Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 26
Filter
Add more filters










Publication year range
1.
Biol Direct ; 19(1): 49, 2024 Jun 24.
Article in English | MEDLINE | ID: mdl-38910243

ABSTRACT

BACKGROUND: Most patients with acute myeloid leukemia (AML) eventually develop drug resistance, leading to a poor prognosis. Dysregulated long gene non coding RNAs (lincRNAs) have been implicated in chemoresistance in AML. Unfortunately, the effects of lincRNAs which participate in regulating the Adriamycin (ADR) resistance in AML cells remain unclear. Thus, the purpose of this study is to determine LINC00987 function in ADR-resistant AML. METHODS: In this study, ADR-resistant cells were constructed. LINC00987, miRNAs, and HMGA2 mRNA expression were measured by qRT-PCR. P-GP, BCRP, and HMGA2 protein were measured by Western blot. The proliferation was analyzed by MTS and calculated IC50. Soft agar colony formation assay and TUNEL staining were used to analyze cell colony formation and apoptosis. Xenograft tumor experiment was used to analyze the xenograft tumor growth of ADR-resistant AML. RESULTS: We found that higher expression of LINC00987 was observed in AML patients and associated with poor overall survival in AML patients. LINC00987 expression was increased in ADR-resistant AML cells, including ADR/MOLM13 and ADR/HL-60 cells. LINC00987 downregulation reduces ADR resistance in ADR/MOLM13 and ADR/HL-60 cells in vitro and in vivo, while LINC00987 overexpression enhanced ADR resistance in MOLM13 and HL-60 cells. Additionally, LINC00987 functions as a competing endogenous RNA for miR-4458 to affect ADR resistance in ADR/MOLM13 and ADR/HL-60 cells. HMGA2 is a target of miR-4458. LINC00987 knockdown and miR-4458 overexpression reduced HMGA2 expression. HMGA2 overexpression enhanced ADR resistance, which reversed the function of LINC00987 silencing in suppressing ADR resistance of ADR/MOLM13 and ADR/HL-60 cells. CONCLUSIONS: Downregulation of LINC00987 weakens ADR resistance by releasing miR-4458 to deplete HMGA2 in ADR/MOLM13 and ADR/HL-60. Therefore, LINC00987 may act as the therapeutic target for treating chemoresistant AML.


Subject(s)
Doxorubicin , Drug Resistance, Neoplasm , HMGA2 Protein , Leukemia, Myeloid, Acute , MicroRNAs , RNA, Long Noncoding , Leukemia, Myeloid, Acute/genetics , Leukemia, Myeloid, Acute/metabolism , Leukemia, Myeloid, Acute/drug therapy , Humans , HMGA2 Protein/genetics , HMGA2 Protein/metabolism , MicroRNAs/genetics , MicroRNAs/metabolism , Drug Resistance, Neoplasm/genetics , Doxorubicin/pharmacology , RNA, Long Noncoding/genetics , RNA, Long Noncoding/metabolism , Mice , Animals , Cell Line, Tumor , HL-60 Cells , Gene Silencing , Apoptosis , Cell Proliferation , Female
2.
Angew Chem Int Ed Engl ; 63(22): e202403401, 2024 May 27.
Article in English | MEDLINE | ID: mdl-38527960

ABSTRACT

Upgrading CO2 to value-added chiral molecules via catalytic asymmetric C-C bond formation is a highly important yet challenging task. Although great progress on the formation of centrally chiral carboxylic acids has been achieved, catalytic construction of axially chiral carboxylic acids with CO2 has never been reported to date. Herein, we report the first catalytic asymmetric synthesis of axially chiral carboxylic acids with CO2, which is enabled by nickel-catalyzed dynamic kinetic asymmetric reductive carboxylation of racemic aza-biaryl triflates. A variety of important axially chiral carboxylic acids, which are valuable but difficult to obtain via catalysis, are generated in an enantioconvergent version. This new methodology features good functional group tolerance, easy to scale-up, facile transformation and avoids cumbersome steps, handling organometallic reagents and using stoichiometric chiral materials. Mechanistic investigations indicate a dynamic kinetic asymmetric transformation process induced by chiral nickel catalysis.

