length buffalo Nanos2 sequence and bioinformatic analysis revealed a highly conserved Nanos2 sequence between buffalo and other mammalian species. Although Nanos2 was expressed in various tissues, the highest mRNA expression levels were found in testes tissue. Moreover, Nanos2 mRNA was abundant in fetal and pre-puberal testes but markedly decreased in the testes of adults. At the protein level, immunohistochemistry in pre-puberal testes revealed a pattern of NANOS2 expression similar to that for the undifferentiated type A spermatogonia marker PGP9.5. Furthermore, NANOS2 expression was low in adult testes and restricted to elongating spermatids. Altogether, our data suggest that Nanos2 is a potential preliminary molecular marker of inchoate buffalo spermatogonia, and may play an important role in buffalo spermatogonial stem cells (SSCs) development and self-renewal, as has been observed in other model animals.


Subject(s)
Buffaloes/genetics , Genetic Markers , RNA-Binding Proteins/genetics , Spermatogonia/physiology , Animals , Buffaloes/growth & development , Cloning, Molecular , Computational Biology , Gene Expression Regulation, Developmental , Male , Sexual Maturation , Testis/growth & development
8.
Reprod Biol Endocrinol ; 11: 69, 2013 Jul 18.
Article in English | MEDLINE | ID: mdl-23866265

ABSTRACT

BACKGROUND: Series of epigenetic events happen during preimplantation development. Therefore assistant reproduction techniques (ART) have the potential to disrupt epigenetic regulation during embryo development. The purpose of this study was to investigate whether defects in methylation patterns in blastocyst due to superovulation originate from abnormal expression of Dnmts. METHODS: Low- (6 IU) and high- (10 IU) dosage of PMSG was used to stimulate the female mice. The metaphase II(MII) oocytes, zygotes and blastocyst stage embryos were collected. Global methylation and methylation at H3K9 in zygote, and methylation at repeated sequence Line 1 and IAP in blastocysts were assayed. In addition, expression of Dnmts was examined in oocytes and zygotes. RESULTS: Global DNA methylation and methylation at H3K9 in zygotes derived from females after low- or high-dosage hormone treatment were unaltered compared to that in controls. Moreover, DNA methylation at IAP in blastocysts was also unaffected, regardless of hormone dosage. In contrast, methylation at Line1 decreased when high-dose hormone was administered. Unexpectedly, expression of Dnmt3a, Dnmt3b, Dnmt3L as well as maintenance Dnmt1o in oocytes and zygotes was not disrupted. CONCLUSIONS: The results suggest that defects in embryonic methylation patterns do not originate from the disruption of Dnmt expression.


Subject(s)
Blastocyst/metabolism , DNA Methylation , Long Interspersed Nucleotide Elements/genetics , Superovulation , Animals , Blastocyst/cytology , Blastocyst/drug effects , Chorionic Gonadotropin/pharmacology , DNA (Cytosine-5-)-Methyltransferase 1 , DNA (Cytosine-5-)-Methyltransferases/genetics , DNA Methyltransferase 3A , Female , Gene Expression Regulation, Developmental , Gonadotropins, Equine/pharmacology , Histones/metabolism , Horses , Humans , Male , Methylation , Mice , Mice, Inbred ICR , Ovary/cytology , Ovary/drug effects , Ovary/metabolism , Pregnancy , Reverse Transcriptase Polymerase Chain Reaction , DNA Methyltransferase 3B
9.
Biol Reprod ; 88(5): 117, 2013 May.
Article in English | MEDLINE | ID: mdl-23515675

ABSTRACT

Maternal diabetes has adverse effects not only on oocyte quality but also on embryo development. However, it is still unknown whether the DNA imprinting in oocytes is altered by diabetes. By using streptozotocin (STZ)-induced and nonobese diabetic (NOD) mouse models we investigated the effect of maternal diabetes on DNA methylation of imprinted genes in oocytes. Mice which were judged as being diabetic 4 days after STZ injection were used for experiments. In superovulated oocytes of diabetic mice, the methylation pattern of Peg3 differential methylation regions (DMR) was affected in a time-dependent manner, and evident demethylation was observed on Day 35 after STZ injection. The expression level of DNA methyltransferases (DNMTs) was also decreased in a time-dependent manner in diabetic oocytes. However, the methylation patterns of H19 and Snrpn DMRs were not significantly altered by maternal diabetes, although there were some changes in Snrpn. In NOD mice, the methylation pattern of Peg3 was similar to that of STZ-induced mice. Embryo development was adversely affected by maternal diabetes; however, no evident imprinting abnormality was observed in oocytes from female offspring derived from a diabetic mother. These results indicate that maternal diabetes has adverse effects on DNA methylation of maternally imprinted gene Peg3 in oocytes of a diabetic female in a time-dependent manner, but methylation in offspring's oocytes is normal.


