Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
3.
J Neurodev Disord ; 8: 5, 2016.
Article in English | MEDLINE | ID: mdl-26909118

ABSTRACT

BACKGROUND: Phelan-McDermid syndrome (PMS), a neurodevelopmental disorder caused by deletion or mutation in the SHANK3 gene, is one of the more common single-locus causes of autism spectrum disorder (ASD). PMS is characterized by global developmental delay, hypotonia, delayed or absent speech, increased risk of seizures, and minor dysmorphic features. Impairments in language and communication are one of the most consistent characteristics of PMS. Although there is considerable overlap in the social communicative deficits associated with PMS and ASD, there is a dearth of data on underlying abnormalities at the level of neural systems in PMS. No controlled neuroimaging studies of PMS have been reported to date. The goal of this study was to examine the neural circuitry supporting the perception of auditory communicative signals in children with PMS as compared to idiopathic ASD (iASD). METHODS: Eleven children with PMS and nine comparison children with iASD were scanned using functional magnetic resonance imaging (fMRI) under light sedation. The fMRI paradigm was a previously validated passive auditory task, which presented communicative (e.g., speech, sounds of agreement, disgust) and non-communicative vocalizations (e.g., sneezing, coughing, yawning). RESULTS: Previous research has shown that the superior temporal gyrus (STG) responds selectively to communicative vocal signals in typically developing children and adults. Here, selective activity for communicative relative to non-communicative vocalizations was detected in the right STG in the PMS group, but not in the iASD group. The PMS group also showed preferential activity for communicative vocalizations in a range of other brain regions associated with social cognition, such as the medial prefrontal cortex (MPFC), insula, and inferior frontal gyrus. Interestingly, better orienting toward social sounds was positively correlated with selective activity in the STG and other "social brain" regions, including the MPFC, in the PMS group. Finally, selective MPFC activity for communicative sounds was associated with receptive language level in the PMS group and expressive language in the iASD group. CONCLUSIONS: Despite shared behavioral features, children with PMS differed from children with iASD in their neural response to communicative vocal sounds and showed relative strengths in this area. Furthermore, the relationship between clinical characteristics and neural selectivity also differed between the two groups, suggesting that shared ASD features may partially reflect different neurofunctional abnormalities due to differing etiologies.

4.
Psychiatry Res ; 220(3): 987-90, 2014 Dec 30.
Article in English | MEDLINE | ID: mdl-25446464

ABSTRACT

Self-injurious behavior in autism spectrum disorder (ASD) has been associated with lower whole blood serotonin levels and the role of serotonin transporter gene promoter region (5HTTLPR) polymorphisms is of interest because of their effects on transporter functioning. This study examined the association between self-injurious behavior in ASD and allelic frequencies of 5HTTLPR. Sixty-four children and adolescents with ASD who were not taking serotonergic medication at the time of the assessment were included in the analysis. Self-injury was assessed using the Autism Diagnostic Interview-Revised (ADI-R) and whole blood serotonin levels were measured using high-pressure liquid chromatography (HPLC) with fluorometic detection. DNA was extracted from saliva and PCR amplified with fluorescent primers. Self-injury significantly increased with the number of La alleles of the 5HTTLPR and decreased with the number of Lg alleles. Self-injury in ASD may be associated with a specific genotype of the serotonin transporter gene promoter region. Future studies should continue to explore subgroups to clarify the underlying clinical and genetic heterogeneity in ASD.


Subject(s)
Child Development Disorders, Pervasive/genetics , Genetic Variation/genetics , Promoter Regions, Genetic/genetics , Self-Injurious Behavior/genetics , Serotonin Plasma Membrane Transport Proteins/genetics , Adolescent , Child , Child Development Disorders, Pervasive/diagnosis , Child Development Disorders, Pervasive/psychology , Child, Preschool , Female , Gene Frequency/genetics , Humans , Male , Polymorphism, Genetic/genetics , Self-Injurious Behavior/diagnosis , Self-Injurious Behavior/psychology
6.
J Biol Chem ; 288(41): 29394-402, 2013 Oct 11.
Article in English | MEDLINE | ID: mdl-23990470