3.
J Am Chem Soc ; 146(5): 2919-2927, 2024 Feb 07.
Article in English | MEDLINE | ID: mdl-38277794

ABSTRACT

Dicarboxylic acids and derivatives are important building blocks in organic synthesis, biochemistry, and the polymer industry. Although catalytic dicarboxylation with CO2 represents a straightforward and sustainable route to dicarboxylic acids, it is still highly challenging and limited to generation of achiral or racemic dicarboxylic acids. To date, catalytic asymmetric dicarboxylation with CO2 to give chiral dicarboxylic acids has not been reported. Herein, we report the first asymmetric dicarboxylation of 1,3-dienes with CO2 via Cu catalysis. This strategy provides an efficient and environmentally benign route to chiral dicarboxylic acids with high regio-, chemo-, and enantioselectivities. The copper self-relay catalysis, that is, Cu-catalyzed boracarboxylation of 1,3-dienes to give carboxylated allyl boronic ester intermediates and subsequent carboxylation of C-B bonds to give dicarboxylates, is key to the success of this dicarboxylation. Moreover, this protocol exhibits broad substrate scope, good functional group tolerance, easy product derivatizations, and facile synthesis of chiral liquid crystalline polyester and drug-like scaffolds.

4.
Nat Commun ; 14(1): 3529, 2023 Jun 14.
Article in English | MEDLINE | ID: mdl-37316537

ABSTRACT

Photocatalytic carboxylation of alkenes with CO2 is a promising and sustainable strategy to synthesize high value-added carboxylic acids. However, it is challenging and rarely investigated for unactivated alkenes due to their low reactivities. Herein, we report a visible-light photoredox-catalyzed arylcarboxylation of unactivated alkenes with CO2, delivering a variety of tetrahydronaphthalen-1-ylacetic acids, indan-1-ylacetic acids, indolin-3-ylacetic acids, chroman-4-ylacetic acids and thiochroman-4-ylacetic acids in moderate-to-good yields. This reaction features high chemo- and regio-selectivities, mild reaction conditions (1 atm, room temperature), broad substrate scope, good functional group compatibility, easy scalability and facile derivatization of products. Mechanistic studies indicate that in situ generation of carbon dioxide radical anion and following radical addition to unactivated alkenes might be involved in the process.

5.
Angew Chem Int Ed Engl ; 62(23): e202301892, 2023 Jun 05.
Article in English | MEDLINE | ID: mdl-37010979

ABSTRACT

Carboxylation of easily available alkenes with CO2 is highly important to afford value-added carboxylic acids. Although dicarboxylation of activated alkenes, especially 1,3-dienes, has been widely investigated, the challenging dicarboxylation of unactivated 1,n-dienes (n>3) with CO2 remains unexplored. Herein, we report the first dicarboxylation of unactivated skipped dienes with CO2 via electrochemistry, affording valuable dicarboxylic acids. Control experiments and DFT calculations support the single electron transfer (SET) reduction of CO2 to its radical anion, which is followed by sluggish radical addition to unactivated alkenes, SET reduction of unstabilized alkyl radicals to carbanions and nucleophilic attack on CO2 to give desired products. This reaction features mild reaction conditions, broad substrate scope, facile derivations of products and promising application in polymer chemistry.