Subject(s)
DNA Methylation , Diabetes Mellitus, Experimental/metabolism , Diabetes Mellitus, Type 1/metabolism , Gene Expression , Oocytes/metabolism , Animals , Diabetes Mellitus, Experimental/genetics , Diabetes Mellitus, Type 1/genetics , Embryonic Development/genetics , Female , Genomic Imprinting , Kruppel-Like Transcription Factors/genetics , Kruppel-Like Transcription Factors/metabolism , Mice , Mice, Inbred NOD , RNA, Long Noncoding/genetics , RNA, Long Noncoding/metabolism , snRNP Core Proteins
10.
PLoS One ; 7(7): e40528, 2012.
Article in English | MEDLINE | ID: mdl-22808183

ABSTRACT

Parathyroid hormone-like hormone (PTHLH) was first identified as a parathyroid hormone (PTH)-like factor responsible for humoral hypercalcemia in malignancies in the 1980s. Previous studies demonstrated that PTHLH is expressed in multiple tissues and is an important regulator of cellular and organ growth, development, migration, differentiation, and survival. However, there is a lack of data on the expression and function of PTHLH during preimplantation embryonic development. In this study, we investigated the expression characteristics and functions of PTHLH during mouse preimplantation embryonic development. The results show that Pthlh is expressed in mouse oocytes and preimplantation embryos at all developmental stages, with the highest expression at the MII stage of the oocytes and the lowest expression at the blastocyst stage of the preimplantation embryos. The siRNA-mediated depletion of Pthlh at the MII stage oocytes or the 1-cell stage embryos significantly decreased the blastocyst formation rate, while this effect could be corrected by culturing the Pthlh depleted embryos in the medium containing PTHLH protein. Moreover, expression of the pluripotency-related genes Nanog and Pou5f1 was significantly reduced in Pthlh-depleted embryos at the morula stage. Additionally, histone acetylation patterns were altered by Pthlh depletion. These results suggest that PTHLH plays important roles during mouse preimplantation embryonic development.


Subject(s)
Embryonic Development , Parathyroid Hormone-Related Protein/metabolism , Acetylation , Animals , Down-Regulation/genetics , Embryo, Mammalian/cytology , Embryo, Mammalian/metabolism , Embryonic Development/genetics , Gene Expression Regulation, Developmental , Histones/metabolism , Homeodomain Proteins/genetics , Homeodomain Proteins/metabolism , Mice , Microinjections , Nanog Homeobox Protein , Octamer Transcription Factor-3/genetics , Octamer Transcription Factor-3/metabolism , Oocytes/cytology , Oocytes/metabolism , Parathyroid Hormone-Related Protein/genetics , RNA, Small Interfering/metabolism , Receptor, Parathyroid Hormone, Type 1/genetics , Receptor, Parathyroid Hormone, Type 1/metabolism , Sperm Injections, Intracytoplasmic
11.
Hum Reprod ; 27(7): 2130-45, 2012 Jul.
Article in English | MEDLINE | ID: mdl-22556376