ABSTRACT

The nonspecific binding of heparin to plasma proteins compromises its anticoagulant activity by reducing the amount of heparin available to bind antithrombin. In addition, interaction of heparin with fibrin promotes formation of a ternary heparin-thrombin-fibrin complex that protects fibrin-bound thrombin from inhibition by the heparin-antithrombin complex. Previous studies have shown that heparin binds the E domain of fibrinogen. The current investigation examines the role of Zn(2+) in this interaction because Zn(2+) is released locally by platelets and both heparin and fibrinogen bind the cation, resulting in greater protection from inhibition by antithrombin. Zn(2+) promotes heparin binding to fibrinogen, as determined by chromatography, fluorescence, and surface plasmon resonance. Compared with intact fibrinogen, there is reduced heparin binding to fragment X, a clottable plasmin degradation product of fibrinogen. A monoclonal antibody directed against a portion of the fibrinogen αC domain removed by plasmin attenuates binding of heparin to fibrinogen and a peptide analog of this region binds heparin in a Zn(2+)-dependent fashion. These results indicate that the αC domain of fibrinogen harbors a Zn(2+)-dependent heparin binding site. As a consequence, heparin-catalyzed inhibition of factor Xa by antithrombin is compromised by fibrinogen to a greater extent when Zn(2+) is present. These results reveal the mechanism by which Zn(2+) augments the capacity of fibrinogen to impair the anticoagulant activity of heparin.


Subject(s)
Fibrinogen/metabolism , Heparin/metabolism , Zinc/metabolism , Amino Acid Sequence , Antithrombins/metabolism , Binding Sites/genetics , Binding, Competitive , Factor Xa/metabolism , Fibrin/metabolism , Fibrinogen/chemistry , Fibrinogen/genetics , Humans , Kinetics , Molecular Sequence Data , Peptides/chemistry , Peptides/genetics , Peptides/metabolism , Protein Binding , Spectrometry, Fluorescence , Surface Plasmon Resonance
7.
Mol Autism ; 4(1): 18, 2013 Jun 11.
Article in English | MEDLINE | ID: mdl-23758760

ABSTRACT

BACKGROUND: 22q13 deletion syndrome, also known as Phelan-McDermid syndrome, is a neurodevelopmental disorder characterized by intellectual disability, hypotonia, delayed or absent speech, and autistic features. SHANK3 has been identified as the critical gene in the neurological and behavioral aspects of this syndrome. The phenotype of SHANK3 deficiency has been described primarily from case studies, with limited evaluation of behavioral and cognitive deficits. The present study used a prospective design and inter-disciplinary clinical evaluations to assess patients with SHANK3 deficiency, with the goal of providing a comprehensive picture of the medical and behavioral profile of the syndrome. METHODS: A serially ascertained sample of patients with SHANK3 deficiency (n = 32) was evaluated by a team of child psychiatrists, neurologists, clinical geneticists, molecular geneticists and psychologists. Patients were evaluated for autism spectrum disorder using the Autism Diagnostic Interview-Revised and the Autism Diagnostic Observation Schedule-G. RESULTS: Thirty participants with 22q13.3 deletions ranging in size from 101 kb to 8.45 Mb and two participants with de novo SHANK3 mutations were included. The sample was characterized by high rates of autism spectrum disorder: 27 (84%) met criteria for autism spectrum disorder and 24 (75%) for autistic disorder. Most patients (77%) exhibited severe to profound intellectual disability and only five (19%) used some words spontaneously to communicate. Dysmorphic features, hypotonia, gait disturbance, recurring upper respiratory tract infections, gastroesophageal reflux and seizures were also common. Analysis of genotype-phenotype correlations indicated that larger deletions were associated with increased levels of dysmorphic features, medical comorbidities and social communication impairments related to autism. Analyses of individuals with small deletions or point mutations identified features related to SHANK3 haploinsufficiency, including ASD, seizures and abnormal EEG, hypotonia, sleep disturbances, abnormal brain MRI, gastroesophageal reflux, and certain dysmorphic features. CONCLUSIONS: This study supports findings from previous research on the severity of intellectual, motor, and speech impairments seen in SHANK3 deficiency, and highlights the prominence of autism spectrum disorder in the syndrome. Limitations of existing evaluation tools are discussed, along with the need for natural history studies to inform clinical monitoring and treatment development in SHANK3 deficiency.

8.
Neurol Clin ; 29(1): 115-26, viii, 2011 Feb.
Article in English | MEDLINE | ID: mdl-21172574

ABSTRACT

The physician must explain the treatment or procedure in detail including risks, benefits, and alternative options; the patient's choice must be voluntary; the patient must demonstrate his or her ability to understand the risks and benefits of their choice; and the patient must be able to manipulate information in a logical way. These criteria must be met in order for the process of informed consent to be valid.


Subject(s)
Choice Behavior , Informed Consent/psychology , Physician-Patient Relations , Physicians/psychology , Risk Assessment , Aged , Akinetic Mutism/diagnosis , Akinetic Mutism/therapy , Disclosure , Ethics, Medical , Humans , Male
SELECTION OF CITATIONS
SEARCH DETAIL