6.
Nature ; 615(7950): 67-72, 2023 03.
Article in English | MEDLINE | ID: mdl-36603811

ABSTRACT

Pyridines and related N-heteroarenes are commonly found in pharmaceuticals, agrochemicals and other biologically active compounds1,2. Site-selective C-H functionalization would provide a direct way of making these medicinally active products3-5. For example, nicotinic acid derivatives could be made by C-H carboxylation, but this remains an elusive transformation6-8. Here we describe the development of an electrochemical strategy for the direct carboxylation of pyridines using CO2. The choice of the electrolysis setup gives rise to divergent site selectivity: a divided electrochemical cell leads to C5 carboxylation, whereas an undivided cell promotes C4 carboxylation. The undivided-cell reaction is proposed to operate through a paired-electrolysis mechanism9,10, in which both cathodic and anodic events play critical roles in altering the site selectivity. Specifically, anodically generated iodine preferentially reacts with a key radical anion intermediate in the C4-carboxylation pathway through hydrogen-atom transfer, thus diverting the reaction selectivity by means of the Curtin-Hammett principle11. The scope of the transformation was expanded to a wide range of N-heteroarenes, including bipyridines and terpyridines, pyrimidines, pyrazines and quinolines.


Subject(s)
Carbon Dioxide , Electrochemistry , Pyrazines , Pyridines , Pyrimidines , Quinolines , Hydrogen/chemistry , Pyrazines/chemistry , Pyridines/chemistry , Pyrimidines/chemistry , Electrochemistry/methods , Carbon Dioxide/chemistry , Quinolines/chemistry , Pharmaceutical Preparations/chemical synthesis , Pharmaceutical Preparations/chemistry
7.
Angew Chem Int Ed Engl ; 62(11): e202217918, 2023 Mar 06.
Article in English | MEDLINE | ID: mdl-36680762

ABSTRACT

Visible-light photocatalytic carboxylation with CO2 is highly important. However, it still remains challenging for reluctant substrates with low reduction potentials. Herein, we report a novel photocatalytic carboxylation of C-N bonds in cyclic amines with CO2 via consecutive photo-induced electron transfer (ConPET). It is also the first photocatalytic reductive ring-opening reaction of azetidines, pyrrolidines and piperidines. This strategy is practical to transform a variety of easily available cyclic amines to valuable ß-, γ-, δ- and ϵ-amino acids in moderate-to-excellent yields. Moreover, the method also features mild and transition-metal-free conditions, high selectivity, good functional-group tolerance, facile scalability and product derivations. Mechanistic studies indicate that the ConPET might be the key to generating highly reactive photocatalysts, which enable the reductive activation of cyclic amines to generate carbon radicals and carbanions as the key intermediates.

8.
J Am Chem Soc ; 144(5): 2062-2068, 2022 02 09.
Article in English | MEDLINE | ID: mdl-35084189

ABSTRACT

Diacids are important monomers in the polymer industry to construct valuable materials. Dicarboxylation of unsaturated bonds, such as alkenes and alkynes, with CO2 has been demonstrated as a promising synthetic method. However, dicarboxylation of C─C single bonds with CO2 has rarely been investigated. Herein we report a novel electrochemical ring-opening dicarboxylation of C─C single bonds in strained rings with CO2. Structurally diverse glutaric acid and adipic acid derivatives were synthesized from substituted cyclopropanes and cyclobutanes in moderate to high yields. In contrast to oxidative ring openings, this is also the first realization of an electroreductive ring-opening reaction of strained rings, including commercialized ones. Control experiments suggested that radical anions and carbanions might be the key intermediates in this reaction. Moreover, this process features high step and atom economy, mild reaction conditions (1 atm, room temperature), good chemoselectivity and functional group tolerance, low electrolyte concentration, and easy derivatization of the products. Furthermore, we conducted polymerization of the corresponding diesters with diols to obtain a potential UV-shielding material with a self-healing function and a fluorine-containing polyester, whose performance tests showed promising applications.