ABSTRACT

BACKGROUND: Insulin resistance (IR) and hyperinsulinemia compromise fertility in females and are well-recognized characteristics of anovulatory women with polycystic ovary syndrome. Patients with IR and hyperinsulinemia undergoing ovarian stimulation for IVF are at increased risks of impaired oocyte developmental competence, implantation failure and pregnancy loss. However, the precise underlying mechanism remains unknown. METHODS: We investigated how IR impairs oocyte quality and early embryonic development by an insulin-resistant mouse model. Oocyte quality, fertilization and embryonic development were analyzed. Furthermore, oxidant stress products and mitochondrial function were evaluated by quantitative real-time PCR and immunofluorescence. RESULTS: An imbalance between oxidants and antioxidants revealed by increased concentrations of reactive oxygen species, and a decreased concentration of glutathione (GSH) and a decreased GSH/GSSG ratio resulted in oxidative stress (OS) and impaired mitochondrial function in germinal vesicle (GV) and metaphase II (MII) oocytes of insulin-resistant mice. MII oocytes displayed a decrease in the ATP content and the mitochondrial DNA (mtDNA) copy number. In contrast, GV oocytes were characterized by a high ATP content concomitant with increased clustering of mitochondria and a high inner mitochondrial membrane potential. GV oocytes from insulin-resistant mice showed early stage apoptosis, and fewer MII oocytes could be retrieved from these mice and were of poor quality associated with decreased fertilization and an arrest of embryo development with increased fragmentation. Abnormal spindles and misaligned chromosomes of MII oocyte were significantly increased in IR and hyperinsulinemia mice compared with the control mice. CONCLUSIONS: IR contributes to OS and disrupts mitochondrial function in mouse oocytes. This may impair the accurate transmission of mtDNA from one generation to the next. Therefore, our results suggest that OS and mitochondrial dysfunction are responsible for poor oocyte quality of insulin-resistant mice, and may provide novel targets to improve low fertility in females with IR.


Subject(s)
Insulin Resistance , Oocytes/cytology , Animals , Antioxidants/chemistry , Chorionic Gonadotropin/therapeutic use , DNA, Mitochondrial/metabolism , Disease Models, Animal , Female , Fertilization in Vitro , Glutathione/metabolism , Humans , Hyperinsulinism/metabolism , Insulin/therapeutic use , Metaphase , Mice , Mice, Inbred ICR , Mitochondria/metabolism , Oxidants/chemistry , Oxidative Stress , Polycystic Ovary Syndrome/metabolism , Reactive Oxygen Species
12.
Mol Hum Reprod ; 18(7): 333-40, 2012 Jul.
Article in English | MEDLINE | ID: mdl-22447119

ABSTRACT

DNA methylation and demethylation are crucial for modulating gene expression and regulating cell differentiation. Functions and mechanisms of DNA methylation/demethylation in mammalian embryos are still far from being understood clearly. In this review we firstly describe new insights into DNA demethylation mechanisms, and secondly introduce the differences in active DNA methylation patterns in zygotes and early embryos in various mammalian species. Thirdly, we attempt to clarify the functions of DNA demethylation in early embryos. Most importantly we summarize the importance of active DNA demethylation and its possible relevance to human IVF clinics. Finally research perspectives regarding DNA demethylation are also discussed.


Subject(s)
Blastocyst/metabolism , DNA Methylation/physiology , Animals , DNA Methylation/genetics , Humans
13.
Fertil Steril ; 96(6): 1479-84, 2011 Dec.
Article in English | MEDLINE | ID: mdl-21982284

ABSTRACT

OBJECTIVE: To investigate whether postovulatory aging of oocytes in the mother affects DNA methylation acquisition of imprinted genes in oocytes from the offspring. DESIGN: Randomized research experimental study. SETTING: Academic basic research laboratory. ANIMAL(S): Mice. INTERVENTION(S): Fresh oocytes and aged oocytes from mothers were artificially inseminated, and oocytes were collected from the resultant offspring. MAIN OUTCOME MEASURE(S): Methylation status was evaluated at differentially methylated regions (DMRs) in oocytes of maternally imprinted genes Peg3, Snrpn, and Peg1 and paternally imprinted gene H19. RESULT(S): Our results showed that methylation patterns at DMRs of Peg3, Snrpn, Peg1, and H19 in oocytes from aged-oocyte offspring were mainly normal, with only a small number of oocytes showing aberrant methylation in the DMR of Peg3. CONCLUSION(S): Postovulatory oocyte aging causes a decline in reproductive outcomes but does not evidently lead to defects in DNA methylation imprinting acquisition in the oocytes from viable offspring.


