Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters











Database
Language
Publication year range
1.
Phys Rev Lett ; 124(20): 208004, 2020 May 22.
Article in English | MEDLINE | ID: mdl-32501072

ABSTRACT

A choreographic time crystal is a dynamic lattice structure in which the points comprising the lattice move in a coordinated fashion. These structures were initially proposed for understanding the motion of synchronized satellite swarms. Using simulations, we examine colloids interacting with a choreographic crystal consisting of traps that could be created optically. As a function of the trap strength, speed, and colloidal filling fraction, we identify a series of phases including states where the colloids organize into a dynamic chiral loop lattice as well as a frustrated induced liquid state and a choreographic lattice state. We show that transitions between these states can be understood in terms of vertex frustration effects that occur during a certain portion of the choreographic cycle. Our results can be generalized to a broader class of systems of particles coupled to choreographic structures, such as vortices, ions, cold atoms, and soft matter systems.

2.
Nat Commun ; 9(1): 4146, 2018 10 08.
Article in English | MEDLINE | ID: mdl-30297820

ABSTRACT

Artificial particle ices are model systems of constrained, interacting particles. They have been introduced theoretically to study ice-manifolds emergent from frustration, along with domain wall and grain boundary dynamics, doping, pinning-depinning, controlled transport of topological defects, avalanches, and memory effects. Recently such particle-based ices have been experimentally realized with vortices in nano-patterned superconductors or gravitationally trapped colloids. Here we demonstrate that, although these ices are generally considered equivalent to magnetic spin ices, they can access a novel spectrum of phenomenologies that are inaccessible to the latter. With experiments, theory and simulations we demonstrate that in mixed coordination geometries, entropy-driven negative monopoles spontaneously appear at a density determined by the vertex-mixture ratio. Unlike its spin-based analogue, the colloidal system displays a "fragile ice" manifold, where local energetics oppose the ice rule, which is instead enforced through conservation of the global topological charge. The fragile colloidal ice, stabilized by topology, can be spontaneously broken by topological charge transfer.

SELECTION OF CITATIONS
SEARCH DETAIL