9.
Nat Commun ; 12(1): 7086, 2021 Dec 06.
Article in English | MEDLINE | ID: mdl-34873172

ABSTRACT

Electrochemical catalytic reductive cross couplings are powerful and sustainable methods to construct C-C bonds by using electron as the clean reductant. However, activated substrates are used in most cases. Herein, we report a general and practical electro-reductive Ni-catalytic system, realizing the electrocatalytic carboxylation of unactivated aryl chlorides and alkyl bromides with CO2. A variety of unactivated aryl bromides, iodides and sulfonates can also undergo such a reaction smoothly. Notably, we also realize the catalytic electrochemical carboxylation of aryl (pseudo)halides with CO2 avoiding the use of sacrificial electrodes. Moreover, this sustainable and economic strategy with electron as the clean reductant features mild conditions, inexpensive catalyst, safe and cheap electrodes, good functional group tolerance and broad substrate scope. Mechanistic investigations indicate that the reaction might proceed via oxidative addition of aryl halides to Ni(0) complex, the reduction of aryl-Ni(II) adduct to the Ni(I) species and following carboxylation with CO2.

10.
Nat Commun ; 12(1): 3306, 2021 Jun 03.
Article in English | MEDLINE | ID: mdl-34083530

ABSTRACT

Photoredox-mediated umpolung strategy provides an alternative pattern for functionalization of carbonyl compounds. However, general approaches towards carboxylation of carbonyl compounds with CO2 remain scarce. Herein, we report a strategy for visible-light photoredox-catalyzed umpolung carboxylation of diverse carbonyl compounds with CO2 by using Lewis acidic chlorosilanes as activating/protecting groups. This strategy is general and practical to generate valuable α-hydroxycarboxylic acids. It works well for challenging alkyl aryl ketones and aryl aldehydes, as well as for α-ketoamides and α-ketoesters, the latter two of which have never been successfully applied in umpolung carboxylations with CO2 (to the best of our knowledge). This reaction features high selectivity, broad substrate scope, good functional group tolerance, mild reaction conditions and facile derivations of products to bioactive compounds, including oxypheonium, mepenzolate bromide, benactyzine, and tiotropium. Moreover, the formation of carbon radicals and carbanions as well as the key role of chlorosilanes are supported by control experiments.

11.
Acc Chem Res ; 54(10): 2518-2531, 2021 05 18.
Article in English | MEDLINE | ID: mdl-33956436

ABSTRACT

Carbon dioxide (CO2) is not only a greenhouse gas and a common waste product but also an inexpensive, readily available, and renewable carbon resource. It is an important one-carbon (C1) building block in organic synthesis for the construction of valuable compounds. However, its utilization is challenging owing to its thermodynamic stability and kinetic inertness. Although significant progress has been achieved, many limitations remain in this field with regard to the substrate scope, reaction system, and activation strategies.Since 2015, our group has focused on CO2 utilization in organic synthesis. We are also interested in the vast possibilities of radical chemistry, although the high reactivity of radicals presents challenges in controlling selectivity. We hope to develop highly useful CO2 transformations involving radicals by achieving a balance of reactivity and selectivity under mild reaction conditions. Over the past 6 years, we along with other experts have disclosed radical-type carboxylative cyclizations and carboxylations using CO2.We initiated our research by realizing the Cu-catalyzed radical-type oxytrifluoromethylation of allylamines and heteroaryl methylamines to generate valuable 2-oxazolidones with various radical precursors. Apart from Cu catalysis, visible-light photoredox catalysis is also a powerful method to achieve efficient carboxylative cyclization. In these cases, single-electron-oxidation-promoted C-O bond formation between benzylic radicals and carbamates is the key step.Since carboxylic acids exist widely in natural products and bioactive drugs and serve as important bulk chemicals in industry, we realized further visible-light-promoted carboxylations with CO2 to construct such chemicals. We have achieved the selective umpolung carboxylations of imines, enamides, tetraalkylammonium salts, and oxime esters by successive single-electron-transfer (SSET) reduction. Using this strategy, we have also realized the dearomative arylcarboxylation of indoles with CO2. In addition to the incorporation of 1 equiv of CO2 per substrate, we have recently developed a visible-light photoredox-catalyzed dicarboxylation of alkenes, allenes, and (hetero)arenes via SSET reduction, which allows the incorporation of two CO2 molecules into organic compounds to generate valuable diacids as polymer precursors.In addition to the two-electron activation of CO2, we sought to develop new strategies to realize efficient and selective transformations via single-electron activation of CO2. Inspired by the hypothetical electron-transfer mechanism of iron-sulfur proteins, we have realized the visible-light-driven thiocarboxylation of alkenes with CO2 using catalytic iron salts as promoters. The in-situ-generated Fe/S complexes are likely able to reduce CO2 to its radical anion, which could react with alkenes to give a stabilized carbon radical. Moreover, we have also disclosed charge-transfer complex (CTC) formation between thiolate and acrylate/styrene to realize the visible-light-driven hydrocarboxylation of alkenes with CO2 via generation of a CO2 or alkene radical anion. On the basis of this novel CTC, the visible-light-driven organocatalytic hydrocarboxylation of alkenes with CO2 has also been realized using a Hantzsch ester as an effective reductant.