Subject(s)
Cellular Senescence/genetics , DNA Methylation , Genomic Imprinting/physiology , Luteal Phase/physiology , Oocytes/physiology , Animals , DNA Methylation/physiology , Female , Gene Expression Profiling , Kruppel-Like Transcription Factors/genetics , Litter Size/genetics , Litter Size/physiology , Luteal Phase/genetics , Luteal Phase/metabolism , Male , Mice , Oocyte Retrieval , Oocytes/metabolism , Sequence Analysis, DNA
14.
Mol Hum Reprod ; 17(9): 562-7, 2011 Sep.
Article in English | MEDLINE | ID: mdl-21427161

ABSTRACT

Previous studies by others and ourselves have suggested that the methylation pattern of imprinted genes in oocytes is altered during postovulatory aging. The purpose of the current study was to evaluate the effects of postovulatory aging of mouse oocytes on methylation and expression of imprinted genes at the mid-gestation development stages. Proestrous females were artificially inseminated at 13 h (fresh-oocyte group) or 22 h (aged-oocyte group) post-hCG. Estrous females were mated with males as a control group. On dpc (day post coitus) 10.5 of development, embryos and placentas were collected and DNA and RNA were extracted, respectively. Methylation and total expression of Igf2r and H19 was investigated by quantitative analysis of methylation by PCR and quantitative real-time RT-PCR, respectively. Our results showed no significant changes of methylation in the differentially methylated region (DMR) and total expression of Igf2r in embryos and placentas, and no significant changes in methylation of H19 in embryos at dpc 10.5 of development compared with the control group regardless of artificial insemination of fresh or aged oocytes. In contrast, placentas of the aged-oocyte group exhibited significantly lower methylation levels in the H19 DMR. Furthermore, we observed that the increased expression of H19 in placentas of the aged-oocyte group was associated with significant hypomethylation of H19 DMR. These results suggest that postovulatory aging of mouse oocytes has adversed effects on methylation and expression of H19 in placentas at the mid-gestation development stage.


Subject(s)
Cellular Senescence/genetics , DNA Methylation , Gene Expression , Genomic Imprinting , Oocytes/physiology , Animals , Embryo, Mammalian/physiology , Female , Gestational Age , Male , Mice , Oocytes/cytology , Placenta/physiology , Pregnancy , RNA, Long Noncoding , RNA, Untranslated/genetics , RNA, Untranslated/metabolism
15.
Zygote ; 19(4): 307-13, 2011 Nov.
Article in English | MEDLINE | ID: mdl-20887644

ABSTRACT

Survivin is a novel member of the inhibitor of apoptosis gene family that bear baculoviral IAP repeats (BIRs), whose physiological roles in regulating meiotic cell cycle need to be determined. Confocal microscopy was employed to observe the localization of survivin in rat oocytes. At the germinal vesicle (GV) stage, survivin was mainly concentrated in the GV. At the prometaphase I (pro-MI) and metaphase I (MI) stage, survivin was mainly localized at the kinetochores, with a light staining detected on the chromosomes. After transition to anaphase I or telophase I stage, survivin migrated to the midbody, and signals on the kinetochores and chromosomes disappeared. At metaphase II (MII) stage, survivin became mainly localized at the kinetochores again. Microinjection of oocytes with anti-survivin antibodies at the beginning of the meiosis, thus blocking the normal function of survivin, resulted in abnormal spindle assembly, chromosome segregation and first polar body emission. These results suggest that survivin is involved in regulating the meiotic cell cycle in rat oocytes.


Subject(s)
Chromosome Segregation/physiology , Meiosis , Microtubule-Associated Proteins/metabolism , Oocytes/cytology , Animals , Kinetochores/metabolism , M Phase Cell Cycle Checkpoints , Microscopy, Confocal , Microtubule-Associated Proteins/analysis , Oocytes/metabolism , Oogenesis , Rats , Survivin
16.
Cell Cycle ; 9(6): 1112-21, 2010 Mar 15.
Article in English | MEDLINE | ID: mdl-20237433

