Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Mol Neurobiol ; 2024 Jul 18.
Article in English | MEDLINE | ID: mdl-39023795

ABSTRACT

Caspase-12 is a caspase family member for which functions in regulating cell death and inflammation have previously been suggested. In this study, we used caspase-12 lacZ reporter mice to elucidate the expression pattern of caspase-12 in order to obtain an idea about its possible in vivo function. Strikingly, these reporter mice showed that caspase-12 is expressed explicitly in Purkinje neurons of the cerebellum. As this observation suggested a function for caspase-12 in Purkinje neurons, we analyzed the brain and behavior of caspase-12 deficient mice in detail. Extensive histological analyses showed that caspase-12 was not crucial for establishing cerebellum structure or for maintaining Purkinje cell numbers. We then performed behavioral tests to investigate whether caspase-12 deficiency affects memory, motor, and psychiatric functions in mice. Interestingly, while the absence of caspase-12 did not affect memory and motor function, caspase-12 deficient mice showed depression and hyperactivity tendencies, together resembling manic behavior. Next, suggesting a possible molecular mechanistic explanation, we showed that caspase-12 deficient cerebella harbored diminished signaling through the brain-derived neurotrophic factor/tyrosine kinase receptor B/cyclic-AMP response binding protein axis, as well as strongly enhanced expression of the neuronal activity marker c-Fos. Thus, our study establishes caspase-12 expression in mouse Purkinje neurons and opens novel avenues of research to investigate the role of caspase-12 in regulating psychiatric behavior.

2.
ACS Chem Neurosci ; 15(11): 2223-2232, 2024 06 05.
Article in English | MEDLINE | ID: mdl-38634698

ABSTRACT

Neuronal death resulting from ischemic stroke is the primary cause of adult mortality and disability, and effective neuroprotective agents for poststroke intervention are still lacking. Remote ischemic postconditioning (RIPostC) has demonstrated significant protective effects against ischemia in various organs; however, the specific mechanisms are not fully understood. This study investigated the potential neuroprotective mechanisms of RIPostC in the context of ischemic stroke. Using a rat model of middle cerebral artery occlusion, we found that RIPostC mitigated neurological damage, improved movement in the open-field test, and protected against neuronal apoptosis. In terms of energy metabolism, RIPostC enhanced ATP levels, suppressed lactate content, and increased the production of ketone bodies (KBs). In the ferroptosis assay, RIPostC protected against lipoperoxidation, reversed the reduction of glutathione peroxidase 4 (GPX4), and mitigated the excessive expression of long-chain acyl-CoA synthetase family member 4 (ACSL4). In oxygen-glucose deprivation/reoxygenation-treated HT22 cells, KBs maintained GPX4 levels, suppressed ACSL4 expression, and preserved the mitochondrial cristae number. However, the effect of KBs on the expression of GPX4, ACSL4, and the number of mitochondrial cristae was blocked by erastin. Moreover, both RIPostC and KBs reduced total iron and ferrous ion content by repressing iron transporters both in vitro and in vivo. In conclusion, KBs-induced mitigation of ferroptosis could represent a new therapeutic mechanism for RIPostC in treating stroke.


Subject(s)
Coenzyme A Ligases , Ferroptosis , Infarction, Middle Cerebral Artery , Ischemic Postconditioning , Ketone Bodies , Neuroprotection , Ferroptosis/physiology , Animals , Rats , Ischemic Postconditioning/methods , Ketone Bodies/metabolism , Male , Coenzyme A Ligases/metabolism , Neuroprotection/physiology , Rats, Sprague-Dawley , Phospholipid Hydroperoxide Glutathione Peroxidase/metabolism , Mice , Neuroprotective Agents/pharmacology , Ischemic Stroke/metabolism , Stroke/metabolism , Neurons/metabolism
3.
Front Cell Infect Microbiol ; 13: 1258550, 2023.
Article in English | MEDLINE | ID: mdl-38188632

ABSTRACT

Introduction: Herd immunity against norovirus (NoV) is poorly understood in terms of its serological properties and vaccine designs. The precise neutralizing serological features of genotype I (GI) NoV have not been studied. Methods: To expand insights on vaccine design and herd immunity of NoVs, seroprevalence and seroincidence of NoV genotypes GI.2, GI.3, and GI.9 were determined using blockade antibodies based on a 5-year longitudinal serosurveillance among 449 residents in Jidong community. Results: Correlation between human histo-blood group antigens (HBGAs) and GI NoV, and dynamic and persistency of antibodies were also analyzed. Seroprevalence of GI.2, GI.3, and GI.9 NoV were 15.1%-18.0%, 35.0%-38.8%, and 17.6%-22.0%; seroincidences were 10.0, 21.0, and 11.0 per 100.0 person-year from 2014 to 2018, respectively. Blockade antibodies positive to GI.2 and GI.3 NoV were significantly associated with HBGA phenotypes, including blood types A, B (excluding GI.3), and O+; Lewis phenotypes Leb+/Ley+ and Lea+b+/Lex+y+; and secretors. The overall decay rate of anti-GI.2 antibody was -5.9%/year (95% CI: -7.1% to -4.8%/year), which was significantly faster than that of GI.3 [-3.6%/year (95% CI: -4.6% to -2.6%/year)] and GI.9 strains [-4.0%/year (95% CI: -4.7% to -3.3%/year)]. The duration of anti-GI.2, GI.3, and GI.9 NoV antibodies estimated by generalized linear model (GLM) was approximately 2.3, 4.2, and 4.8 years, respectively. Discussion: In conclusion, enhanced community surveillance of GI NoV is needed, and even one-shot vaccine may provide coast-efficient health benefits against GI NoV infection.


Subject(s)
Norovirus , Vaccines , Humans , Prospective Studies , Seroepidemiologic Studies , Genotype , Antibodies , Norovirus/genetics
SELECTION OF CITATIONS
SEARCH DETAIL