12.
J Am Chem Soc ; 143(7): 2812-2821, 2021 02 24.
Article in English | MEDLINE | ID: mdl-33561344

ABSTRACT

Carboxylic acids, including amino acids (AAs), have been widely used as reagents for decarboxylative couplings. In contrast to previous decarboxylative couplings that release CO2 as a waste byproduct, herein we report a novel strategy with simultaneous utilization of both the alkyl and carboxyl components from carboxylic acids. Under this unique strategy, carboxylic acids act as bifunctional reagents in the redox-neutral carbocarboxylation of alkenes. Diverse, inexpensive, and readily available α-AAs take part in such difunctionalizations of activated alkenes via visible-light photoredox catalysis, affording a variety of valuable but otherwise difficult to access γ-aminobutyric acid derivatives (GABAs). Additionally, a series of dipeptides and tripeptides also participate in this photocatalytic carbocarboxylation. Although several challenges exist in this system due to the low concentration and quantitative amount of CO2, as well as unproductive side reactions such as hydrodecarboxylation of the carboxylic acids and hydroalkylation of the alkenes, excellent regioselectivity and moderate to high chemoselectivity are achieved. This process features low catalyst loading, mild reaction conditions, high step and atom economy, and good functional group tolerance, and it is readily scalable. The resulting products are subject to efficient derivations, and the overall process is amenable to applications in the late-stage modification of complex compounds. Mechanistic studies indicate that a carbanion is generated catalytically and it acts as the key intermediate to react with CO2, which is also generated catalytically in situ and thus remains in low concentration. The overall transformation represents an efficient and sustainable system for organic synthesis, pharmaceutics, and biochemistry.


Subject(s)
Alkenes/chemistry , Amino Acids/chemistry , Carbon Dioxide/chemistry , Peptides/chemistry , Carboxylic Acids/chemistry , Light , gamma-Aminobutyric Acid/chemistry
13.
ChemSusChem ; 13(23): 6312-6317, 2020 Dec 07.
Article in English | MEDLINE | ID: mdl-33017513

ABSTRACT

The carboxylation of cyclic oxime esters with carbon dioxide via visible-light photoredox catalysis is demonstrated for the first time. A variety of cyclic oxime esters undergo ring-opening C-C bond cleavage and carboxylation to give cyanoalkyl-containing carboxylic acids in moderate to good yields. Moreover, this methodology features mild reaction conditions (room temperature, 1 atm), wide substrate scope, good functional group tolerance as well as facile derivations of products. Mechanistic studies indicate that the benzylic radicals and anions might be the key intermediates.

14.
Nat Commun ; 11(1): 3263, 2020 Jun 29.
Article in English | MEDLINE | ID: mdl-32601286

ABSTRACT

Catalytic reductive coupling of two electrophiles and one unsaturated bond represents an economic and efficient way to construct complex skeletons, which is dominated by transition-metal catalysis via two electron transfer. Herein, we report a strategy of visible-light photoredox-catalyzed successive single electron transfer, realizing dearomative arylcarboxylation of indoles with CO2. This strategy avoids common side reactions in transition-metal catalysis, including ipso-carboxylation of aryl halides and ß-hydride elimination. This visible-light photoredox catalysis shows high chemoselectivity, low loading of photocatalyst, mild reaction conditions (room temperature, 1 atm) and good functional group tolerance, providing great potential for the synthesis of valuable but difficultly accessible indoline-3-carboxylic acids. Mechanistic studies indicate that the benzylic radicals and anions might be generated as the key intermediates, thus providing a direction for reductive couplings with other electrophiles, including D2O and aldehyde.