ABSTRACT

BubR1 (Bub1-related kinase or MAD3/Bub1b) is an essential component of the spindle assembly checkpoint (SAC) and plays an important role in kinetochore localization of other spindle checkpoint proteins in mitosis. But its roles in mammalian oocyte meiosis are unclear. In the present study, we examined the expression, localization and function of BubR1 during mouse oocyte meiotic maturation. The expression level of BubR1 increased progressively from germinal vesicle to metaphase II stages. Immunofluorescent analysis showed that BubR1 localized to kinetochores from the germinal vesicle breakdown to the prometaphase I stages, co-localizing with polo-like kinase 1, while it disappeared from the kinetochores at the metaphase I stage. Spindle disruption by nocodazole treatment caused relocation of BubR1 to kinetochores at metaphase I, anaphase I and metaphase II stages; spindle microtubules were disrupted by low temperature treatment in the BubR1-depleted oocytes in meiosis I, suggesting that BubR1 monitors kinetochore-microtubule (K-MT) attachments. Over-expression of exogenous BubR1 arrested oocyte meiosis maturation at the M I stage or earlier; in contrast, dominant-negative BubR1 and BubR1 depletion accelerated meiotic progression. In the BubR1-depleted oocytes, higher percentage of chromosome misalignment was observed and more oocytes overrode the M I stage arrest induced by low concentration of nocodazole. Our data suggest that BubR1 is a spindle assembly checkpoint protein regulating meiotic progression of oocytes.


Subject(s)
Meiosis , Oocytes/cytology , Oocytes/enzymology , Protein Serine-Threonine Kinases/metabolism , Spindle Apparatus/enzymology , Animals , Cell Cycle Proteins/metabolism , Chromosome Pairing/drug effects , Genes, Dominant/genetics , Kinetochores/drug effects , Kinetochores/metabolism , Meiosis/drug effects , Metaphase/drug effects , Mice , Mice, Inbred ICR , Microtubules/drug effects , Microtubules/metabolism , Nocodazole/pharmacology , Oocytes/drug effects , Protein Serine-Threonine Kinases/deficiency , Protein Transport/drug effects , Proto-Oncogene Proteins/metabolism , Spindle Apparatus/drug effects , Subcellular Fractions/drug effects , Subcellular Fractions/enzymology , Polo-Like Kinase 1
17.
Mol Hum Reprod ; 16(4): 260-6, 2010 Apr.
Article in English | MEDLINE | ID: mdl-19828691

ABSTRACT

The cause of polycystic ovary syndrome (PCOS), a complex endocrine disorder, is unknown, but its familial aggregation implies underlying genetic influences. Hyperandrogenemia is regarded as a major endocrine character of the PCOS. In this study, we employed bisulfite sequencing and bisulfite restriction analysis to investigate the DNA methylation status of LHR, AR, FSHR and H19 in dehydroepiandrosterone (DHEA)-induced mouse PCOS model. The result showed that methylation of LHR was lost in ovary from induced PCOS mouse. However, AR, FSHR and H19 had similar methylation pattern in DHEA-treated group and control groups. These data provide evidence for close linkage between DNA demethylation of LHR and PCOS.


Subject(s)
DNA Methylation/genetics , Dehydroepiandrosterone , Polycystic Ovary Syndrome/chemically induced , Polycystic Ovary Syndrome/genetics , Receptors, LH/genetics , Animals , Disease Models, Animal , Female , Mice , Polymerase Chain Reaction , Receptors, Androgen/genetics , Receptors, FSH/genetics
18.
Cell Cycle ; 8(20): 3365-72, 2009 Oct 15.
Article in English | MEDLINE | ID: mdl-19806029

ABSTRACT

Survivin is a member of inhibitors of apoptosis proteins (IAPs), which have multiple regulatory functions in mitosis, but its roles in meiosis remain unknown. Here, we report its expression, localization and functions in mouse oocyte meiosis. Survivin displayed a maximal expression level in GV stage, and then gradually decreased from Pro-MI to MII stages. Immunofluorescent staining showed that survivin was restricted to the germinal vesicle, associated with centromeres from pro-metaphase I to metaphase I stages, distributed at the midzone and midbody of anaphase and telophase spindles, and located to centromeres at metaphase II stages. Depletion of survivin by antibody injection and morpholino injection resulted in severe chromosome misalignment, precocious polar body extrusion, and larger-than-normal polar bodies. Overexpression of survivin resulted in severe chromosome misalignment and prometaphase I or metaphase I arrest in a large proportion of oocytes. Our data suggest that survivin is required for chromosome alignment and that it may regulate spindle checkpoint activity during mouse oocyte meiosis.