15.
New Phytol ; 226(5): 1413-1428, 2020 06.
Article in English | MEDLINE | ID: mdl-32119117

ABSTRACT

Effective legume-rhizobia symbiosis depends on efficient nutrient exchange. Rhizobia need to synthesize iron-containing proteins for symbiotic nitrogen fixation (SNF) in nodules, which depends on host plant-mediated iron uptake into the symbiosome. We functionally investigated a pair of vacuolar iron transporter like (VTL) genes, GmVTL1a/b, in soybean (Glycine max) and evaluated their contributions to SNF, including investigations of gene expression patterns, subcellular localization, and mutant phenotypes. Though both GmVTL1a/b genes were specifically expressed in the fixation zone of the nodule, GmVTL1a was the lone member to be localized at the tonoplast of tobacco protoplasts, and shown to facilitate ferrous iron transport in yeast. GmVTL1a targets the symbiosome in infected cells, as verified by in situ immunostaining. Two vtl1 knockout mutants had lower iron concentrations in nodule cell sap and peribacteroid units than in wild-type plants, suggesting that GmVTL1 knockout inhibited iron import into symbiosomes. Furthermore, GmVTL1 knockout minimally affected soybean growth under nonsymbiotic conditions, but dramatically impaired nodule development and SNF activity under nitrogen-limited and rhizobia-inoculation conditions, which eventually led to growth retardation. Taken together, these results demonstrate that GmVTL1a is indispensable for SNF in nodules as a transporter of ferrous iron from the infected root cell cytosol to the symbiosome.


Subject(s)
Glycine max , Nitrogen Fixation , Gene Expression Regulation, Plant , Plant Proteins/genetics , Plant Proteins/metabolism , Root Nodules, Plant/metabolism , Glycine max/genetics , Glycine max/metabolism , Symbiosis
16.
Nat Commun ; 10(1): 3592, 2019 08 09.
Article in English | MEDLINE | ID: mdl-31399588

ABSTRACT

Catalytic difunctionalization of alkenes has been an ideal strategy to generate structurally complex molecules with diverse substitution patterns. Although both phosphonyl and carboxyl groups are valuable functional groups, the simultaneous incorporation of them via catalytic difunctionalization of alkenes, ideally from abundant, inexpensive and easy-to-handle raw materials, has not been realized. Herein, we report the phosphonocarboxylation of alkenes with CO2 via visible-light photoredox catalysis. This strategy is sustainable, general and practical, providing facile access to important ß-phosphono carboxylic acids, including structurally complex unnatural α-amino acids. Diverse alkenes, including enamides, styrenes, enolsilanes and acrylates, undergo such reactions efficiently under mild reaction conditions. Moreover, this method represents a rare example of redox-neutral difunctionalization of alkenes with H-P(O) compounds, including diaryl- and dialkyl- phosphine oxides and phosphites. Importantly, these transition-metal-free reactions also feature low catalyst loading, high regio- and chemo-selectivities, good functional group tolerance, easy scalability and potential for product derivatization.

17.
Plant Physiol ; 181(1): 262-275, 2019 09.
Article in English | MEDLINE | ID: mdl-31289214

ABSTRACT

Magnesium (Mg) is a relatively mobile element that is remobilized in plants under Mg-limited conditions through transport from old to young tissues. However, the physiological and molecular mechanisms underlying Mg remobilization in plants remain poorly understood. In this study, we investigated Mg remobilization in rice (Oryza sativa) as facilitated through a Mg dechelatase gene involved in chlorophyll degradation, STAY-GREEN (OsSGR). We first observed that mid-aged leaves of rice are more susceptible to Mg deficiency. Expression of OsSGR was specifically upregulated by Mg deficiency, and the response was more pronounced in mid-aged leaves. Knockout of OsSGR exhibited the stay-green phenotype, which hindered the mobility of Mg from mid-aged leaves to young developing leaves. This decline in Mg mobility was associated with inhibited growth of developing leaves in mutants under Mg-limited conditions. Furthermore, Mg deficiency enhanced reactive oxygen species (ROS) generation in mid-aged leaves. ROS levels, particularly hydrogen peroxide, in turn, positively regulated OsSGR expression, probably through chloroplast-to-nucleus signaling, which triggers chlorophyll degradation to protect mid-aged leaves from photodamage. Taken together, these results show that OsSGR-mediated chlorophyll degradation contributes to not only internal remobilization of Mg from mid-aged leaves to developing leaves, but also photooxidative protection of mid-aged leaves under Mg-limited conditions. ROS appear to act as feedback regulators of OsSGR expression to precisely govern chlorophyll degradation in mid-aged leaves where Mg and photosynthetic capacities are relatively high.


Subject(s)
Gene Expression Regulation, Plant , Magnesium/metabolism , Oryza/physiology , Plant Proteins/metabolism , Reactive Oxygen Species/metabolism , Signal Transduction , Biological Transport , Chlorophyll/metabolism , Chloroplasts/metabolism , Magnesium Deficiency , Oryza/genetics , Phenotype , Photosynthesis , Plant Leaves/genetics , Plant Leaves/physiology , Plant Proteins/genetics
18.
J Am Chem Soc ; 140(50): 17338-17342, 2018 Dec 19.
Article in English | MEDLINE | ID: mdl-30518213

ABSTRACT

Cross-electrophile couplings between two electrophiles are powerful and economic methods to generate C-C bonds in the presence of stoichiometric external reductants. Herein, we report a novel strategy to realize the first external-reductant-free cross-electrophile coupling via visible-light photoredox catalysis. A variety of tetraalkyl ammonium salts, bearing primary, secondary, and tertiary C-N bonds, undergo selective couplings with aldehydes/ketone and CO2. Notably, the in situ generated byproduct, trimethylamine, is efficiently utilized as the electron donor. Moreover, this protocol exhibits mild reaction conditions, low catalyst loading, broad substrate scope, good functional group tolerance, and facile scalability. Mechanistic studies indicate that benzyl radicals and anions might be generated as the key intermediates via photocatalysis, providing a new direction for cross-electrophile couplings.

19.
Angew Chem Int Ed Engl ; 57(42): 13897-13901, 2018 10 15.
Article in English | MEDLINE | ID: mdl-30152915

ABSTRACT

The first catalytic hydrocarboxylation of enamides and imines with CO2 to generate valuable α,α-disubstituted α-amino acids is reported. Notably, excellent chemo- and regio-selectivity are achieved, significantly different from previous reports on ß-carboxylation of enamides, homocoupling or reduction of imines. Moreover, this transition-metal-free procedure exhibits low loading of an inexpensive catalyst, easily available substrates, mild reaction conditions, high efficiency, facile scalability and easy product derivatization, providing great potential for application in organic synthesis, pharmaceutical chemistry, and biochemistry.

20.
Chem Commun (Camb) ; 54(44): 5610-5613, 2018 May 29.
Article in English | MEDLINE | ID: mdl-29770416

ABSTRACT

A direct and practical synthesis of important tetronic acids from easily available propargylic alcohols and carbon dioxide is reported for the first time. This transition-metal-free transformation features high atom- and step-economy, mild reaction conditions, good functional group tolerance and high yield. Preliminary mechanistic studies suggest that the reaction proceeds via cyclization to give alkylidene cyclic carbonate, ring-opening and re-cyclization processes.

SELECTION OF CITATIONS
SEARCH DETAIL