Subject(s)
Chromosomes/physiology , Meiosis , Microtubule-Associated Proteins/metabolism , Oocytes/metabolism , Animals , Antibodies/immunology , Antibodies/metabolism , Inhibitor of Apoptosis Proteins , Metaphase , Mice , Microtubule-Associated Proteins/analysis , Morpholines/pharmacology , Repressor Proteins , Survivin
19.
Reprod Biol Endocrinol ; 7: 102, 2009 Sep 24.
Article in English | MEDLINE | ID: mdl-19775474

ABSTRACT

BACKGROUND: Endometrial cancer is one of the most common gynecologic malignancies and its incidence has recently increased. Experimental and epidemiological data support that testosterone plays an important role in the pathogenesis of endometrial cancer, but the underlying mechanism has not been fully understood. Recently, we identified and cloned a variant of estrogen receptor (ER) alpha, ER-alpha36. The aim of the present study was to investigate the role of ER-alpha36 in testosterone carcinogenesis. METHODS: The cellular localization of ER-alpha36 was determined by immunofluorescence. Hec1A endometrial cancer cells (Hec1A/V) and Hec1A cells with siRNA knockdown of ER-alpha36 (Hec1A/RNAi) were treated with testosterone, ERK and Akt phosphorylation was assessed by Western blot analysis. Furthermore, the kinase inhibitors U0126 and LY294002 and the aromatase inhibitor letrozole were used to elucidate the pathway underlying testosterone-induced activities. RESULTS: Immunofluorescence shows that ER-alpha36 was localized on the plasma membrane of the both ER-alpha- and androgen receptor-negative endometrial cancer Hec1A cells. Testosterone induced ERK and Akt phosphorylation, which could be abrogated by ER-alpha 36 shRNA knockdown or the kinase inhibitors, U0126 and LY294002, and the aromatase inhibitor letrozole. CONCLUSION: Testosterone induces ERK and Akt phosphorylation via the membrane-initiated signaling pathways mediated by ER-alpha36, suggesting a possible involvement of ER-alpha 36 in testosterone carcinogenesis.


Subject(s)
Carcinoma/metabolism , Endometrial Neoplasms/metabolism , Estrogen Receptor alpha/physiology , Extracellular Signal-Regulated MAP Kinases/metabolism , Proto-Oncogene Proteins c-akt/metabolism , Testosterone/pharmacology , Aromatase Inhibitors/pharmacology , Carcinoma/pathology , Cell Membrane/metabolism , Endometrial Neoplasms/pathology , Enzyme Activation/drug effects , Estrogen Receptor alpha/metabolism , Female , Humans , Letrozole , Nitriles/pharmacology , Phosphorylation/drug effects , Protein Isoforms/metabolism , Protein Isoforms/physiology , Signal Transduction/drug effects , Testosterone/metabolism , Triazoles/pharmacology , Tumor Cells, Cultured
20.
Biochem Biophys Res Commun ; 371(1): 16-21, 2008 Jun 20.
Article in English | MEDLINE | ID: mdl-18381202

ABSTRACT

Prolonged residence of postovulatory oocyte in the oviduct or prolonged culture in vitro can lead to oocyte aging, which significantly affects pre- and post-implantation embryo development. In this study, we employed bisulfite sequencing and COBRA methods to investigate the DNA methylation status of differentially methylated regions (DMRs) of Snrpn and Peg1/Mest, two maternally imprinted genes, in postovulatory oocytes aged in vivo and in vitro. The results showed that Snrpn DMR was clearly demethylated in oocytes aged in vivo at 29h post-hCG and in denuded oocytes aged in vitro for the same time period. However, Peg1/Mest did not show any demethylation in all aged groups at 29h post-hCG. These data indicate that oocytes undergo time-dependent demethylation of Snrpn DMR during the process of postovulatory aging.


Subject(s)
Autoantigens/genetics , Cellular Senescence/genetics , DNA Methylation , Genomic Imprinting , Oocytes/physiology , Ribonucleoproteins, Small Nuclear/genetics , Animals , DNA/chemistry , DNA/genetics , Female , Mice , Oocytes/metabolism , Proteins/genetics , Sequence Analysis, DNA , Sulfites/chemistry , snRNP Core Proteins
SELECTION OF CITATIONS
SEARCH DETAIL
...